Skip to main content

Doppler Radar Noncontact Vital Sign Monitoring

  • Chapter
  • First Online:
Neural Computation, Neural Devices, and Neural Prosthesis

Abstract

This chapter presents the noncontact and noninvasive approach for monitoring human vital signs using Doppler radar sensor. The theory of noncontact vital sign detection is based on Doppler phase modulation. The system-level hardware architectures of the Doppler radar sensor have been illustrated. Research groups all over the world have been working for decades to improve the performance of Doppler radar noncontact vital sign detection. While some groups improved the performance from the hardware side, e.g., using quadrature receiver to avoid the null point problem, some groups took effort from the software side. For example, new demodulation techniques such as complex demodulation have been invented. System-on-chip (SoC) integration is also a major interest of the researchers working on Doppler radar sensors. With all the circuits integrated into one chip, the radar can be much smaller so as to be more portable or more easily integrated with other communication devices, e.g., cell phones. Several examples of radar sensor SoC have been introduced in this chapter. The Doppler radar sensor sees a bright future in medical applications. It is expected to bring enhanced healthcare in the near future. This chapter introduces the potential applications such as infants monitoring, sleep apnea detection, pulse wave velocity measurement, respiration measurement in motion-adaptive cancer radiotherapy, and so forth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.C. Lin, Microwave sensing of physiological movement and volume change: a review. Bioelectromagnetics 13, 557–565 (1992)

    Article  PubMed  CAS  Google Scholar 

  2. A.D. Droitcour, O. Boric-Lubecke, V.M. Lubecke, J. Lin, G.T.A. Kovac, Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring. IEEE Trans. Microw. Theory Tech. 52, 838–848 (2004)

    Article  Google Scholar 

  3. Y. Xiao, J. Lin, O. Boric-Lubecke, V.M. Lubecke, Frequency tuning technique for remote detection of heartbeat and respiration using low power double-sideband transmission in Ka-band. IEEE Trans. Microw. Theory Tech. 54, 2023–2032 (2006)

    Article  Google Scholar 

  4. C. Li, Y. Xiao, J. Lin, Experiment and spectral analysis of a low-power Ka-band heartbeat detector measuring from four sides of a human body. IEEE Trans. Microw. Theory Tech. 54(12), 4464–4471 (2006) (IMS 2006 special issue)

    Article  Google Scholar 

  5. W.F. Feltz, H.B. Howell, R.O. Knuteson, H.M. Woolf, H.E. Revercomb, Near continuous profiling of temperature, moisture, and atmospheric stability using the atmospheric emitted radiance interferometer (AERI). J. Appl. Meteorol. 42, 584–597 (2003)

    Article  Google Scholar 

  6. H.H. Meinel, Commercial applications of millimeter waves history, present status, and future trends. IEEE Trans. Microw. Theory Tech. 43, 1639–1653 (1995)

    Article  Google Scholar 

  7. A. Stezer, C.G. Diskus, K. Lubke, H.W. Thim, Microwave position sensor with sub millimeter accuracy. IEEE Trans. Microw. Theory Tech. 47(12), 2621–2624 (1999)

    Article  Google Scholar 

  8. K.M. Chen, Y. Huang, J. Zhang, A. Norman, Microwave life-detection systems for searching human subjects under earthquake rubble and behind barrier. IEEE Trans. Biomed. Eng. 47, 105–114 (2000)

    Article  PubMed  CAS  Google Scholar 

  9. J.C. Lin, Noninvasive microwave measurement of respiration. Proc. IEEE 63, 1530 (1975)

    Article  Google Scholar 

  10. A.D. Droitcour, O. Boric-Lubecke, V. Lubecke, J. Lin, G.T.A. Kovacs, 0.25 μm CMOS and BiCMOS single-chip direct-conversion Doppler radars for remote sensing of vital signs, in IEEE International Solid-State Circuits Conference (ISSCC), vol. 1, Digest of Technical Papers, February 2002, pp. 348–349

    Google Scholar 

  11. A.D. Droitcour, O. Boric-Lubecke, V. Lubecke, J. Lin, G.T.A. Kovacs, Range correlation effect on ISM band I/Q CMOS radar for non-contact sensing of vital signs. IEEE MTT-IMS Digest 3, 1945–1948 (2003)

    Google Scholar 

  12. B. Park, O. Boric-Lubecke, V.M. Lubecke, Arctangent demodulation with DC offset compensation in quadrature Doppler radar receiver systems. IEEE Trans. Microw. Theory Tech. 55, 1073–1079 (2007)

    Article  Google Scholar 

  13. Q. Zhou, J. Liu, A. Host-Madsen, O. Boric-Lubecke, V. Lubecke, Detection of multiple heartbeats using Doppler radar. Proc. IEEE ICASSP 2, 1160–1163 (2006)

    Google Scholar 

  14. O. Boric-Lubecke, V. Lubecke, A. Host-Madsen, D. Samardzija, K. Cheung, Doppler radar sensing of multiple subjects in single and multiple antenna systems, in Proceedings of the Seventh International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Services, vol. 1, September 2005, pp. 7–11

    Google Scholar 

  15. A. Singh, V. Lubecke, Respiratory monitoring using a Doppler radar with passive harmonic tags to reduce interference from environmental clutter, in 31st Annual International Conference of the IEEE EMBS, September 2009, pp. 3837–3840

    Google Scholar 

  16. J.E. Kiriazi, O. Boric-Lubecke, V.M. Lubecke, Radar cross section of human cardiopulmonary activity for recumbent subject, in 31st Annual International Conference of the IEEE EMBS, September 2009, pp. 4808–4811

    Google Scholar 

  17. A.D. Droitcour, T.B.S. Byung-Kwon Park, S. Yamada, A. Vergara, C.E. Hourani, T. Shing, A. Yuen, V.M. Lubecke, O. Boric-Lubecke, Non-Contact respiratory rate measurement validation for hospitalized patients, in 31st Annual International Conference of the IEEE EMBS, September 2009, pp. 4812–4815

    Google Scholar 

  18. N. Hafner, V. Lubecke, Performance assessment techniques for Doppler radar physiological sensors, in 31st Annual International Conference of the IEEE EMBS, September 2009, pp. 4848–4851

    Google Scholar 

  19. W. Massagram, V.M. Lubecke, O. Boric-Lubecke, Microwave non-invasive sensing of respiratory tidal volume, in 31st Annual International Conference of the IEEE EMBS, September 2009, pp. 4832–4835

    Google Scholar 

  20. C. Li, J. Lin, Optimal carrier frequency of non-contact vital sign detectors, in IEEE Radio and Wireless Symposium, January 2007, pp. 281–284

    Google Scholar 

  21. C. Li, J. Lin, Random body movement cancellation in Doppler radar vital sign detection. IEEE Trans. Microw. Theory Tech. 56, 3143–3152 (2008)

    Article  Google Scholar 

  22. C. Li, J. Lin, Complex signal demodulation and random body movement cancellation techniques for non-contact vital sign detection, in IEEE MTT-S International Microwave Symposium Digest, Atlanta, June 2008, pp. 567–570

    Google Scholar 

  23. V.M. Lubecke, O. Boric-Lubecke, G. Awater, P.-W. Ong, P.L. Gammel, R.-H. Yan, J.C. Lin, Remote sensing of vital signs with telecommunications signals, in World Cong. Medical Physics and Biomedical Engineering, Chicago, 2000

    Google Scholar 

  24. C. Li, X. Yu, D. Li, L. Ran, J. Lin, Software configurable 5.8 GHz radar sensor receiver chip in 0.13 μm CMOS for non-contact vital sign detection, in IEEE Radio Frequency Integrated Circuits Symposium, 2009 (RFIC 2009), June 2009, pp. 97–100

    Google Scholar 

  25. C. Li, Y. Xiao, J. Lin, A 5 GHz double-sideband radar sensor chip in 0.18 μm CMOS for non-contact vital sign detection. IEEE Microw. Wireless Compon. Lett. 18, 494–496 (2008)

    Article  CAS  Google Scholar 

  26. R. Fletcher, H. Jing, Low-cost differential front-end for Doppler radar vital sign monitoring, in Microwave Symposium Digest, 2009 (MTT’09). IEEE MTT-S International, June 2009, pp. 1325–1328

    Google Scholar 

  27. I. Immoreev, T. The-Ho, UWB radar for patient monitoring. IEEE Aerosp. Electron. Syst. Mag. 23, 11–18 (2008)

    Article  Google Scholar 

  28. E.M. Staderini, UWB radars in medicine. IEEE Aerosp. Electron. Syst. Mag. 17, 13–18 (2002)

    Article  Google Scholar 

  29. D. Obeid, S. Sadek, G. Zaharia, G.E. Zein, Noncontact heartbeat detection at 2.4, 5.8, and 60 GHz: a comparative study. Microw. Opt. Technol. Lett. 51, 666–669 (2009)

    Article  Google Scholar 

  30. A.N. Vgontzas, A. Kales, Sleep and its disorders. Annu. Rev. Med. 50, 387–400 (1999)

    Article  PubMed  CAS  Google Scholar 

  31. D.L. Hoyert, M.A. Freedman, D.M. Strobino, B. Guyer, Annual summary of vital statistics: 2000. Pediatrics 108(6), 1241–1255 (2001)

    Article  PubMed  CAS  Google Scholar 

  32. J. Walleczek, Fractal mechanisms in neuronal control: human heartbeat and gait dynamics in health and disease, in Self-organized Biological Dynamics & Nonlinear Control (Cambridge University Press, Cambridge, 2000), pp. 66–67

    Google Scholar 

  33. Y. Yan, C. Li, X. Yu, M.D. Weiss, J. Lin, Verification of a non-contact vital sign monitoring system using an infant simulator, in 31st Annual International Conference of the IEEE EMBS, September 2009, pp. 4836–4839.

    Google Scholar 

  34. H.C. Bazzett, N.B. Dfeyer, Measurement of pulse wave velocity. Am. J. Physiol. 63, 94–116 (1922)

    Google Scholar 

  35. J.D. Pruett, J.D. Bourland, L.A. Geddes, Measurement of pulse-wave velocity using a beat-sampling technique. Ann. Biomed. Eng. 16, 341–347 (1988)

    Article  PubMed  CAS  Google Scholar 

  36. F.U. Mattace-Raso, T.J. van der Cammen, A. Hofman et al., Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam study. Circulation 113, 657–663 (2006)

    Article  PubMed  Google Scholar 

  37. J. Blacher, A.P. Guerin, B. Pannier, S.J. Marchais, M.E. Safer, G.M. London, Impact of aortic stiffness on survival in end-stage renal disease. Circulation 99, 2434–2439 (1999)

    Article  PubMed  CAS  Google Scholar 

  38. J. Blacher, R. Asmar, S. Djane, G.M. London, M.E. Safar, Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension 33, 1111–1117 (1999)

    Article  PubMed  CAS  Google Scholar 

  39. S.S. Najjar, A. Scuteri, V. Shetty, J.G. Wright, D.C. Muller, J.L. Fleg, H.P. Spurgeon, L. Ferrucci, E.G. Lakatta, Pulse wave velocity is an independent predictor of the longitudinal increase in systolic blood pressure and of incident hypertension in the Baltimore longitudinal study of aging. J. Am. Coll. Cardiol. 51(14), 1377–1383 (2008)

    Article  PubMed Central  PubMed  Google Scholar 

  40. L. Lu, C. Li, D.Y.C. Lie, Microwave noncontact measurement of pulse wave velocity for healthcare applications, in IEEE 11th Annual Wireless and Microwave Technology Conference (WAMICON), Melbourne, April 2010

    Google Scholar 

  41. L. Lu, C. Li, D.Y.C. Lie, Experimental demonstration of noncontact pulse wave velocity monitoring using multiple Doppler radar sensors, in 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Buenos Aires, August 2010

    Google Scholar 

  42. S.B. Jiang, Radiotherapy of mobile tumors. Semin. Radiat. Oncol. 16(4), 239–324 (2006)

    Article  PubMed  CAS  Google Scholar 

  43. S.B. Jiang, Technical aspects of image-guided respiration gated radiation therapy. Med. Dosim. 31(2), 141–151 (2006)

    Article  PubMed  Google Scholar 

  44. C. Gu, R. Li, R. Fung, C. Torres, S. Jiang, C. Li, Accurate respiration measurement using DC-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy, IEEE Trans. Biomed. Eng. 59(11), 3117–3123 (2012)

    Google Scholar 

  45. C. Gu, R. Li, C. Li, S.B. Jiang, Doppler radar respiration measurement for gated lung cancer radiotherapy, in IEEE Radio and Wireless Week, Phoenix, 2011

    Google Scholar 

  46. C. Gu, R. Li, C. Li, S.B. Jiang, A multi-radar wireless system for respiratory gating and accurate tumor tracking in lung cancer radiotherapy, in 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’11), Boston, August 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenshan Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lu, L., Gu, C., Li, C., Lin, J. (2014). Doppler Radar Noncontact Vital Sign Monitoring. In: Yang, Z. (eds) Neural Computation, Neural Devices, and Neural Prosthesis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8151-5_3

Download citation

Publish with us

Policies and ethics