Skip to main content

Systemic Lupus Erythematosus and the Kidney

  • Chapter
  • First Online:
Core Concepts in Parenchymal Kidney Disease

Abstract

Lupus nephritis (LN) is an immune complex glomerulonephritis that affects about half of patients with systemic lupus erythematosus (SLE). Patients who develop LN in the setting of SLE have a worse prognosis overall and can develop chronic or end-stage kidney disease. Effective therapies have been developed to treat LN, and while outcomes are better than in the past, complete remissions are still difficult to achieve, and the immunosuppressive therapies commonly used are associated with significant morbidity and mortality. Consequently the LN community is actively working to develop more effective, less toxic novel LN therapies. These new therapeutics are being designed based on an increasing knowledge of the pathogenesis of SLE, and in particular LN, and are guided by the types of kidney injuries seen in LN. This chapter reviews the diagnosis and management of LN as currently practiced and the targets of future management strategies based on the pathogenesis and pathology of LN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Danila MI, Pons-Estel GJ, Zhang J, Vila LM, Reveille JD, Alarcon GS. Renal damage is the most important predictor of mortality within the damage index: data from LUMINA LXIV, a multiethnic US cohort. Rheumatology. 2009;48(5):542–5.

    Article  PubMed  Google Scholar 

  2. Campbell Jr R, Cooper GS, Gilkeson GS. Two aspects of the clinical and humanistic burden of systemic lupus erythematosus: mortality risk and quality of life early in the course of disease. Arthritis Rheum. 2008;59(4):458–64.

    Article  PubMed  Google Scholar 

  3. Font J, Ramos-Casals M, Cervera R, Garcia-Carrasco M, Torras A, Siso A, et al. Cardiovascular risk factors and the long-term outcome of lupus nephritis. QJM. 2001;94(1):19–26.

    Article  PubMed  CAS  Google Scholar 

  4. Skamra C, Ramsey-Goldman R. Management of cardiovascular complications in systemic lupus erythematosus. Int J Clin Rheumtol. 2010;5(1):75–100.

    Article  PubMed  Google Scholar 

  5. Seligman VA, Lum RF, Olson JL, Li H, Criswell LA. Demographic differences in the development of lupus nephritis: a retrospective analysis. Am J Med. 2002;112:726–9.

    Article  PubMed  Google Scholar 

  6. Bastian HM, Roseman JM, McGwin Jr G, Alarcon GS, Friedman AW, Fessler BJ, et al. Systemic lupus erythematosus in three ethnic groups. XII. Risk factors for lupus nephritis after diagnosis. Lupus. 2002;11(3):152–60.

    Article  PubMed  CAS  Google Scholar 

  7. Hiraki LT, Feldman CH, Liu J, Alarcon GS, Fischer MA, Winkelmayer WC, Costenbader KH. Prevalence, incidence, and demographics of systemic lupus erythematosus and lupus nephritis from 2000 to 2004 among children in the US Medicaid beneficiary population. Arthritis Rheum. 2012;64(8):2669–76.

    Article  PubMed  Google Scholar 

  8. Adler M, Chambers S, Edwards C, Neild G, Isenberg D. An assessment of renal failure in an SLE cohort with special reference to ethnicity, over a 25-year period. Rheumatology. 2006;45:1144–7.

    Article  PubMed  CAS  Google Scholar 

  9. Arfaj ASA, Khalil N. Clinical and immunological manifestations in 624 SLE patient in Saudi Arabia. Lupus. 2009;18:465–73.

    Article  PubMed  Google Scholar 

  10. Ward MM. Changes in the incidence of endstage renal disease due to lupus nephritis in the United States, 1996–2004. J Rheumatol. 2009;36:63–7.

    PubMed  Google Scholar 

  11. Gonzalez-Crespo MR, Lopez-Fernandez JI, Usera G, Poveda MJ, Gomez-Reino JJ. Outcome of silent lupus nephritis. Semin Arthritis Rheum. 1996;26(1):468–76.

    Article  PubMed  CAS  Google Scholar 

  12. Valente de Almeida R, Rocha de Carvalho JG, de Azevedo VF, Mulinari RA, Ioshhi SO, da Rosa Utiyama S, et al. Microalbuminuria and renal morphology in the evaluation of subclinical lupus nephritis. Clin Nephrol. 1999;52:218–29.

    PubMed  CAS  Google Scholar 

  13. Bagavant H, Fu SM. Pathogenesis of kidney disease in systemic lupus erythematosus. Curr Opin Rheumatol. 2009;21(5):489–94.

    Article  PubMed  CAS  Google Scholar 

  14. Moser KL, Kelly JA, Lessard CJ, Harley JB. Recent insights into the genetic basis of systemic lupus erythematosus. Genes Immun. 2009;10(5):373–9.

    Article  PubMed  CAS  Google Scholar 

  15. Harley IT, Kaufman KM, Langefeld CD, Harley JB, Kelly JA. Genetic susceptibility to SLE: new insights from fine mapping and genome-wide association studies. Nat Rev Genet. 2009;10(5):285–90.

    Article  PubMed  CAS  Google Scholar 

  16. Ramos PS, Brown EE, Kimberly RP, Langefeld CD. Genetic factors predisposing to systemic lupus erythematosus and lupus nephritis. Semin Nephrol. 2010;30(2):164–76.

    Article  PubMed  CAS  Google Scholar 

  17. Quintero-Del-Rio AI, Kelly JA, Kilpatrick J, James JA, Harley JB. The genetics of systemic lupus erythematosus stratified by renal disease: linkage at 10q22.3 (SLEN1), 2q34–35 (SLEN2), and 11p15.6 (SLEN3). Genes Immun. 2002;3 Suppl 1:S57–62.

    Article  PubMed  CAS  Google Scholar 

  18. Quintero-del-Rio AI, Kelly JA, Garriott CP, Hutchings DC, Frank SG, Aston CE, et al. SLEN2 (2q34–35) and SLEN1 (10q22.3) replication in systemic lupus erythematosus stratified by nephritis. Am J Hum Genet. 2004;75(2):346–8.

    Article  PubMed  CAS  Google Scholar 

  19. Matsumoto M, Seya T. TLR3: interferon induction by double-stranded RNA including poly(I:C). Adv Drug Deliv Rev. 2008;60(7):805–12.

    Article  PubMed  CAS  Google Scholar 

  20. Anderson CL. Human IgG Fc receptors. Clin Immunol Immunopathol. 1989;53(2 Pt 2):S63–71.

    Article  PubMed  CAS  Google Scholar 

  21. Li X, Ptacek TS, Brown EE, Edberg JC. Fcgamma receptors: structure, function and role as genetic risk factors in SLE. Genes Immun. 2009;10(5):380–9.

    Article  PubMed  CAS  Google Scholar 

  22. Warmerdam PAM, van de Winkle JGJ, Vlug J, Westerdaal NAC, Capel PJA. A single amino acid in the second Ig-like domain of the human Fcγ[gamma] receptor II plays a critical role in human IgG2 binding. J Immunol. 1991;144:1338–43.

    Google Scholar 

  23. Salmon JE, Edberg JC, Brogle NL, Kimberly RP. Allelic polymorphisms of human Fc gamma receptor IIA and Fc gamma receptor IIIB. Independent mechanisms for differences in human phagocyte function. J Clin Invest. 1992;89(4):1274–81.

    Article  PubMed  CAS  Google Scholar 

  24. Koene HR, Kleijer M, Algra J, Roos D, von dem Borne AE, de Haas M. Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype. Blood. 1997;90(3):1109–14.

    PubMed  CAS  Google Scholar 

  25. Karassa FB, Trikalinos TA, Ioannidis JP. Role of the Fcgamma receptor IIa polymorphism in susceptibility to systemic lupus erythematosus and lupus nephritis: a meta-analysis. Arthritis Rheum. 2002;46(6):1563–71.

    Article  PubMed  CAS  Google Scholar 

  26. Karassa FB, Trikalinos TA, Ioannidis JP. The Fc gamma RIIIA-F158 allele is a risk factor for the development of lupus nephritis: a meta-analysis. Kidney Int. 2003;63(4):1475–82.

    Article  PubMed  CAS  Google Scholar 

  27. Tucci M, Barnes EV, Sobel ES, Croker BP, Segal MS, Reeves WH, et al. Strong association of a functional polymorphism in the monocyte chemoattractant protein 1 promoter gene with lupus nephritis. Arthritis Rheum. 2004;50:1842–9.

    Article  PubMed  CAS  Google Scholar 

  28. Chen DY, Hsieh CW, Chen KS, Chen YM, Lin FJ, Lan JL. Association of interleukin-18 promoter polymorphisms with WHO pathological classes and serum IL-18 levels in Chinese patients with lupus nephritis. Lupus. 2009;18(1):29–37.

    Article  PubMed  CAS  Google Scholar 

  29. Taylor KE, Remmers EF, Lee AT, Ortmann WA, Plenge RM, Tian C, et al. Specificity of the STAT4 genetic association for severe disease manifestations of systemic lupus erythematosus. PLoS Genet. 2008;4(5):e1000084.

    Article  PubMed  CAS  Google Scholar 

  30. Sigurdsson S, Nordmark G, Garnier S, Grundberg E, Kwan T, Nilsson O, et al. A risk haplotype of STAT4 for systemic lupus erythematosus is over-expressed, correlates with anti-dsDNA and shows additive effects with two risk alleles of IRF5. Hum Mol Genet. 2008;17(18):2868–76.

    Article  PubMed  CAS  Google Scholar 

  31. Marchini M, Antonioli R, Lleo A, Barili M, Caronni M, Origgi L, et al. HLA class II antigens associated with lupus nephritis in Italian SLE patients. Hum Immunol. 2003;64(4):462–8.

    Article  PubMed  CAS  Google Scholar 

  32. Taylor KE, Chung SA, Graham RR, Ortmann WA, Lee AT, Langefeld CD, et al. Risk alleles for systemic lupus erythematosus in a large case-control collection and associations with clinical subphenotypes. PLoS Genet. 2011;7(2):e1001311.

    Article  PubMed  CAS  Google Scholar 

  33. Holman HR, Kunkel HG. Affinity between the lupus erythematosus serum factor and cell nuclei and nucleoprotein. Science. 1957;126(3265):162–3.

    Article  PubMed  CAS  Google Scholar 

  34. Deicher HR, Holman HR, Kunkel HG. The precipitin reaction between DNA and a serum factor in systemic lupus erythematosus. J Exp Med. 1959;109(1):97–114.

    Article  PubMed  CAS  Google Scholar 

  35. Sherer Y, Gorstein A, Fritzler MJ, Shoenfeld Y. Autoantibody explosion in systemic lupus erythematosus: more than 100 different antibodies found in SLE patients. Semin Arthritis Rheum. 2004;34(2):501–37.

    Article  PubMed  CAS  Google Scholar 

  36. Hahn BH. Antibodies to DNA. N Engl J Med. 1998;338(19):1359–68.

    Article  PubMed  CAS  Google Scholar 

  37. Krishnan C, Kaplan MH. Immunopathologic studies of systemic lupus erythematosus. II. Antinuclear reaction of gamma-globulin eluted from homogenates and isolated glomeruli of kidneys from patients with lupus nephritis. J Clin Invest. 1967;46(4):569–79.

    Article  PubMed  CAS  Google Scholar 

  38. Winfield JB, Faiferman I, Koffler D. Avidity of anti-DNA antibodies in serum and IgG glomerular eluates from patients with systemic lupus erythematosus. Association of high avidity antinative DNA antibody with glomerulonephritis. J Clin Invest. 1977;59(1):90–6.

    Article  PubMed  CAS  Google Scholar 

  39. Xie C, Liang Z, Chang S, Mohan C. Use of a novel elution regimen reveals the dominance of polyreactive antinuclear autoantibodies in lupus kidneys. Arthritis Rheum. 2003;48(8):2343–52.

    Article  PubMed  CAS  Google Scholar 

  40. Schmiedeke TM, Stockl FW, Weber R, Sugisaki Y, Batsford SR, Vogt A. Histones have high affinity for the glomerular basement membrane. Relevance for immune complex formation in lupus nephritis. J Exp Med. 1989;169(6):1879–94.

    Article  PubMed  CAS  Google Scholar 

  41. Kalaaji M, Fenton KA, Mortensen ES, Olsen R, Sturfelt G, Alm P, et al. Glomerular apoptotic nucleosomes are central target structures for nephritogenic antibodies in human SLE nephritis. Kidney Int. 2007;71(7):664–72.

    Article  PubMed  CAS  Google Scholar 

  42. Yung S, Chan TM. Anti-DNA antibodies in the pathogenesis of lupus nephritis—the emerging mechanisms. Autoimmun Rev. 2008;7(4):317–21.

    Article  PubMed  CAS  Google Scholar 

  43. Mason LJ, Ravirajan CT, Rahman A, Putterman C, Isenberg DA. Is alpha-actinin a target for pathogenic anti-DNA antibodies in lupus nephritis? Arthritis Rheum. 2004;50(3):866–70.

    Article  PubMed  CAS  Google Scholar 

  44. Yung S, Cheung KF, Zhang Q, Chan TM. Anti-dsDNA antibodies bind to mesangial annexin II in lupus nephritis. J Am Soc Nephrol. 2010;21(11):1912–27.

    Article  PubMed  CAS  Google Scholar 

  45. Winkler TH, Henschel TA, Kalies I, Baenkler HW, Skvaril F, Kalden JR. Constant isotype pattern of anti-dsDNA antibodies in patients with systemic lupus erythematosus. Clin Exp Immunol. 1988;72(3):434–9.

    PubMed  CAS  Google Scholar 

  46. Devey ME, Lee SR, Le Page S, Feldman R, Isenberg DA. Serial studies of the IgG subclass and functional affinity of DNA antibodies in systemic lupus erythematosus. J Autoimmun. 1988;1(5):483–94.

    Article  PubMed  CAS  Google Scholar 

  47. Sinico RA, Rimoldi L, Radice A, Bianchi L, Gallelli B, Moroni G. Anti-C1q autoantibodies in lupus nephritis. Ann N Y Acad Sci. 2009;1173:47–51.

    Article  PubMed  CAS  Google Scholar 

  48. Trendelenburg M, Lopez-Trascasa M, Potlukova E, Moll S, Regenass S, Fremeaux-Bacchi V, et al. High prevalence of anti-C1q antibodies in biopsy-proven active lupus nephritis. Nephrol Dial Transplant. 2006;21(11):3115–21.

    Article  PubMed  CAS  Google Scholar 

  49. Gunnarsson I, Sundelin B, Heimburger M, Forslid J, van Vollenhoven R, Lundberg I, et al. Repeated renal biopsy in proliferative lupus nephritis—predictive role of serum C1q and albuminuria. J Rheumatol. 2002;29(4):693–9.

    PubMed  Google Scholar 

  50. Marto N, Bertolaccini ML, Calabuig E, Hughes GR, Khamashta MA. Anti-C1q antibodies in nephritis: correlation between titres and renal disease activity and positive predictive value in systemic lupus erythematosus. Ann Rheum Dis. 2005;64(3):444–8.

    Article  PubMed  CAS  Google Scholar 

  51. Trouw LA, Groeneveld TW, Seelen MA, Duijs JM, Bajema IM, Prins FA, et al. Anti-C1q autoantibodies deposit in glomeruli but are only pathogenic in combination with glomerular C1q-containing immune complexes. J Clin Invest. 2004;114(5):679–88.

    PubMed  CAS  Google Scholar 

  52. Flierman R, Daha MR. Pathogenic role of anti-C1q autoantibodies in the development of lupus nephritis—a hypothesis. Mol Immunol. 2007;44(1–3):133–8.

    Article  PubMed  CAS  Google Scholar 

  53. Prada AE, Strife CF. IgG subclass restriction of autoantibody to solid-phase C1q in membranoproliferative and lupus glomerulonephritis. Clin Immunol Immunopathol. 1992;63(1):84–8.

    Article  PubMed  CAS  Google Scholar 

  54. Dobnig H, Pilz S, Scharnagl H, Renner W, Seelhorst U, Wellnitz B, et al. Independent association of low serum 25-hydroxyvitamin d and 1,25-dihydroxyvitamin d levels with all-cause and cardiovascular mortality. Arch Intern Med. 2008;168(12):1340–9.

    Article  PubMed  CAS  Google Scholar 

  55. Chan OT, Hannum LG, Haberman AM, Madaio MP, Shlomchik MJ. A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J Exp Med. 1999;189(10):1639–48.

    Article  PubMed  CAS  Google Scholar 

  56. Bagavant H, Deshmukh US, Wang H, Ly T, Fu SM. Role for nephritogenic T cells in lupus glomerulonephritis: progression to renal failure is accompanied by T cell activation and expansion in regional lymph nodes. J Immunol. 2006;177(11):8258–65.

    PubMed  CAS  Google Scholar 

  57. Jacob N, Yang H, Pricop L, Liu Y, Gao X, Zheng SG, et al. Accelerated pathological and clinical nephritis in systemic lupus erythematosus-prone New Zealand Mixed 2328 mice doubly deficient in TNF receptor 1 and TNF receptor 2 via a Th17-associated pathway. J Immunol. 2009;182(4):2532–41.

    Article  PubMed  CAS  Google Scholar 

  58. Schifferli J, Bartolotti S, Peters D. Inhibition of immune precipitation by complement. Clin Exp Immunol. 1980;42:387–94.

    PubMed  CAS  Google Scholar 

  59. Schifferli JA, Peters DK. Complement, the immune-complex lattice, and the pathophysiology of complement-deficiency syndromes. Lancet. 1983;2(8356):957–9.

    Article  PubMed  CAS  Google Scholar 

  60. Korb LC, Ahearn JM. C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J Immunol. 1997;158(10):4525–8.

    PubMed  CAS  Google Scholar 

  61. Pickering MC, Botto M, Taylor PR, Lachmann PJ, Walport MJ. Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv Immunol. 2000;76:227–324.

    Article  PubMed  CAS  Google Scholar 

  62. Paccaud JP, Schifferli JA. Complement and immune complex nephritis. Am J Nephrol. 1989;9 Suppl 1:2–6.

    Article  PubMed  Google Scholar 

  63. Hebert LA. The clearance of immune complexes from the circulation of man and other primates. Am J Kidney Dis. 1991;17:352–61.

    PubMed  CAS  Google Scholar 

  64. Birmingham DJ, Hebert LA. CR1 and CR1-like: the primate immune adherence receptors. Immunol Rev. 2001;180:100–11.

    Article  PubMed  CAS  Google Scholar 

  65. Navratil JS, Korb LC, Ahearn JM. Systemic lupus erythematosus and complement deficiency: clues to a novel role for the classical complement pathway in the maintenance of immune tolerance. Immunopharmacology. 1999;42(1–3):47–52.

    Article  PubMed  CAS  Google Scholar 

  66. Pettigrew HD, Teuber SS, Gershwin ME. Clinical significance of complement deficiencies. Ann N Y Acad Sci. 2009;1173:108–23.

    Article  PubMed  CAS  Google Scholar 

  67. Iida K, Mornaghi R, Nussenzweig V. Complement receptor (CR1) deficiency in erythrocytes from patients with systemic lupus erythematosus. J Exp Med. 1982;155(5):1427–38.

    Article  PubMed  CAS  Google Scholar 

  68. Walport MJ, Ross GD, Mackworth YC, Watson JV, Hogg N, Lachmann PJ. Family studies of erythrocyte complement receptor type 1 levels: reduced levels in patients with SLE are acquired, not inherited. Clin Exp Immunol. 1985;59(3):547–54.

    PubMed  CAS  Google Scholar 

  69. Birmingham DJ, Gavit KF, McCarty SM, Yu CY, Rovin BH, Nagaraja HN, et al. Consumption of erythrocyte CR1 (CD35) is associated with protection against systemic lupus erythematosus renal flare. Clin Exp Immunol. 2006;143(2):274–80.

    Article  PubMed  CAS  Google Scholar 

  70. Koffler D, Agnello V, Carr RI, Kunkel HG. Variable patterns of immunoglobulin and complement deposition in the kidneys of patients with systemic lupus erythematosus. Am J Pathol. 1969;56:305–16.

    PubMed  CAS  Google Scholar 

  71. Valentijn RM, van Overhagen H, Hazevoet HM, Hermans J, Cats A, Daha MR, et al. The value of complement and immune complex determinations in monitoring disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 1985;28(8):904–13.

    Article  PubMed  CAS  Google Scholar 

  72. Lloyd W, Schur PH. Immune complexes, complement, and anti-DNA in exacerbations of systemic lupus erythematosus (SLE). Medicine. 1981;60(3):208–17.

    Article  PubMed  CAS  Google Scholar 

  73. Ricker DM, Hebert LA, Rohde R, Sedmak DD, Lewis EJ, Clough JD. Serum C3 levels are diagnostically more sensitive and specific for systemic lupus erythematosus activity than are serum C4 levels. The Lupus Nephritis Collaborative Study Group. Am J Kidney Dis. 1991;18(6):678–85.

    PubMed  CAS  Google Scholar 

  74. Rothfield N, Ross HA, Minta JO, Lepow IH. Glomerular and dermal deposition of properdin in systemic lupus erythematosus. N Engl J Med. 1972;287(14):681–5.

    Article  PubMed  CAS  Google Scholar 

  75. Verroust PJ, Wilson CB, Cooper NR, Edgington TS, Dixon FJ. Glomerular complement components in human glomerulonephritis. J Clin Invest. 1974;53(1):77–84.

    Article  PubMed  CAS  Google Scholar 

  76. Biesecker G, Katz S, Koffler D. Renal localization of the membrane attack complex in systemic lupus erythematosus nephritis. J Exp Med. 1981;154(6):1779–94.

    Article  PubMed  CAS  Google Scholar 

  77. Biesecker G, Koffler D. Immunopathology of the membrane attack complex in systemic lupus erythematosus nephritis. Arthritis Rheum. 1982;25(7):876–9.

    Article  PubMed  CAS  Google Scholar 

  78. Teixeira JE, Costa RS, Lachmann PJ, Wurzner R, Barbosa JE. CR1 stump peptide and terminal complement complexes are found in the glomeruli of lupus nephritis patients. Clin Exp Immunol. 1996;105(3):497–503.

    Article  PubMed  CAS  Google Scholar 

  79. Welch TR, Beischel LS, Witte DP. Differential expression of complement C3 and C4 in the human kidney. J Clin Invest. 1993;92(3):1451–8.

    Article  PubMed  CAS  Google Scholar 

  80. Welch TR, Beischel LS, Frenzke M, Witte D. Regulated expression of complement factor B in the human kidney. Kidney Int. 1996;50(2):521–5.

    Article  PubMed  CAS  Google Scholar 

  81. Mizuno M, Blanchin S, Gasque P, Nishikawa K, Matsuo S. High levels of complement C3a receptor in the glomeruli in lupus nephritis. Am J Kidney Dis. 2007;49(5):598–606.

    Article  PubMed  CAS  Google Scholar 

  82. Abe K, Miyazaki M, Koji T, Furusu A, Nakamura-Kurashige T, Nishino T, et al. Enhanced expression of complement C5a receptor mRNA in human diseased kidney assessed by in situ hybridization. Kidney Int. 2001;60(1):137–46.

    Article  PubMed  CAS  Google Scholar 

  83. Kazatchkine MD, Fearon DT, Appay MD, Mandet C, Bariety J. Immunohistochemical study of the human glomerular C3b receptor in normal kidney and in seventy five cases of renal diseases. J Clin Invest. 1982;69:900–12.

    Article  PubMed  CAS  Google Scholar 

  84. Emancipator SN, Iida K, Nussenzweig V, Gallo GR. Monoclonal antibodies to human complement receptor (CR1) detect defects in glomerular diseases. Clin Immunol Immunopathol. 1983;27(2):170–5.

    Article  PubMed  CAS  Google Scholar 

  85. Cosio FG, Sedmak DD, Mahan JD, Nahman Jr NS. Localization of decay accelerating factor in normal and diseased kidneys. Kidney Int. 1989;36(1):100–7.

    Article  PubMed  CAS  Google Scholar 

  86. Abe K, Miyazaki M, Koji T, Furusu A, Ozono Y, Harada T, et al. Expression of decay accelerating factor mRNA and complement C3 mRNA in human diseased kidney. Kidney Int. 1998;54(1):120–30.

    Article  PubMed  CAS  Google Scholar 

  87. Arora M, Arora R, Tiwari SC, Das N, Srivastava LM. Expression of complement regulatory proteins in diffuse proliferative glomerulonephritis. Lupus. 2000;9(2):127–31.

    Article  PubMed  CAS  Google Scholar 

  88. Rovin BH. The chemokine network in systemic lupus erythematosus nephritis. Front Biosci. 2007;13:904–22.

    Article  Google Scholar 

  89. Peterson KS, Huang JF, Zhu J, D’Agati V, Liu X, Miller N, et al. Characterization of heterogeneity in the molecular pathogenesis of lupus nephritis from transcriptional profiles of laser-captured glomeruli. J Clin Invest. 2004;113(12):1722–33.

    PubMed  CAS  Google Scholar 

  90. Chan RW, Lai FM, Li EK, Tam LS, Chow KM, Lai KB, et al. Intrarenal cytokine gene expression in lupus nephritis. Ann Rheum Dis. 2007;66(7):886–92.

    Article  PubMed  CAS  Google Scholar 

  91. Malide D, Russo P, Bendayan M. Presence of tumor necrosis factor alpha and interleukin-6 in renal mesangial cells of lupus nephritis patients. Hum Pathol. 1995;26(5):558–64.

    Article  PubMed  CAS  Google Scholar 

  92. Herrera-Esparza R, Barbosa-Cisneros O, Villalobos-Hurtado R, Avalos-Diaz E. Renal expression of IL-6 and TNFalpha genes in lupus nephritis. Lupus. 1998;7(3):154–8.

    Article  PubMed  CAS  Google Scholar 

  93. Uhm WS, Na K, Song GW, Jung SS, Lee T, Park MH, et al. Cytokine balance in kidney tissue from lupus nephritis patients. Rheumatology. 2003;42(8):935–8.

    Article  PubMed  CAS  Google Scholar 

  94. Masutani K, Akahoshi M, Tsuruya K, Tokumoto M, Ninomiya T, Kohsaka T, et al. Predominance of Th1 immune response in diffuse proliferative lupus nephritis. Arthritis Rheum. 2001;44(9):2097–106.

    Article  PubMed  CAS  Google Scholar 

  95. Crispin JC, Oukka M, Bayliss G, Cohen RA, Van Beek CA, Stillman IE, et al. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J Immunol. 2008;181(12):8761–6.

    PubMed  CAS  Google Scholar 

  96. Tesch GH, Maifert S, Schwarting A, Rollins BJ, Kelley VR. Monocyte chemoattractant protein 1-dependent leukocytic infiltrates are responsible for autoimmune disease in MRL-Fas(lpr) mice. J Exp Med. 1999;190:1813–24.

    Article  PubMed  CAS  Google Scholar 

  97. PerezLema G, Maier H, Franz TJ, Escribese M, Chilla S, Segerer S, et al. Chemokine receptor CCR2 deficiency reduces renal disease and prolongs survival in MRL/lpr lupus-prone mice. J Am Soc Nephrol. 2005;16:3592–601.

    Article  CAS  Google Scholar 

  98. Kiberd BA. Interleukin-6 receptor blockage ameliorates murine lupus nephritis. J Am Soc Nephrol. 1993;4(1):58–61.

    PubMed  CAS  Google Scholar 

  99. Liang B, Gardner DB, Griswold DE, Bugelski PJ, Song XY. Anti-interleukin-6 monoclonal antibody inhibits autoimmune responses in a murine model of systemic lupus erythematosus. Immunology. 2006;119(3):296–305.

    Article  PubMed  CAS  Google Scholar 

  100. Bossu P, Neumann D, Del Giudice E, Ciaramella A, Gloaguen I, Fantuzzi G, et al. IL-18 cDNA vaccination protects mice from spontaneous lupus-like autoimmune disease. Proc Natl Acad Sci USA. 2003;100(24):14181–6.

    Article  PubMed  CAS  Google Scholar 

  101. Ge D, You Z. Expression of interleukin-17RC protein in normal human tissues. Int Arch Med. 2008;1(1):1–19.

    Article  CAS  Google Scholar 

  102. Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol. 2007;25:821–52.

    Article  PubMed  CAS  Google Scholar 

  103. Qiu Z, Dillen C, Hu J, Verbeke H, Struyf S, Van Damme J, et al. Interleukin-17 regulates chemokine and gelatinase B expression in fibroblasts to recruit both neutrophils and monocytes. Immunobiology. 2009;214(9–10):835–42.

    Article  PubMed  CAS  Google Scholar 

  104. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441(7090):235–8.

    Article  PubMed  CAS  Google Scholar 

  105. Tucci M, Lombardi L, Richards HB, Dammacco F, Silvestris F. Overexpression of interleukin-12 and T helper 1 predominance in lupus nephritis. Clin Exp Immunol. 2008;154(2):247–54.

    Article  PubMed  CAS  Google Scholar 

  106. Gomez D, Correa PA, Gomez LM, Cadena J, Molina JF, Anaya JM. Th1/Th2 cytokines in patients with systemic lupus erythematosus: is tumor necrosis factor alpha protective? Semin Arthritis Rheum. 2004;33(6):404–13.

    Article  PubMed  CAS  Google Scholar 

  107. Charles N, Hardwick D, Daugas E, Illei GG, Rivera J. Basophils and the T helper 2 environment can promote the development of lupus nephritis. Nat Med. 2010;16(6):701–7.

    Article  PubMed  CAS  Google Scholar 

  108. Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+CD25 high regulatory cells in human peripheral blood. J Immunol. 2001;167(3):1245–53.

    PubMed  CAS  Google Scholar 

  109. Kuhn A, Beissert S, Krammer PH. CD4(+)CD25 (+) regulatory T cells in human lupus erythematosus. Arch Dermatol Res. 2009;301(1):71–81.

    Article  PubMed  Google Scholar 

  110. Lim HW, Hillsamer P, Banham AH, Kim CH. Cutting edge: direct suppression of B cells by CD4+ CD25+ regulatory T cells. J Immunol. 2005;175(7):4180–3.

    PubMed  CAS  Google Scholar 

  111. Iikuni N, Lourenco EV, Hahn BH, La Cava A. Cutting edge: regulatory T cells directly suppress B cells in systemic lupus erythematosus. J Immunol. 2009;183(3):1518–22.

    Article  PubMed  CAS  Google Scholar 

  112. Hsu WT, Suen JL, Chiang BL. The role of CD4CD25 T cells in autoantibody production in murine lupus. Clin Exp Immunol. 2006;145(3):513–9.

    Article  PubMed  CAS  Google Scholar 

  113. Scalapino KJ, Tang Q, Bluestone JA, Bonyhadi ML, Daikh DI. Suppression of disease in New Zealand Black/New Zealand White lupus-prone mice by adoptive transfer of ex vivo expanded regulatory T cells. J Immunol. 2006;177(3):1451–9.

    PubMed  CAS  Google Scholar 

  114. Scalapino KJ, Daikh DI. Suppression of glomerulonephritis in NZB/NZW lupus prone mice by adoptive transfer of ex vivo expanded regulatory T cells. PLoS One. 2009;4(6):e6031.

    Article  PubMed  CAS  Google Scholar 

  115. Gerli R, Nocentini G, Alunno A, Bocci EB, Bianchini R, Bistoni O, et al. Identification of regulatory T cells in systemic lupus erythematosus. Autoimmun Rev. 2009;8(5):426–30.

    Article  PubMed  CAS  Google Scholar 

  116. Sfikakis PP, Souliotis VL, Fragiadaki KG, Moutsopoulos HM, Boletis JN, Theofilopoulos AN. Increased expression of the FoxP3 functional marker of regulatory T cells following B cell depletion with rituximab in patients with lupus nephritis. Clin Immunol. 2007;123(1):66–73.

    Article  PubMed  CAS  Google Scholar 

  117. Yates J, Whittington A, Mitchell P, Lechler RI, Lightstone L, Lombardi G. Natural regulatory T cells: number and function are normal in the majority of patients with lupus nephritis. Clin Exp Immunol. 2008;153(1):44–55.

    Article  PubMed  CAS  Google Scholar 

  118. Cassese G, Lindenau S, de Boer B, Arce S, Hauser A, Riemekasten G, et al. Inflamed kidneys of NZB/W mice are a major site for the homeostasis of plasma cells. Eur J Immunol. 2001;31(9):2726–32.

    Article  PubMed  CAS  Google Scholar 

  119. Steinmetz OM, Velden J, Kneissler U, Marx M, Klein A, Helmchen U, et al. Analysis and classification of B-cell infiltrates in lupus and ANCA-associated nephritis. Kidney Int. 2008;74(4):448–57.

    Article  PubMed  CAS  Google Scholar 

  120. Chang A, Henderson SG, Brandt D, Liu N, Guttikonda R, Hsieh C, et al. In situ B cell-mediated immune responses and tubulointerstitial inflammation in human lupus nephritis. J Immunol. 2011;186(3):1849–60.

    Article  PubMed  CAS  Google Scholar 

  121. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004;303(5663):1529–31.

    Article  PubMed  CAS  Google Scholar 

  122. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, et al. A Toll-like receptor recognizes bacterial DNA. Nature. 2000;408(6813):740–5.

    Article  PubMed  CAS  Google Scholar 

  123. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006;441(7089):101–5.

    Article  PubMed  CAS  Google Scholar 

  124. Denny MF, Yalavarthi S, Zhao W, Thacker SG, Anderson M, Sandy AR, et al. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J Immunol. 2010;184(6):3284–97.

    Article  PubMed  CAS  Google Scholar 

  125. Villanueva E, Yalavarthi S, Berthier CC, Hodgin JB, Khandpur R, Lin AM, et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol. 2011;187(1):538–52.

    Article  PubMed  CAS  Google Scholar 

  126. Gao Y, Majchrzak-Kita B, Fish EN, Gommerman JL. Dynamic accumulation of plasmacytoid dendritic cells in lymph nodes is regulated by interferon-beta. Blood. 2009;114(13):2623–31.

    Article  PubMed  CAS  Google Scholar 

  127. Jego G, Palucka AK, Blanck JP, Chalouni C, Pascual V, Banchereau J. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity. 2003;19(2):225–34.

    Article  PubMed  CAS  Google Scholar 

  128. Gallagher KM, Lauder S, Rees IW, Gallimore AM, Godkin AJ. Type I interferon (IFN alpha) acts directly on human memory CD4+ T cells altering their response to antigen. J Immunol. 2009;183(5):2915–20.

    Article  PubMed  CAS  Google Scholar 

  129. Ramos HJ, Davis AM, Cole AG, Schatzle JD, Forman J, Farrar JD. Reciprocal responsiveness to interleukin-12 and interferon-alpha specifies human CD8+ effector versus central memory T-cell fates. Blood. 2009;113(22):5516–25.

    Article  PubMed  CAS  Google Scholar 

  130. Bave U, Alm GV, Ronnblom L. The combination of apoptotic U937 cells and lupus IgG is a potent IFN-alpha inducer. J Immunol. 2000;165(6):3519–26.

    PubMed  CAS  Google Scholar 

  131. Barrat FJ, Meeker T, Gregorio J, Chan JH, Uematsu S, Akira S, et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med. 2005;202(8):1131–9.

    Article  PubMed  CAS  Google Scholar 

  132. Means TK, Latz E, Hayashi F, Murali MR, Golenbock DT, Luster AD. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J Clin Invest. 2005;115(2):407–17.

    PubMed  CAS  Google Scholar 

  133. Fritzler MJ, Pauls JD, Kinsella TD, Bowen TJ. Antinuclear, anticytoplasmic, and anti-Sjogren’s syndrome antigen A (SS-A/Ro) antibodies in female blood donors. Clin Immunol Immunopathol. 1985;36(1):120–8.

    Article  PubMed  CAS  Google Scholar 

  134. de Vlam K, De Keyser F, Verbruggen G, Vandenbossche M, Vanneuville B, D’Haese D, et al. Detection and identification of antinuclear autoantibodies in the serum of normal blood donors. Clin Exp Rheumatol. 1993;11(4):393–7.

    PubMed  Google Scholar 

  135. Tan EM, Feltkamp TE, Smolen JS, Butcher B, Dawkins R, Fritzler MJ, et al. Range of antinuclear antibodies in “healthy” individuals. Arthritis Rheum. 1997;40(9):1601–11.

    Article  PubMed  CAS  Google Scholar 

  136. Goyal HK, Wadhwa J, Arora B, Dawar R, Agarwal SK, Singh D. Interferon-induced lupus nephritis in a patient with chronic myeloid leukemia. Leuk Lymphoma. 2005;46(3):481–2.

    Article  PubMed  Google Scholar 

  137. Wandl UB, Nagel-Hiemke M, May D, Kreuzfelder E, Kloke O, Kranzhoff M, et al. Lupus-like autoimmune disease induced by interferon therapy for myeloproliferative disorders. Clin Immunol Immunopathol. 1992;65(1):70–4.

    Article  PubMed  CAS  Google Scholar 

  138. Ronnblom LE, Alm GV, Oberg KE. Possible induction of systemic lupus erythematosus by interferon-alpha treatment in a patient with a malignant carcinoid tumour. J Intern Med. 1990;227(3):207–10.

    Article  PubMed  CAS  Google Scholar 

  139. Niewold TB, Swedler WI. Systemic lupus erythematosus arising during interferon-alpha therapy for cryoglobulinemic vasculitis associated with hepatitis C. Clin Rheumatol. 2005;24(2):178–81.

    Article  PubMed  Google Scholar 

  140. Ho V, McLean A, Terry S. Severe systemic lupus erythematosus induced by antiviral treatment for hepatitis C. J Clin Rheumatol. 2008;14(3):166–8.

    Article  PubMed  Google Scholar 

  141. Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J, et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med. 2003;197(6):711–23.

    Article  PubMed  CAS  Google Scholar 

  142. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci USA. 2003;100(5):2610–5.

    Article  PubMed  CAS  Google Scholar 

  143. Kaser A, Kaser S, Kaneider NC, Enrich B, Wiedermann CJ, Tilg H. Interleukin-18 attracts plasmacytoid dendritic cells (DC2s) and promotes Th1 induction by DC2s through IL-18 receptor expression. Blood. 2004;103(2):648–55.

    Article  PubMed  CAS  Google Scholar 

  144. Tucci M, Quatraro C, Lombardi L, Pellegrino C, Dammacco F, Silvestris F. Glomerular accumulation of plasmacytoid dendritic cells in active lupus nephritis: role of interleukin-18. Arthritis Rheum. 2008;58(1):251–62.

    Article  PubMed  CAS  Google Scholar 

  145. Feng X, Wu H, Grossman JM, Hanvivadhanakul P, FitzGerald JD, Park GS, et al. Association of increased interferon-inducible gene expression with disease activity and lupus nephritis in patients with systemic lupus erythematosus. Arthritis Rheum. 2006;54(9):2951–62.

    Article  PubMed  CAS  Google Scholar 

  146. Fu Q, Chen X, Cui H, Guo Y, Chen J, Shen N, et al. Association of elevated transcript levels of interferon-inducible chemokines with disease activity and organ damage in systemic lupus erythematosus patients. Arthritis Res Ther. 2008;10(5):R112.

    Article  PubMed  CAS  Google Scholar 

  147. Bauer JW, Baechler EC, Petri M, Batliwalla FM, Crawford D, Ortmann WA, et al. Elevated serum levels of interferon-regulated chemokines are biomarkers for active human systemic lupus erythematosus. PLoS Med. 2006;3(12):e491.

    Article  PubMed  CAS  Google Scholar 

  148. Bauer JW, Petri M, Batliwalla FM, Koeuth T, Wilson J, Slattery C, et al. Interferon-regulated chemokines as biomarkers of systemic lupus erythematosus disease activity: a validation study. Arthritis Rheum. 2009;60(10):3098–107.

    Article  PubMed  CAS  Google Scholar 

  149. Anders HJ, Lichtnekert J, Allam R. Interferon-alpha and -beta in kidney inflammation. Kidney Int. 2010;77(10):848–54.

    Article  PubMed  CAS  Google Scholar 

  150. Hron JD, Peng SL. Type I IFN protects against murine lupus. J Immunol. 2004;173(3):2134–42.

    PubMed  CAS  Google Scholar 

  151. Esdaile JM, Levinton C, Federgreen W, Hayslet JP, Kashgarian M. The clinical and renal biopsy predictors of long-term outcome in lupus nephritis: a study of 87 patients and review of the literature. QJM. 1989;269:779–833.

    Google Scholar 

  152. Faurschou M, Starklint H, Halbert P, Jacobsen S. Prognosis factors in lupus nephritis: diagnostic and therapeutic delay increases the risk of terminal renal failure. J Rheumatol. 2006;33(8):1563–9.

    PubMed  Google Scholar 

  153. Esdaile JM, Joseph L, Mackenzie T, Kashgarian M, Hayslet JP. The benefit of early treatment with immunosuppressive agents in lupus nephritis. J Rheumatol. 1994;21:2046–51.

    PubMed  CAS  Google Scholar 

  154. Yen J-H, Chen C-J, Tsai C-Y, Lin C-H, Ou T-T, Hu C-J, et al. Cytochrome P450 and manganese superoxide dismutase genes polymorphisms in systemic lupus erythematosus. Immunol Lett. 2003;90(1):19–24.

    Article  PubMed  CAS  Google Scholar 

  155. Fiehn C. Early diagnosis and treatment in lupus nephritis: how we can influence the risk for terminal renal failure. J Rheumatol. 2006;33(8):1464–6.

    PubMed  Google Scholar 

  156. Fiehn C, Hajjar Y, Mueller K, Waldherr R, Ho AD, Andrassy K. Improved clinical outcome of lupus nephritis during the past decade: importance of early diagnosis and treatment. Ann Rheum Dis. 2003;62:435–9.

    Article  PubMed  CAS  Google Scholar 

  157. Moroni G, Quaglini S, Gallelli B, Banfi G, Messa P, Ponticelli C. The long-term outcome of 93 patients with proliferative lupus nephritis. Nephrol Dial Transplant. 2007;22:2531–9.

    Article  PubMed  Google Scholar 

  158. Branten AJW, Vervoort G, Wetzels JFM. Serum creatinine is a poor marker of GFR in nephrotic syndrome. Nephrol Dial Transplant. 2005;20:707–11.

    Article  PubMed  CAS  Google Scholar 

  159. Siedner MJ, Gelber AC, Rovin BH, McKinley AM, Christopher-Stine L, Astor B, et al. Diagnostic accuracy study of urine dipstick in relation to 24-hour measurement as a screening tool for proteinuria in lupus nephritis. J Rheumatol. 2008;35(1):84–90.

    PubMed  Google Scholar 

  160. Birmingham DJ, Rovin BH, Shidham G, Nagaraja HN, Zou X, Bissell M, et al. Spot urine protein/creatinine ratios are unreliable estimates of 24 h proteinuria in most systemic lupus erythematosus nephritis flares. Kidney Int. 2007;72:865–70.

    Article  PubMed  CAS  Google Scholar 

  161. Fine DM, Ziegenbein M, Petri M, Han E, McKinley A, Chellini J, et al. A prospective study of 24-hour protein excretion in lupus nephritis: adequacy of short-interval timed urine collections. Kidney Int. 2009;76:1284–8.

    Article  PubMed  CAS  Google Scholar 

  162. Grande JP, Balow JE. Renal biopsy in lupus nephritis. Lupus. 1998;7(9):611–7.

    Article  PubMed  CAS  Google Scholar 

  163. Christopher-Stine L, Siedner MJ, Lin J, Haas M, Parekh H, Petri M, et al. Renal biopsy in lupus patients with low levels of proteinuria. J Rheumatol. 2007;34:332–5.

    PubMed  Google Scholar 

  164. Taal MW, Brenner BM. Renoprotective benefits of RAS inhibition: from ACEI to angiotensin II antagonists. Kidney Int. 2000;57:1803–17.

    Article  PubMed  CAS  Google Scholar 

  165. Zoja C, Morigi M, Remuzzi G. Proteinuria and phenotypic change of proximal tubular cells. J Am Soc Nephrol. 2003;14:S36–41.

    Article  PubMed  Google Scholar 

  166. Remuzzi G, Ruggenenti P, Benigni A. Understanding the nature of renal disease progression: in proteinuric nephropathies enhanced glomerular protein traffic contributes to interstitial inflammation and renal scarring. Kidney Int. 1997;51:2–15.

    Article  PubMed  CAS  Google Scholar 

  167. Abbate M, Zoja C, Rottoli D, Corna D, Perico N, Bertani T, et al. Antiproteinuric therapy while preventing the abnormal protein traffic in proximal tubule abrogates protein- and complement-dependent interstitial inflammation in experimental renal disease. J Am Soc Nephrol. 1999;10(4):804–13.

    PubMed  CAS  Google Scholar 

  168. Hirschberg R. Bioactivity of glomerular ultrafiltrate during heavy proteinuria may contribute to renal tubulo-interstitial lesions: evidence for an insulin-like growth factor. J Clin Invest. 1996;97:116–24.

    Article  Google Scholar 

  169. Esdaile JM, Joseph L, Mackenzie T, Kashgarian M, Hayslet JP. The pathogenesis and prognosis of lupus nephritis: information from repeat renal biopsy. Semin Arthritis Rheum. 1993;23:135–48.

    Article  PubMed  CAS  Google Scholar 

  170. Moroni G, Pasquali S, Quaglini S, Banfi G, Casanova S, Maccario M, et al. Clinical and prognostic value of serial renal biopsies in lupus nephritis. Am J Kidney Dis. 1999;34:530–9.

    Article  PubMed  CAS  Google Scholar 

  171. Bajaj S, Albert L, Gladman DD, Urowitz MB, Hallett DC, Ritchie S. Serial renal biopsy in systemic lupus erythematosus. J Rheumatol. 2000;27(12):2822–6.

    PubMed  CAS  Google Scholar 

  172. Daleboudt GMN, Bajema IM, Goemaere NNT, van Laar JM, Bruijn JA, Berger SP. The clinical relevance of a repeat biopsy in lupus nephritis flares. Nephrol Dial Transplant. 2009;24:3712–7.

    Article  PubMed  Google Scholar 

  173. Walker PD. The renal biopsy. Arch Pathol Lab Med. 2009;133(2):181–8.

    PubMed  Google Scholar 

  174. Weening JJ, D’Agati VD, Schwartz MM, Seshan SV, Alpers CE, Appel GB, et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited. J Am Soc Nephrol. 2004;15(2):241–50.

    Article  PubMed  Google Scholar 

  175. Nasr SH, D’Agati VD, Park HR. Necrotizing and crescentic lupus nephritis with antineutrophil cytoplasmic antibody seropositivity. Clin J Am Soc Nephrol. 2008;3:682–90.

    Article  PubMed  CAS  Google Scholar 

  176. Najafi CC, Korbet SM, Lewis EJ, Schwartz MM, Reichlin M, Evans J, et al. Significance of histologic patterns of glomerular injury upon long-term prognosis in severe lupus glomerulonephritis. Kidney Int. 2001;59(6):2156–63.

    PubMed  CAS  Google Scholar 

  177. Schwartz MM, Korbet SM, Lewis EJ. The prognosis and pathogenesis of severe lupus glomerulonephritis. Nephrol Dial Transplant. 2008;23:1298–306.

    Article  PubMed  Google Scholar 

  178. Behara VY, Whittier WL, Korbet SM, Schwartz MM, Martens M, Lewis EJ. Pathogenetic features of severe segmental lupus nephritis. Nephrol Dial Transplant. 2010;25(1):153–9.

    Article  PubMed  Google Scholar 

  179. Schwartz MM, Korbet SM, Katz RS, Lewis EJ. Evidence of concurrent immunopathological mechanisms determining the pathology of severe lupus nephritis. Lupus. 2009;18(2):149–58.

    Article  PubMed  CAS  Google Scholar 

  180. Mittal B, Hurwitz S, Rennke H, Singh AK. New subcategories of class IV lupus nephritis: are there clinical, histologic, and outcome differences? Am J Kidney Dis. 2004;44(6):1050–9.

    Article  PubMed  Google Scholar 

  181. Hill GS, Delahousse M, Nochy D, Bariety J. Class IV-S versus class IV-G lupus nephritis: clinical and morphologic differences suggesting different pathogenesis. Kidney Int. 2005;68(5):2288–97.

    Article  PubMed  Google Scholar 

  182. Yokoyama H, Wada T, Hara A, Yamahana J, Nakaya I, Kobayashi M, et al. The outcome and a new ISN/RPS 2003 classification of lupus nephritis in Japanese. Kidney Int. 2004;66(6):2382–8.

    Article  PubMed  Google Scholar 

  183. Hiramatsu N, Kuroiwa T, Ikeuchi H, Maeshima A, Kaneko Y, Hiromura K, et al. Revised classification of lupus nephritis is valuable in predicting renal outcome with an indication of the proportion of glomeruli affected by chronic lesions. Rheumatology. 2008;47(5):702–7.

    Article  PubMed  CAS  Google Scholar 

  184. Sada KE, Makino H. Usefulness of ISN/RPS classification of lupus nephritis. J Korean Med Sci. 2009;24(Suppl):S7–10.

    Article  PubMed  Google Scholar 

  185. Kuroki A, Shibata T, Honda H, Totsuka D, Kobayashi K, Sugisaki T. Glomerular and serum IgG subclasses in diffuse proliferative lupus nephritis, membranous lupus nephritis, and idiopathic membranous nephropathy. Intern Med. 2002;41(11):936–42.

    Article  PubMed  CAS  Google Scholar 

  186. Markowitz GS, D’Agati VD. The ISN/RPS 2003 classification of lupus nephritis: an assessment at 3 years. Kidney Int. 2007;71(6):491–5.

    Article  PubMed  CAS  Google Scholar 

  187. Markowitz GS, D’Agati VD. Classification of lupus nephritis. Curr Opin Nephrol Hypertens. 2009;18(3):220–5.

    Article  PubMed  CAS  Google Scholar 

  188. Hill GS, Delahousse M, Nochy D, Remy P, Mignon F, Mery J-P, et al. Predictive power of the second renal biopsy in lupus nephritis: significance of macrophages. Kidney Int. 2001;59:304–16.

    Article  PubMed  CAS  Google Scholar 

  189. Sedor JR. Tissue proteomics: a new investigative tool for renal biopsy analysis. Kidney Int. 2009;75:876–9.

    Article  PubMed  CAS  Google Scholar 

  190. Yasuda Y, Cohen CD, Henger A, Kretzler M. Gene expression profiling analysis in nephrology: towards molecular definition of renal disease. Clin Exp Nephrol. 2006;10:91–8.

    Article  PubMed  CAS  Google Scholar 

  191. Seshan SV, Jennette JC. Renal disease in systemic lupus erythematosus with emphasis on classification of lupus glomerulonephritis: advances and implications. Arch Pathol Lab Med. 2009;133(2):233–48.

    PubMed  Google Scholar 

  192. Morel-Maroger L, Mery JP, Droz D, Godin M, Verroust P, Kourilsky O, et al. The course of lupus nephritis: contribution of serial renal biopsies. Adv Nephrol Necker Hosp. 1976;6:79–118.

    PubMed  CAS  Google Scholar 

  193. Austin III HA, Muenz LR, Joyce KM, Antonovych TT, Balow JE. Diffuse proliferative lupus nephritis: identification of specific pathologic features affecting renal outcome. Kidney Int. 1984;25(4):689–95.

    Article  PubMed  Google Scholar 

  194. Hill GS, Delahousse M, Nochy D, Tomkiewicz E, Remy P, Mignon F, et al. A new morphologic index for the evaluation of renal biopsies in lupus nephritis. Kidney Int. 2000;58(3):1160–73.

    Article  PubMed  CAS  Google Scholar 

  195. Schwartz MM, Lan SP, Bernstein J, Hill GS, Holley K, Lewis EJ. Role of pathology indices in the management of severe lupus glomerulonephritis. Lupus Nephritis Collaborative Study Group. Kidney Int. 1992;42(3):743–8.

    Article  PubMed  CAS  Google Scholar 

  196. Satoskar A, Brodsky S, Nadasdy G, Nadasdy T, Hebert LA, Rovin BH. Discrepancies in IgG subtype composition between glomerular and tubulointerstitial immune complex deposits in proliferative lupus nephritis. Lupus. 2011;20:1396.

    Article  PubMed  CAS  Google Scholar 

  197. Park MH, D’Agati V, Appel GB, Pirani CL. Tubulointerstitial disease in lupus nephritis: relationship to immune deposits, interstitial inflammation, glomerular changes, renal function, and prognosis. Nephron. 1986;44(4):309–19.

    Article  PubMed  CAS  Google Scholar 

  198. Mori Y, Kishimoto N, Yamahara H, Kijima Y, Nose A, Uchiyama-Tanaka Y, et al. Predominant tubulointerstitial nephritis in a patient with systemic lupus nephritis. Clin Exp Nephrol. 2005;9(1):79–84.

    Article  PubMed  Google Scholar 

  199. Hebert LA, Sharma HM, Sedmak DD, Bay WH. Unexpected renal biopsy findings in a febrile systemic lupus erythematosus patient with worsening renal function and heavy proteinuria. Am J Kidney Dis. 1989;13(6):504–7.

    PubMed  CAS  Google Scholar 

  200. Baranowska-Daca E, Choi Y-J, Barrios R, Nassar G, Suki WN, Truong LD. Nonlupus nephritides in patients with systemic lupus erythematosus: a comprehensive clinicopathologic study and review of the literature. Hum Pathol. 2001;32:1125–35.

    Article  PubMed  CAS  Google Scholar 

  201. Ellington KT, Truong L, Olivero JJ. Renal amyloidosis in systemic lupus erythematosus. Am J Kidney Dis. 1993;21(6):676–8.

    PubMed  CAS  Google Scholar 

  202. Orellana C, Collado A, Hernandez MV, Font J, Del Olmo JA, Munoz-Gomez J. When does amyloidosis complicate systemic lupus erythematosus? Lupus. 1995;4(5):415–7.

    Article  PubMed  CAS  Google Scholar 

  203. Pettersson T, Tornroth T, Totterman KJ, Fortelius P, Maury CP. AA amyloidosis in systemic lupus erythematosus. J Rheumatol. 1987;14(4):835–8.

    PubMed  CAS  Google Scholar 

  204. Kraft SW, Schwartz MM, Korbet SM, Lewis EJ. Glomerular podocytopathy in patients with systemic lupus erythematosus. J Am Soc Nephrol. 2005;16(1):175–9.

    Article  PubMed  Google Scholar 

  205. Mok CC, Cheung TT, Lo WH. Minimal mesangial lupus nephritis: a systematic review. Scand J Rheumatol. 2010;39:181–9.

    Article  PubMed  CAS  Google Scholar 

  206. Tektonidou MG, Sotsiou F, Moutsopoulos HM. Antiphospholipid syndrome nephropathy in catastrophic, primary, and systemic lupus erythematosus-related APS. J Rheumatol. 2008;35:1983–8.

    PubMed  CAS  Google Scholar 

  207. Daugas E, Nochy D, Huong DL, Duhaut P, Beaufils H, Caudwell V, et al. Antiphospholipid syndrome nephropathy in systemic lupus erythematosus. J Am Soc Nephrol. 2002;13(1):42–52.

    PubMed  Google Scholar 

  208. Wu H, Birmingham DJ, Rovin B, Hackshaw KV, Haddad N, Haden D, et al. D-dimer level and the risk for thrombosis in systemic lupus erythematosus. Clin J Am Soc Nephrol. 2008;3(6):1628–36.

    Article  PubMed  CAS  Google Scholar 

  209. Hahn BH, et al. American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res. 2012;64:797–808.

    Article  Google Scholar 

  210. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerulonephritis Work Group. KDIGO clinical practice guideline for glomerulonephritis. Kidney Int Suppl. 2012;2:221–32.

    Google Scholar 

  211. Bertsias GK, et al. Joint European League Against Rheumatism and European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) recommendations for the management of adult and paediatric lupus nephritis. Ann Rheum Dis. 2012;71(11):1771–82.

    Article  PubMed  CAS  Google Scholar 

  212. Rovin BH. Lupus nephritis: guidelines lupus nephritis-more recommendations than data? Nat Rev Nephrol. 2012;8(11):620–1.

    Google Scholar 

  213. Sun S, Rao NL, Venable J, Thumond R, Karisson L. TLR7/9 antagonists as therapeutics for immune-mediated inflammatory disorders. Inflamm Allergy Drug Targets. 2007;6:223–35.

    Article  PubMed  CAS  Google Scholar 

  214. Lafyatis R, York M, Marshak-Rothstein A. Antimalarial agents: closing the gate on Toll-like receptors. Arthritis Rheum. 2006;54:3068–70.

    Article  PubMed  CAS  Google Scholar 

  215. Ermann J, Bermas BL. The biology behind the new therapies for SLE. Int J Clin Pract. 2007;61:2113–9.

    Article  PubMed  CAS  Google Scholar 

  216. Kaiser R, Cleveland CM, Criswell LA. Risk and protective factors for thrombosis in systemic lupus erythematosus: results from a large, multi-ethnic cohort. Ann Rheum Dis. 2009;68(2):238–41.

    Article  PubMed  CAS  Google Scholar 

  217. Pons-Estel GJ, Alarcon GS, McGwin Jr G, Danila MI, Zhang J, Bastian HM, et al. Protective effect of hydroxychloroquine on renal damage in patients with lupus nephritis: LXV, data from a multiethnic US cohort. Arthritis Rheum. 2009;61(6):830–9.

    Article  PubMed  CAS  Google Scholar 

  218. Tsakonas E, Joseph L, Esdaile JM, Choquette D, Senecal JL, Cividino A, et al. A long-term study of hydroxychloroquine withdrawal on exacerbations in systemic lupus erythematosus. The Canadian hydroxychloroquine study group. Lupus. 1998;7:80–5.

    Article  PubMed  CAS  Google Scholar 

  219. Siso A, Ramos-Casals M, Bove A, Brito-Zeron P, Soria N, Munoz S, et al. Previous antimalarial therapy in patients diagnosed with lupus nephritis: influence on outcomes and survival. Lupus. 2008;17(4):281–8.

    Article  PubMed  CAS  Google Scholar 

  220. Dooley MA, Falk RJ. Human clinical trials in lupus nephritis. Semin Nephrol. 2007;27:115–27.

    Article  PubMed  CAS  Google Scholar 

  221. Flanc RS, Roberts MA, Strippoli GFM, Chadban SJ, Kerr PG, Atkins RC. Treatment for lupus nephritis. Cochrane Database Syst Rev. 2004;1:1–75.

    Google Scholar 

  222. Austin III HA, Klippel JH, Balow JE, le Riche WG, Steinberg AD, Plotz PH, et al. Therapy of lupus nephritis. Controlled trial of prednisone and cytotoxic drugs. N Engl J Med. 1986;314:614–9.

    Article  PubMed  Google Scholar 

  223. Boumpas DT, Austin III HA, Vaughn EM, Klippel JH, Steinberg AD, Yarboro C, et al. Controlled trial of pulse methylprednisolone versus two regimens of pulse cyclophosphamide in severe lupus nephritis. Lancet. 1992;340:741–5.

    Article  PubMed  CAS  Google Scholar 

  224. Donadio JV, Holley KE, Ferguson RH, Ilstrup DM. Treatment of diffuse proliferative lupus nephritis with prednisone and combined prednisone and cyclophosphamide. N Engl J Med. 1978;23:1151–5.

    Article  Google Scholar 

  225. Contreras G, Pardo V, Leclercq B, Lenz O, Tozman E, O’Nan P, et al. Sequential therapies for proliferative lupus nephritis. N Engl J Med. 2004;350:971–80.

    Article  PubMed  CAS  Google Scholar 

  226. Wilson ECF, Jayne DRW, Dellow E, Fordham RJ. The cost-effectiveness of mycophenolate mofetil as firstline therapy in active lupus nephritis. Rheumatology. 2007;46:1096–101.

    Article  PubMed  CAS  Google Scholar 

  227. Mok CC, Ho CTK, Chan KW, Lau CS, Wong RWS. Outcome and prognostic indicators of diffuse proliferative lupus glomerulonephritis treated with sequential oral cyclophosphamide and azathioprine. Arthritis Rheum. 2002;46:1003–13.

    Article  PubMed  CAS  Google Scholar 

  228. Mok CC, Ho CTK, Siu YP, Chan KW, Kwan TH, Lau CS, et al. Treatment of diffuse proliferative lupus glomerulonephritis: a comparison of two cyclophosphamide-containing regimens. Am J Kidney Dis. 2001;38:256–64.

    Article  PubMed  CAS  Google Scholar 

  229. Chan TM, Tse KC, Tang CSO, Lai KN, Li FK. Long-term outcome of patients with diffuse proliferative lupus nephritis treated with prednisolone and oral cyclophosphamide followed by azathioprine. Lupus. 2005;14:265–72.

    Article  PubMed  CAS  Google Scholar 

  230. Chan TM, Li FK, Tang CSO, Wong RWS, Fang GX, Ji YL, et al. Efficacy of mycophenolate mofetil in patients with diffuse proliferative lupus nephritis. N Engl J Med. 2000;343:1156–62.

    Article  PubMed  CAS  Google Scholar 

  231. Chan TM, Tse KC, Tang CSO, Mok M-Y, Li FK. Long-term study of mycophenolate mofetil as continuous induction and maintenance treatment for diffuse proliferative lupus nephritis. J Am Soc Nephrol. 2005;16:1076–84.

    Article  PubMed  CAS  Google Scholar 

  232. McKinley A, Park E, Spetie DN, Hackshaw K, Hebert LA, Rovin BH. Oral cyclophosphamide for lupus glomerulonephritis: an under-utilized therapeutic option. Clin J Am Soc Nephrol. 2009;4:1754–60.

    Article  PubMed  CAS  Google Scholar 

  233. Houssiau FA, Vasconcelos C, D’Cruz D, Sebastiani GD, Garrido Ed Ede R, Danieli MG, et al. Immunosuppressive therapy in lupus nephritis: the Euro-Lupus Nephritis Trial, a randomized trial of low-dose versus high-dose intravenous cyclophosphamide. Arthritis Rheum. 2002;46(8):2121–31.

    Article  PubMed  CAS  Google Scholar 

  234. Houssiau FA, Vasconcelos C, D’Cruz D, Sebastiani GD, de Ramon Garrido E, Danieli MG, et al. The 10-year follow-up data of the Euro-Lupus Nephritis Trial comparing low-dose versus high-dose intravenous cyclophosphamide. Ann Rheum Dis. 2010;69:61–4.

    Article  PubMed  CAS  Google Scholar 

  235. Pendse S, Ginsburg E, Singh AK. Strategies for preservation of ovarian and testicular function after immunosuppression. Am J Kidney Dis. 2004;43:772–81.

    Article  PubMed  Google Scholar 

  236. Sommers EC, Marder W, Christman GM, Ognenovski V, McCune J. Use of a gonadotropin-releasing hormone analog for protection against premature ovarian failure during cyclophosphamide therapy in women with severe lupus. Arthritis Rheum. 2005;52:2761–7.

    Article  CAS  Google Scholar 

  237. Philibert D, Cattran D. Remission of proteinuria in primary glomerulonephritis: we know the goal but do we know the price? Nat Clin Pract. 2008;4(10):550–9.

    Article  CAS  Google Scholar 

  238. Faurschou M, Sorensen IJ, Meliemkjaer L, Loft AGR, Thomsen BS, Tvede N, et al. Malignancies in Wegener’s granulomatosis: incidence and relation to cyclophosphamide therapy in a cohort of 293 patients. J Rheumatol. 2008;35:100–5.

    PubMed  CAS  Google Scholar 

  239. Haubitz M, Bohnenstengel F, Brunkhorst R, Schwab M, Hofmann U, Busse D. Cyclophosphamide pharmacokinetics and dose requirements in patients with renal insufficiency. Kidney Int. 2002;61:1495–501.

    Article  PubMed  CAS  Google Scholar 

  240. Appel GB, Contreras G, Dooley MA, Ginzler EM, Isenberg D, Jayne D, et al. Mycophenolate mofetil versus cyclophosphamide for induction treatment of lupus nephritis. J Am Soc Nephrol. 2009;20:1103–12.

    Article  PubMed  CAS  Google Scholar 

  241. Isenberg D, Appel GB, Contreras G, Dooley MA, Ginzler EM, Jayne D, et al. Influence of race/ethnicity on response to lupus nephritis treatment: the ALMS study. Rheumatology. 2010;49(1):128–40.

    Article  PubMed  Google Scholar 

  242. Korbet SM, Schwartz MM, Evans J, Lewis EJ. Severe lupus nephritis: racial differences in presentation and outcome. J Am Soc Nephrol. 2007;18:244–54.

    Article  PubMed  Google Scholar 

  243. Lertdumrongluk P, Somparn P, Kittanamongkolchai W, Traitanon O, Vadcharavivad S, Avihingsanon Y. Pharmacokinetics of mycophenolic acid in severe lupus nephritis. Kidney Int. 2010;78(4):389–95.

    Article  PubMed  CAS  Google Scholar 

  244. Roland M, Barbet C, Paintaud G, Magdelaine-Beuzelin C, Diot E, Halimi JM, et al. Mycophenolate mofetil in patients with systemic lupus erythematosus: a prospective pharmacokinetic study. Lupus. 2009;18(5):441–7.

    Article  PubMed  CAS  Google Scholar 

  245. Zahr N, Arnaud L, Marquet P, Haroche J, Costedoat-Chalumeau N, Hulot JS, et al. Mycophenolic acid area under the curve correlates with disease activity in lupus patients treated with mycophenolate mofetil. Arthritis Rheum. 2010;62(7):2047–54.

    PubMed  CAS  Google Scholar 

  246. Grootscholten C, Ligtenberg G, Hagen EC, van den Wall Bake AWL, de Glas-Vos JW, Biji M, et al. Azathioprine/methylprednisolone versus cyclophosphamide in proliferative lupus nephritis. A randomized, controlled trial. Kidney Int. 2006;70:732–42.

    Article  PubMed  CAS  Google Scholar 

  247. Grootscholten C, Bajema IM, Florquin S, Steenbergen EJ, Peutz-Kootstra CJ, Goldschmeding R, et al. Treatment with cyclophosphamide delays the progression of chronic lesions more effectively than does treatment with azathioprine plus methylprednisolone in patients with proliferative lupus nephritis. Arthritis Rheum. 2007;56(3):924–37.

    Article  PubMed  CAS  Google Scholar 

  248. Urowitz M, Ibanez D, Ali Y, Gladman D. Outcomes in patients with active lupus nephritis requiring immunosuppressives who never received cyclophosphamide. J Rheumatol. 2007;34:1491–6.

    PubMed  Google Scholar 

  249. Takahashi S, Hiromura K, Sakurai N, Matsumoto T, Ikeuchi H, Maeshima A, et al. Efficacy and safety of tacrolimus for induction therapy in patients with active lupus nephritis. Mod Rheumatol. 2011;21(3):282–9.

    Article  PubMed  CAS  Google Scholar 

  250. Zavada J, Pesickova S, Rysava R, Olejarova M, Horak P, Hrncir Z, et al. Cyclosporine A or intravenous cyclophosphamide for lupus nephritis: the Cyclofa-Lune study. Lupus. 2010;19(11):1281–9.

    Article  PubMed  CAS  Google Scholar 

  251. Wang HY, Cui TG, Hou FF, Ni ZH, Chen XM, Lu FM, et al. Induction treatment of proliferative lupus nephritis with leflunomide combined with prednisone: a prospective multi-centre observational study. Lupus. 2008;17(7):638–44.

    Article  PubMed  CAS  Google Scholar 

  252. Zhang FS, Nie YK, Jin XM, Yu HM, Li YN, Sun Y. The efficacy and safety of leflunomide therapy in lupus nephritis by repeat kidney biopsy. Rheumatol Int. 2009;29(11):1331–5.

    Article  PubMed  CAS  Google Scholar 

  253. Rovin BH, Furie RA, Lantinis K, Looney RJ, Fervenza FC, Sanchez-Guerrero J, et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab (LUNAR) study. Arthritis Rheum. 2012;64(4):1215–26.

    Article  PubMed  CAS  Google Scholar 

  254. Tieng AT, Peeva E. B-Cell-directed therapies in systemic lupus erythematosus. Semin Arthritis Rheum. 2008;38:218–27.

    Article  PubMed  CAS  Google Scholar 

  255. Karim MY, Pisoni CN, Khamashta MA. Update on immunotherapy for systemic lupus erythematosus-what’s hot and what’s not! Rheumatology. 2009;48:332–41.

    Article  PubMed  CAS  Google Scholar 

  256. Sousa E, Isenberg D. Treating lupus: from serendipity to sense, the rise of the new biologicals and other emerging therapies. Best Pract Clin Rheumatol. 2009;23:563–74.

    Article  Google Scholar 

  257. Ramos-Casals M, Soto MJ, Cuadrado MJ, Khamashta MA. Rituximab in systemic lupus erythematosus: a systematic review of off-label use in 188 cases. Lupus. 2009;18:767–76.

    Article  PubMed  CAS  Google Scholar 

  258. Lu TY, Ng KP, Cambridge G, Leandro MJ, Edwards JC, Ehrenstein M, et al. A retrospective seven-year analysis of the use of B cell depletion therapy in systemic lupus erythematosus at University College London Hospital: the first fifty patients. Arthritis Rheum. 2009;61(4):482–7.

    Article  PubMed  Google Scholar 

  259. Li EK, Tam LS, Zhu TY, Li M, Kwok CL, Li TK, et al. Is combination rituximab with cyclophosphamide better than rituximab alone in the treatment of lupus nephritis? Rheumatology. 2009;48(8):892–8.

    Article  PubMed  CAS  Google Scholar 

  260. Gunnarsson I, Sundelin B, Jonsdottir T, Jacobson SH, Herniksson EW, van Vollenhoven RF. Histopathologic and clinical outcome of rituximab treatment in patients with cyclophosphamide-resistant proliferative lupus nephritis. Arthritis Rheum. 2007;56:1263–72.

    Article  PubMed  CAS  Google Scholar 

  261. Ginzler EM, Dooley MA, Aranow C, Kim MY, Buyon JP, Merrill JT, et al. Mycophenolate mofetil or intravenous cyclophosphamide for lupus nephritis. N Engl J Med. 2005;353:2219–28.

    Article  PubMed  CAS  Google Scholar 

  262. Cameron JS, Turner DR, Ogg CS, Williams DG, Lessof MH, Chantler C, et al. Systemic lupus with nephritis: a long-term study. QJM. 1979;189:1–24.

    Google Scholar 

  263. Dooley MA, Jayne D, Ginzler EM, Isenberg D, Olsen NJ, Wofsy D, et. al. Mycophenolate versus azathioprine as maintenance therapy for Lupus Nephritis, N. Engl. J. Med. 2011; 365:1886–95.

    Google Scholar 

  264. Dall’Era M, Stone D, Levesque V, Cisternas M, Wofsy D. Identification of biomarkers that predict response to treatment of lupus nephritis with mycophenolate mofetil or pulse cyclophosphamide. Arthritis Care Res. 2011;63(3):351–7.

    Google Scholar 

  265. Ioannidis JPA, Boki KA, Katsorida ME, Drosos AA, Skopouli FN, Boletis JN, et al. Remission, relapse, and re-remission of proliferative lupus nephritis treated with cyclophosphamide. Kidney Int. 2000;57:258–64.

    Article  PubMed  CAS  Google Scholar 

  266. Ong LM, Hooi LS, Lim TO, Goh BL, Ahmad G, Ghazalli R, et al. Randomized controlled trial of pulse intravenous cyclophosphamide versus mycophenolate mofetil in the induction therapy of proliferative lupus nephritis. Nephrology. 2005;10(5):504–10.

    Article  PubMed  CAS  Google Scholar 

  267. Traitanon O, Avihingsanon Y, Kittikovit V, Townamchai N, Kanjanabuch T, Praditpornsilpa K, et al. Efficacy of enteric-coated mycophenolate sodium in patients with resistant-type lupus nephritis: a prospective study. Lupus. 2008;17(8):744–51.

    Article  PubMed  CAS  Google Scholar 

  268. Houssiau FA, D’Cruz D, Sangle S, Remy P, Vasconcelos C, Petrovic R, et al. Azathioprine versus mycophenolate mofetil for long-term immunosuppression in lupus nephritis: results from the MAINTAIN Nephritis Trial. Ann Rheum Dis. 2010;69(12):2083–9.

    Article  PubMed  CAS  Google Scholar 

  269. Moroni G, Doria A, Mosca M, Alberighi ODC, Ferraccioli G, Todesco S, et al. A randomized pilot trial comparing cyclosporine and azathioprine for maintenance in diffuse lupus nephritis over four years. Clin J Am Soc Nephrol. 2006;1:925–32.

    Article  PubMed  CAS  Google Scholar 

  270. Griffiths B, Emery P, Ryan V, Isenberg D, Akil M, Thompson R, et al. The BILAG multicentre open randomized controlled trial comparing ciclosporin vs azathioprine in patients with severe SLE. Rheumatology. 2010;49(4):723–32.

    Article  PubMed  CAS  Google Scholar 

  271. Perna A, Ruggeneti P, Testa A, Spoto B, Benini R, Misefari V, et al. ACE genotype and ACE inhibitors induced renoprotection in chronic proteinuric nephropathies. Kidney Int. 2000;57:274–81.

    Article  PubMed  CAS  Google Scholar 

  272. Jafar TH, Schmid CH, Landa M, Giatras I, Toto R, Remuzzi G, et al. Angiotensin-converting enzyme inhibitors and progression of nondiabetic renal disease. A meta-analysis of patient-level data. Ann Intern Med. 2001;135(2):73–87.

    Article  PubMed  CAS  Google Scholar 

  273. Hill GS, Delahousse M, Nochy D, Thervet E, Vrtovsnik F, Remy P, et al. Outcome of relapse in lupus nephritis: roles of reversal of renal fibrosis and response of inflammation to therapy. Kidney Int. 2002;61:2176–86.

    Article  PubMed  Google Scholar 

  274. Rovin BH, Birmingham DJ, Nagaraja HN, Yu CY, Hebert LA. Biomarker discovery in human SLE nephritis. Bull NYU Hosp Jt Dis. 2007;65(3):187–93.

    PubMed  Google Scholar 

  275. Moroni G, Radice A, Giammarresi G, Quaglini S, Gallelli B, Leoni A, et al. Are laboratory tests useful for monitoring the activity of lupus nephritis? A 6-year prospective study in a cohort of 228 patients with lupus nephritis. Ann Rheum Dis. 2009;68(2):234–7.

    Article  PubMed  CAS  Google Scholar 

  276. Esdaile JM, Joseph L, Abrahamowicz M, Li Y, Danoff D, Clarke AE. Routine immunologic tests in systemic lupus erythematosus: is there a need for more studies? J Rheumatol. 1996;23:1891–6.

    PubMed  CAS  Google Scholar 

  277. Esdaile JM, Abrahamowicz M, Joseph L, Mackenzie T, Li Y, Danoff D. Laboratory tests as predictors of disease exacerbations in systemic lupus erythematosus. Arthritis Rheum. 1996;39:370–8.

    Article  PubMed  CAS  Google Scholar 

  278. Coremans IEM, Spronk PE, Bootsma H, Daha MR, van der Voort EAM, Kater L, et al. Changes in antibodies to C1q predict renal relapse in system lupus erythematosus. Am J Kidney Dis. 1995;26:595–601.

    Article  PubMed  CAS  Google Scholar 

  279. Ho A, Barr SG, Magder LS, Petri M. A decrease in complement is associated with increased renal and hematologic activity in patients with systemic lupus erythematosus. Arthritis Rheum. 2001;44:2350–67.

    Article  PubMed  CAS  Google Scholar 

  280. Ho A, Magder LS, Barr SG, Petri M. Decreases in anti-double-stranded DNA levels are associated with concurrent flares in patients with systemic lupus erythematosus. Arthritis Rheum. 2001;44:2342–9.

    Article  PubMed  CAS  Google Scholar 

  281. Howie AJ, Turhan N, Adu D. Powerful morphometric indicator of prognosis in lupus nephritis. QJM. 2003;96:411–20.

    Article  PubMed  CAS  Google Scholar 

  282. Askenazi D, Myones B, Kamdar A, Warren R, Perez M, De Guzman M, et al. Outcomes of children with proliferative lupus nephritis: the role of protocol renal biopsy. Pediatr Nephrol. 2007;22:981–6.

    Article  PubMed  Google Scholar 

  283. Barr RG, Seliger S, Appel GB, Zuniga R, D’Agati V, Salmon J, et al. Prognosis in proliferative lupus nephritis: the role of socio-economic status and race/ethnicity. Nephrol Dial Transplant. 2003;18(10):2039–46.

    Article  PubMed  Google Scholar 

  284. Contreras G, Pardo V, Cely C, Borja E, Hurtado A, De La Cuesta C, et al. Factors associated with poor outcomes in patients with lupus nephritis. Lupus. 2005;14(11):890–5.

    Article  PubMed  CAS  Google Scholar 

  285. Chen YE, Korbet SM, Katz RS, Schwartz MM, Lewis EJ. Value of a complete or partial remission in severe lupus nephritis. Clin J Am Soc Nephrol. 2008;3:46–53.

    Article  PubMed  CAS  Google Scholar 

  286. Hebert LA, Wilmer WA, Falkenhain ME, Ladson-Wofford SE, Nahman NS, Rovin BH. Renoprotection: one or many therapies. Kidney Int. 2001;59:1211–26.

    Article  PubMed  CAS  Google Scholar 

  287. Wilmer WA, Rovin BH, Hebert CJ, Rao SV, Kumor K, Hebert LA. Management of glomerular proteinuria: a commentary. J Am Soc Nephrol. 2003;14:3217–32.

    Article  PubMed  CAS  Google Scholar 

  288. Reich HN, Troyanov S, Scholey JW, Cattran DC. Remission of proteinuria improves prognosis in IgA nephropathy. J Am Soc Nephrol. 2007;18(12):3177–83.

    Article  PubMed  CAS  Google Scholar 

  289. Mercadal L, Montcel ST, Nochy D, Queffeulou G, Piette JC, Isnard-Bagnis C, et al. Factors affecting outcome and prognosis in membranous lupus nephropathy. Nephrol Dial Transplant. 2002;17(10):1771–8.

    Article  PubMed  Google Scholar 

  290. Pasquali S, Banfi G, Zucchelli A, Moroni G, Ponticelli C, Zucchelli P. Lupus membranous nephropathy: long-term outcome. Clin Nephrol. 1993;39:175–82.

    PubMed  CAS  Google Scholar 

  291. Mok CC. Membranous nephropathy in systemic lupus erythematosus: a therapeutic enigma. Nat Rev Nephrol. 2009;5:212–20.

    Article  PubMed  CAS  Google Scholar 

  292. Sloan RP, Schwartz MM, Korbet SM, Borok RZ. Long-term outcome in systemic lupus erythematosus membranous glomerulonephritis. J Am Soc Nephrol. 1996;7:299–305.

    PubMed  CAS  Google Scholar 

  293. Ordonez JD, Hiatt RA, Killebrew EJ, Fireman BH. The increased risk of coronary heart disease associated with the nephrotic syndrome. Kidney Int. 1993;44:638–42.

    Article  PubMed  CAS  Google Scholar 

  294. Donadio JV, Burgess JH, Holley KE. Membranous lupus nephropathy: a clinicopathologic study. Medicine. 1977;56:527–36.

    Article  PubMed  Google Scholar 

  295. Gonzalez-Dettoni H, Tron F. Membranous glomerulopathy in systemic lupus erythematosus. Adv Nephrol. 1985;14:347–64.

    CAS  Google Scholar 

  296. Austin III HA, Illei GG, Braun MJ, Balow JE. Randomized, controlled trial of prednisone, cyclophosphamide, and cyclosporine in lupus membranous nephropathy. J Am Soc Nephrol. 2009;20:901–11.

    Article  PubMed  CAS  Google Scholar 

  297. Radhakrishnan J, Moutzouris DA, Ginzler EM, Solomons N, Siempos II, Appel GB. Mycophenolate mofetil and intravenous cyclophosphamide are similar as induction therapy for class V lupus nephritis. Kidney Int. 2010;77(2):152–60.

    Article  PubMed  CAS  Google Scholar 

  298. Mok C, Ying K, Yim C, Ng W, Wong W. Very long-term outcome of pure membranous nephropathy treated with glucocorticoid and azathioprine. Lupus. 2009;18:1091–5.

    Article  PubMed  CAS  Google Scholar 

  299. Mok CC, Ying KY, Lau CS, Yim CW, Ng WL, Wong WS, et al. Treatment of pure membranous lupus nephropathy with prednisone and azathioprine: an open-label trial. Am J Kidney Dis. 2004;43(2):269–76.

    Article  PubMed  CAS  Google Scholar 

  300. Kasitanon N, Petri M, Haas M, Magder LS, Fine DM. Mycophenolate mofetil as the primary treatment of membranous lupus nephritis with and without concurrent proliferative disease: a retrospective study of 29 cases. Lupus. 2008;17:40–5.

    Article  PubMed  CAS  Google Scholar 

  301. Spetie DN, Tang Y, Rovin BH, Nadasdy G, Nadasdy T, Pesavento TE, et al. Mycophenolate therapy of SLE membranous nephropathy. Kidney Int. 2004;66:2411–5.

    Article  PubMed  CAS  Google Scholar 

  302. Szeto CC, Kwan BC-H, Lai FM-M, Tam LS, Li EK-M, Chow K-M, et al. Tacrolimus for the treatment of systemic lupus erythematosus with pure class V nephritis. Rheumatology. 2008;47:1678–81.

    Article  PubMed  CAS  Google Scholar 

  303. Bao H, Liu Z-H, Xie H-L, Hu W-X, Zhang H-T, Li L-S. Successful treatment of class V+IV lupus nephritis with multitarget therapy. J Am Soc Nephrol. 2008;19:2001–10.

    Article  PubMed  CAS  Google Scholar 

  304. Illei GG, Takada K, Parkin D, Austin HA, Crane M, Yarboro CH, et al. Renal flares are common in patients with severe proliferative lupus nephritis treated with pulse immunosuppressive therapy: long-term followup of a cohort of 145 patients participating in randomized controlled studies. Arthritis Rheum. 2002;46(4):995–1002.

    Article  PubMed  CAS  Google Scholar 

  305. Birmingham DJ, Nagaraja HN, Rovin BH, Spetie L, Zhao Y, Li X, et al. Fluctuation in self-perceived stress increases risk of flare in patients with lupus nephritis patients carrying the serotonin receptor1A-1019G allele. Arthritis Rheum. 2006;54:3291–9.

    Article  PubMed  CAS  Google Scholar 

  306. Ruperto N, Hanrahan L, Alarcon G, Belmont H, Brey R, Brunetta P, et al. International consensus for a definition of disease flare in lupus. Lupus. 2011;20(5):453–62.

    Article  PubMed  CAS  Google Scholar 

  307. Gordon C, Jayne D, Pusey C, Adu D, Amoura Z, Aringer M, et al. European consensus statement on the terminology used in the management of lupus glomerulonephritis. Lupus. 2009;18(3):257–63.

    Article  PubMed  CAS  Google Scholar 

  308. Ardoin S, Birmingham DJ, Hebert PL, Yu CY, Rovin BH, Hebert LA. An approach to validating criteria for proteinuric flare in systemic lupus erythematosus glomerulonephritis. Arthritis Rheum. 2011;63(7):2031–7.

    Article  PubMed  Google Scholar 

  309. Pons-Estel B, Serrano R, Plasin M, Espinosa G, Cervera R. Epidemiology and management of refractory lupus nephritis. Autoimmun Rev. 2011;10:655–63.

    Article  PubMed  Google Scholar 

  310. Rauova L, Lukac J, Levy Y, Rovensky J, Shoenfeld Y. High-dose intravenous immunoglobulins for lupus nephritis-a salvage immunomodulation. Lupus. 2001;10:209–13.

    Article  PubMed  CAS  Google Scholar 

  311. Ogawa H, Kameda H, Amano K, Takeuchi T. Efficacy and safety of cyclosporine A in patients with refractory systemic lupus erythematosus in a daily clinical practice. Lupus. 2010;19:162–9.

    Article  PubMed  CAS  Google Scholar 

  312. Ogawa H, Kameda H, Nagasawa H, Sekiguchi N, Takei H, Tsuzaka K, et al. Prospective study of low-dose cyclosporine A in patients with refractory lupus nephritis. Mod Rheumatol. 2007;17:92–7.

    Article  PubMed  CAS  Google Scholar 

  313. Jayne D, Tyndall A. Autologous stem cell transplantation for systemic lupus erythematosus. Lupus. 2004;13:359–65.

    Article  PubMed  CAS  Google Scholar 

  314. Garcia-Carrasco M, Mendoza-Pinto C, Sandoval-Cruz M, Soto-Vega E, Beltran-Castillo A, Jimenez-Hernandez M, et al. Anti-CD20 therapy in patients with refractory systemic lupus erythematosus: a longitudinal analysis of 52 Hispanic patients. Lupus. 2010;19(2):213–9.

    Article  PubMed  CAS  Google Scholar 

  315. Rovin BH, Zhang X. Biomarkers for lupus nephritis: the quest continues. Clin J Am Soc Nephrol. 2009;4:1858–65.

    Article  PubMed  CAS  Google Scholar 

  316. Rovin BH, Song H, Birmingham DJ, Hebert LA, Yu C-Y, Nagaraja HN. Urine chemokines as biomarkers of human systemic lupus erythematosus activity. J Am Soc Nephrol. 2005;16:467–73.

    Article  PubMed  CAS  Google Scholar 

  317. Chan RW-Y, Lai FM-M, Li EK-M, Tam L-S, Wong TY-H, Szeto CYK, et al. Expression of chemokine and fibrosing factor messenger RNA in the urinary sediment of patients with lupus nephritis. Arthritis Rheum. 2004;50:2882–90.

    Article  PubMed  CAS  Google Scholar 

  318. Chan RW-Y, Lai FM-M, Li EK-M, Tam L-S, Chow K-M, Li PK-T, et al. Messenger RNA expression of RANTES in the urinary sediment of patients with lupus nephritis. Nephrology. 2006;11:219–25.

    Article  PubMed  CAS  Google Scholar 

  319. Chan RW, Lai FM, Li EK, Tam LS, Chow KM, Li PK, et al. The effect of immunosuppressive therapy on the messenger RNA expression of target genes in the urinary sediment of patients with active lupus nephritis. Nephrol Dial Transplant. 2006;21(6):1534–40.

    Article  PubMed  CAS  Google Scholar 

  320. Avihingsanon Y, Phumesin P, Benjachat T, Akkasilpa S, Kittikowit V, Praditpornsilpa K, et al. Measurement of urinary chemokine and growth factor messenger RNAs: a noninvasive monitoring in lupus nephritis. Kidney Int. 2006;69:747–53.

    Article  PubMed  CAS  Google Scholar 

  321. Brunner HI, Mueller M, Rutherford C, Passo MH, Witte DP, Grom A, et al. Urinary neutrophil gelatinase-associated lipocalin as a biomarker of nephritis in childhood-onset systemic lupus erythematosus. Arthritis Rheum. 2006;54:2577–84.

    Article  PubMed  CAS  Google Scholar 

  322. Pitashny M, Schwartz N, Qing X, Hojaili B, Aranow C, Mackay M, et al. Urinary lipocalin-2 is associated with renal disease activity in human lupus nephritis. Arthritis Rheum. 2007;56(6):1894–903.

    Article  PubMed  CAS  Google Scholar 

  323. Hinze CH, Suzuki M, Klein-Gitelman M, Passo MH, Olson J, Singer NG, et al. Neutrophil gelatinase-associated lipocalin (NGAL) is a predictor of the course of global and renal childhood-onset systemic lupus erythematosus disease activity. Arthritis Rheum. 2009;60(9):2772–81.

    Article  PubMed  Google Scholar 

  324. Suzuki M, Ross GF, Wiers K, Nelson S, Bennett M, Passo MH, et al. Identification of a urinary proteomic signature for lupus nephritis in children. Pediatr Nephrol. 2007;22:2047–57.

    Article  PubMed  Google Scholar 

  325. Suzuki M, Wiers K, Brooks EB, Greis KD, Haines KA, Klein-Gitelman M, et al. Initial validation of a novel protein biomarker panel for active pediatric lupus nephritis. Pediatr Res. 2009;65:530–6.

    Article  PubMed  CAS  Google Scholar 

  326. Kozak KR, Su F, Whitelegge JP, Faull K, Reddy S, Farias-Eisner R. Characterization of serum biomarkers for detection of early stage ovarian cancer. Proteomics. 2005;5(17):4589–96.

    Article  PubMed  CAS  Google Scholar 

  327. Izmirly PM, Barisoni L, Buyon JP, Kim MY, Rivera TL, Schwartzman JS, et al. Expression of endothelial protein C receptor in cortical peritubular capillaries associates with a poor clinical response in lupus nephritis. Rheumatology. 2009;48(5):513–9.

    Article  PubMed  CAS  Google Scholar 

  328. Wang G, Lai FM, Tam LS, Li EK, Kwan BC, Chow KM, et al. Urinary FOXP3 mRNA in patients with lupus nephritis—relation with disease activity and treatment response. Rheumatology. 2009;48(7):755–60.

    Article  PubMed  CAS  Google Scholar 

  329. Oates JC, Varghese S, Bland AM, Taylor TP, Self SE, Stanislaus R, et al. Prediction of urinary protein markers in lupus nephritis. Kidney Int. 2005;68:2588–92.

    Article  PubMed  CAS  Google Scholar 

  330. Nakayamada S, Saito K, Nakano K, Tanaka Y. Activation signal transduction by beta1 integrin in T cells from patients with systemic lupus erythematosus. Arthritis Rheum. 2007;56(5):1559–68.

    Article  PubMed  CAS  Google Scholar 

  331. Mojcik CF, Klippel JH. End-stage renal disease and systemic lupus erythematosus. Am J Med. 1996;101(1):100–7.

    Article  PubMed  CAS  Google Scholar 

  332. Rietveld A, Berden JH. Renal replacement therapy in lupus nephritis. Nephrol Dial Transplant. 2008;23(10):3056–60.

    Article  PubMed  Google Scholar 

  333. Siu YP, Leung KT, Tong MK, Kwan TH, Mok CC. Clinical outcomes of systemic lupus erythematosus patients undergoing continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant. 2005;20(12):2797–802.

    Article  PubMed  Google Scholar 

  334. Huang JW, Hung KY, Yen CJ, Wu KD, Tsai TJ. Systemic lupus erythematosus and peritoneal dialysis: outcomes and infectious complications. Perit Dial Int. 2001;21(2):143–7.

    PubMed  CAS  Google Scholar 

  335. Nossent HC, Swaak TJ, Berden JH. Systemic lupus erythematosus: analysis of disease activity in 55 patients with end-stage renal failure treated with hemodialysis or continuous ambulatory peritoneal dialysis. Dutch Working Party on SLE. Am J Med. 1990;89(2):169–74.

    Article  PubMed  CAS  Google Scholar 

  336. Chelamcharla M, Javaid B, Baird BC, Goldfarb-Rumyantzev AS. The outcome of renal transplantation among systemic lupus erythematosus patients. Nephrol Dial Transplant. 2007;22(12):3623–30.

    Article  PubMed  Google Scholar 

  337. Bunnapradist S, Chung P, Peng A, Hong A, Chung P, Lee B, et al. Outcomes of renal transplantation for recipients with lupus nephritis: analysis of the Organ Procurement and Transplantation Network database. Transplantation. 2006;82(5):612–8.

    Article  PubMed  Google Scholar 

  338. Lionaki S, Kapitsinou PP, Iniotaki A, Kostakis A, Moutsopoulos HM, Boletis JN. Kidney transplantation in lupus patients: a case-control study from a single centre. Lupus. 2008;17(7):670–5.

    Article  PubMed  CAS  Google Scholar 

  339. Moroni G, Tantardini F, Gallelli B, Quaglini S, Banfi G, Poli F, et al. The long-term prognosis of renal transplantation in patients with lupus nephritis. Am J Kidney Dis. 2005;45(5):903–11.

    Article  PubMed  Google Scholar 

  340. Burgos PI, Perkins EL, Pons-Estel GJ, Kendrick SA, Liu JM, Kendrick WT, et al. Risk factors and impact of recurrent lupus nephritis in patients with systemic lupus erythematosus undergoing renal transplantation: data from a single US institution. Arthritis Rheum. 2009;60(9):2757–66.

    Article  PubMed  Google Scholar 

  341. Ghafari A, Etmadi J, Adrdalan MR. Renal transplantation in patients with lupus nephritis: a single-center experience. Transplant Proc. 2008;40:143–4.

    Article  PubMed  CAS  Google Scholar 

  342. Ribeiro FM, Leite MA, Velarde GC, Fabris CL, Santos RC, Lugon JR. Activity of systemic lupus erythematosus in end-stage renal disease patients: study in a Brazilian cohort. Am J Nephrol. 2005;25:596–603.

    Article  PubMed  Google Scholar 

  343. Goo YS, Park HC, Choi HY, Kim BS, Park YB, Lee SK, et al. The evolution of lupus activity among patients with end-stage renal disease secondary to lupus nephritis. Yonsei Med J. 2004;45(2):199–206.

    PubMed  Google Scholar 

  344. Contreras G, Mattiazzi A, Guerra G, Ortega LM, Tozman E, Li H, et al. Recurrence of lupus nephritis after kidney transplantation. Clin J Am Soc Nephrol. 2010;21:1200–7.

    Article  Google Scholar 

  345. Tektonidou MG. Renal involvement in the antiphospholipid syndrome (APS)-APS nephropathy. Clin Rev Allergy Immunol. 2009;36(2–3):131–40.

    Article  PubMed  CAS  Google Scholar 

  346. Alchi B, Griffiths M, Jayne D. What nephrologists need to know about antiphospholipid syndrome. Nephrol Dial Transplant. 2010;25(10):3147–54.

    Article  PubMed  Google Scholar 

  347. Kwok SK, Ju JH, Cho CS, Kim HY, Park SH. Thrombotic thrombocytopenic purpura in systemic lupus erythematosus: risk factors and clinical outcome: a single centre study. Lupus. 2009;18(1):16–21.

    Article  PubMed  CAS  Google Scholar 

  348. Tandon A, Ibanez D, Gladman D, Urowitz M. The effect of pregnancy on lupus nephritis. Arthritis Rheum. 2004;50:3941–6.

    Article  PubMed  Google Scholar 

  349. Imbasciati E, Tincani A, Gregorini G, Doria A, Moroni G, Cabiddu G, et al. Pregnancy in women with pre-existing lupus nephritis: predictors of fetal and maternal outcome. Nephrol Dial Transplant. 2009;24(2):519–25.

    Article  PubMed  Google Scholar 

  350. Carvalheiras G, Vita P, Marta S, Trovao R, Farinha F, Braga J, et al. Pregnancy and systemic lupus erythematosus: review of clinical features and outcome of 51 pregnancies at a single institution. Clin Rev Allergy Immunol. 2010;38(2–3):302–6.

    Article  PubMed  Google Scholar 

  351. Wagner SJ, Craici I, Reed D, Norby S, Bailey K, Wiste HJ, et al. Maternal and foetal outcomes in pregnant patients with active lupus nephritis. Lupus. 2009;18(4):342–7.

    Article  PubMed  CAS  Google Scholar 

  352. Al Arfaj AS, Khalil N. Pregnancy outcome in 396 pregnancies in patients with SLE in Saudi Arabia. Lupus. 2010;19(14):1665–73.

    Article  PubMed  CAS  Google Scholar 

  353. Smyth A, Garovic VD. Systemic lupus erythematosus and pregnancy. Ital J Urol Nephrol. 2009;61(4):457–74.

    CAS  Google Scholar 

  354. Alshohaib S. Outcome of pregnancy in patients with inactive systemic lupus erythromatosus and minimal proteinuria. Saudi J Kidney Dis Transpl. 2009;20(5):802–5.

    PubMed  Google Scholar 

  355. Wallace DJ. Advances in drug therapy for systemic lupus erythematosus. BMC Med. 2010;8:77.

    Article  PubMed  Google Scholar 

  356. Wiglesworth AK, Ennis KM, Kockler DR. Belimumab: a BLyS-specific inhibitor for systemic lupus erythematosus. Ann Pharmacother. 2010;44(12):1955–61.

    Article  PubMed  CAS  Google Scholar 

  357. Daikh DI, Wofsy D. Cutting edge: reversal of murine lupus nephritis with CTLA4Ig and cyclophosphamide. J Immunol. 2001;166(5):2913–6.

    PubMed  CAS  Google Scholar 

  358. Muller S, Monneaux F, Schall N, Rashkov RK, Oparanov BA, Wiesel P, et al. Spliceosomal peptide P140 for immunotherapy of systemic lupus erythematosus: results of an early phase II clinical trial. Arthritis Rheum. 2008;58(12):3873–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad H. Rovin M.D., F.A.C.P., F.A.S.N. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rovin, B.H., Birmingham, D.J., Nadasdy, T. (2014). Systemic Lupus Erythematosus and the Kidney. In: Fervenza, F., Lin, J., Sethi, S., Singh, A. (eds) Core Concepts in Parenchymal Kidney Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8166-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8166-9_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8165-2

  • Online ISBN: 978-1-4614-8166-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics