Skip to main content

Analysis and Design of 3-D Potentiostat for Deep Brain Implantable Devices

  • Chapter
  • First Online:
Neural Computation, Neural Devices, and Neural Prosthesis
  • 1583 Accesses

Abstract

We present the analysis and design of a 3-D potentiostat, an important part of the next generation of the deep brain implantable devices. The potentiostat with interfacing electrochemical sensor comprises a system for measurement of the concentration of the neurotransmitter molecules. We first introduce the architecture of a 2-D potentiostat implemented as the first-order incremental current-sensing sigma–delta converter. The fabricated design demonstrates a 100 fA sensitivity with dynamic range spanning through six orders of magnitude. The same architecture is transferred into 3-D technology with separate tiers for the analog and digital circuitry. The analysis of the 3-D design reveals that the sensitivity is limited by the TSV-related noise coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Wise, Wireless integrated microsystems: wearable and implantable devices for improved health care. In: International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), pp. 1–8, 2009

    Google Scholar 

  2. A. Nurmikko, J. Donoghue, L. Hochberg, W. Patterson, Y.-K. Song, C. Bull, D. Borton, F. Laiwalla, S. Park, Y. Ming, J. Aceros, Listening to brain microcircuits for interfacing with external world - progress in wireless implantable microelectronic neuroengineering devices. Proc. IEEE 98(3), 375–388 (2010)

    Article  CAS  Google Scholar 

  3. R. Allan, Medtronic sets the pace with implantable electronics. Electronic Design 51(24), 52–54 (2003)

    Google Scholar 

  4. J. Fayad, S. Otto, R. Shannon, D. Brackmann, Cochlear and brainstem auditory prostheses: Neural interface for hearing restoration cochlear and brain stem implants. Proc. IEEE 96, 1085–1095 (2008)

    Article  Google Scholar 

  5. B.J. Gilligan et al., Feasibility of continuous long-term glucose monitoring from a subcutaneous glucose sensor in humans. Diabetes Tech. Therapeut. J. 6(3), 378–386 (2004)

    Article  CAS  Google Scholar 

  6. M. Stanaćević, K. Murari, A. Rege, G. Cauwenberghs, N.V. Thakor, VLSI potentiostat array with oversampling gain modulation for wide-range neurotransmitter sensing. IEEE Trans. Biomed. Circ. Syst. 1(1), 63–72 (2007)

    Article  Google Scholar 

  7. F. Bedioui, S. Trevin, J. Devynck, The use of gold electrodes in the electrochemical detection of nitric oxide in aqueous solution. J. Electroanal. Chem. 377(1-2), 295-298 (1994)

    Article  CAS  Google Scholar 

  8. V.F. Pavlidis, E.G. Friedman, Three-Dimensional Integrated Circuit Design (Morgan Kaufmann, 2009)

    Google Scholar 

  9. E. Salman, Noise coupling due to through silicon vias (TSVs) in 3-D integrated circuits. In: Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 1411-1414, May 2011

    Google Scholar 

  10. M.A. Liker, D.S. Won, V.Y. Rao, S.E. Hua, Deep brain stimulation: An evolving technology. Proc. IEEE 96, 1129–1141 (2008)

    Article  Google Scholar 

  11. A. Amar, M. Levy, C. Liu, M. Apuzzo, Vagus nerve stimulation. Proc. IEEE 96(7), 1142–1151 (2008)

    Article  Google Scholar 

  12. H. Mayberg, A. Lozano, V. Voon, H. McNeely, D. Seminowicz, C. Hamani, J. Schwalb, S. Kennedy, Deep brain stimulation for treatment-resistant depression. Neuron 45(5), 651–660 (2005)

    Article  PubMed  CAS  Google Scholar 

  13. A. Benabid, Deep brain stimulation for parkinson’s disease. Curr. Opin. Neurobiol. 13(6), 696–706 (2003)

    Article  PubMed  CAS  Google Scholar 

  14. H. Bergman, T. Wichmann, M. DeLong, Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249(4975), 1436–1438 (1990)

    Article  PubMed  CAS  Google Scholar 

  15. J. Bronstein, M. Tagliati, R. Alterman, A. Lozano, J. Volkmann, A. Stefani, F. Horak, M. Okun, K. Foote, P. Krack, R. Pahwa, J. Henderson, M. Hariz, R. Bakay, A. Rezai, W. Marks Jr, E. Moro, J. Vitek, F. Weaver, R. Gross, M. DeLong, Deep brain stimulation for parkinson diseasean expert consensus and review of key issuesdeep brain stimulation for parkinson disease. Arch. Neurol. 68(2), 165 (2011)

    Google Scholar 

  16. M. Roham, D. Daberkow, E. Ramsson, D. Covey, P. Garris, P. Mohseni, A wireless ic for wide-range neurochemical monitoring using amperometry and fast-scan cyclic voltammetry. IEEE Trans. Biomed. Circ. Syst. 2(1), 3–9 (2008)

    Article  CAS  Google Scholar 

  17. P. Weerakoon, K. Klemic, F. Sigworth, E. Culurciello, An integrated patch-clamp potentiostat with electrode compensation. IEEE Trans. Biomed. Circ. Syst. (2008)

    Google Scholar 

  18. P. Weerakoon, E. Culurciello, Y. Yang, J. Santos-Sacchi, P. Kindlmann, F. Sigworth, Patch-clamp amplifiers on a chip. J. Neurosci. Meth. 192, 187–192 (2010)

    Article  CAS  Google Scholar 

  19. R. Genov, M. Stanaćević, M. Naware, G. Cauwenberghs, N. Thakor, 16-channel integrated potentiostat for distributed neurochemical sensing. IEEE Trans. Circ. Syst. I Reg. Papers 53(11), 2371–2376 (2006)

    Article  Google Scholar 

  20. H. Narula, J. Harris, A time-based vlsi potentiostat for ion current measurements. Sensors J. IEEE 6(2), 239–247 (2006)

    Article  CAS  Google Scholar 

  21. M.M. Ahmadi, G.A. Jullien, Current-mirror-based potentiostats for three-electrode amperometric electrochemical sensors. IEEE Trans. Circ. Syst. I Reg. Papers 56(7), 1339–1347 (2009)

    Article  Google Scholar 

  22. S. Ayers, K.D. Gillis, M. Lindau, B.A. Minch, Design of a CMOS potentiostat circuit for electrochemical detector arrays. IEEE Trans. Circ. Syst. I Reg. Papers 54(4), 736–744 (2007)

    Article  Google Scholar 

  23. S.M.R. Hasan, Stability analysis and novel compensation of a CMOS current-feedback potentiostat circuit for electrochemical sensors. IEEE Sensors J. 7(5), 814–824 (2007)

    Article  CAS  Google Scholar 

  24. J. Robert, G.C. Temes, V. Valencic, R. Dessoulavy, P. Deval, A 16-bit low-voltage CMOS A/D converter. IEEE J. Solid State Circ. 22(2), 157–163 (1987)

    Article  Google Scholar 

  25. G. Nicollini, F. Moretti, M. Conti, High-frequency fully differential filter usign operational amplifier without common-mode feedback. IEEE J. Solid State Circ. 24(3), 803–813 (1989)

    Article  Google Scholar 

  26. M. Stanaćević, G. Cauwenberghs, Micropower gradient flow acoustic localizer. IEEE Trans. Circ. Syst. I Reg. Papers 52(10), 2148–2157 (2005)

    Article  Google Scholar 

  27. R. Sarpeshkar, T. Delbruck, C.A. Mead, White noise in MOS transistors and resistors. IEEE Circ. Device Mag. 9(6), 23–29 (1993)

    Article  Google Scholar 

  28. C.C. Enz, G.C. Temes, Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. IEEE Proc. 84(11), 1584–1614 (1996)

    Article  Google Scholar 

  29. M. Stanaćević, K. Murari, G. Cauwenberghs, N. Thakor, 16- channel wide-range VLSI potentiostat array. In: IEEE Int. Workshop on BioMedical Circuits and Systems (BIOCAS2004), Singapore, Dec 2004

    Google Scholar 

  30. K. Murari, M. Stanaćević, G. Cauwenberghs, N. Thakor, Wide- range, picoampere-sensitivity multichannel VLSI potentiostat for neurotransmitter sensing. IEEE Eng. Med. Biol. Mag. 24(6), 23–29 (2005)

    Article  PubMed  Google Scholar 

  31. K. Murari, N. Thakor, M. Stanaćević, G. Cauwenberghs, Wide-range, picoampere-sensitivity multichannel VLSI potentiostat for neurotransmitter sensing. In: Proc. 26th Ann. Int. Conf. IEEE Engineering in Medicine and Biology Society (EMBS2004), San Francisco, Sept. 1–4, 2004

    Google Scholar 

  32. E. Salman, M.H. Asgari, M. Stanaćević, Signal integrity analysis of a 2-d and 3-d integrated potentiostat for neurotransmitter sensing. In: IEEE International Workshop on BioMedical Circuits and Systems (BIOCAS2011), 2011

    Google Scholar 

  33. B.R. Stanisic, N.K. Verghese, R.A. Rutenbar, R. Carley, D.J. Allstot, Addressing substrate coupling in mixed-mode ICs: simulation and power distribution synthesis. IEEE J. Solid State Circ. 29(3), 226-238 (1994)

    Article  Google Scholar 

  34. S. Ramaswami et al., Process integration considerations for 300 mm TSV manufacturing. IEEE Trans. Device Mater. Reliab. 9(4), 524-528 (2009)

    Article  Google Scholar 

  35. C. Jonghyun et al., Active circuit to through silicon via (TSV) noise coupling. In: Proceedings of the IEEE Conference on Electrical Performance of Electronic Packaging and Systems, pp. 97100, October 2009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Stanaćević .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stanaćević, M., Lin, Y., Salman, E. (2014). Analysis and Design of 3-D Potentiostat for Deep Brain Implantable Devices. In: Yang, Z. (eds) Neural Computation, Neural Devices, and Neural Prosthesis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8151-5_11

Download citation

Publish with us

Policies and ethics