AlGaInAs Quantum Dots for Intermediate Band Formation in Solar Cell Devices

  • Stefan Kremling
  • Christian Schneider
  • Sven Höfling
  • Martin Kamp
  • Alfred Forchel
Chapter
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 15)

Abstract

In this chapter, we focus on the integration of composition tailored AlGaInAs quantum dots (QDs) into AlGaAs p–i–n diode structures for solar cell (SC) applications. This type of QDs can absorb a wide range of the solar spectrum from the red visible to the near infrared spectral range. Moreover, the size, density, and eigenenergies of these quaternary QDs can be easily adjusted via varying their material composition, e.g. the aluminum content. We anticipate that the suitable choice of material composition, dot shape, and inter-dot barrier thickness can compensate the built-in potential of the p-i-n junction and electronic coupling between QD layers will be established to generate an electronically isolated intermediate band (IB). In order to probe the operation principle of an IBSC utilizing AlGaInAs QDs, two photon absorption measurements were performed. We show that two sub-bandgap photons produce photocurrent while the first photon pumps electrons from the valence band (VB) to the IB and a second photon lifts the electrons from the IB to the conduction band (CB). Based on our result we propose a route towards intermediate band solar cells (IBSCs) with these quaternary QDs.

Keywords

Migration Recombination GaAs 

Notes

Acknowledgment

This work was supported by the state of Bavaria. The authors would like to thank N. Tarakina, T. Braun, M. Adams, M. Lermer, T. Steinl, A. Härtl, S. Reitzenstein, and L. Worschech for sample preparation, measurements, and fruitful discussions.

References

  1. 1.
    Lewis, N.S.: Toward cost-effective solar energy use. Science 315(5813), 798–801 (2007). doi: 10.1126/science.1137014 ADSCrossRefGoogle Scholar
  2. 2.
    Green, M.A.: Third generation photovoltaics: ultra-high conversion efficiency at low cost. Prog. Photovolt. Res. Appl. 9(2), 123–135 (2001). doi: 10.1002/pip.360 CrossRefGoogle Scholar
  3. 3.
    Chapin, D.M., Fuller, C.S., Pearson, G.L.: A new silicon p–n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25(5), 676–677 (1954)ADSCrossRefGoogle Scholar
  4. 4.
    Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)ADSCrossRefGoogle Scholar
  5. 5.
    Conibeer, G.: Third-generation photovoltaics. Mater. Today 10(11), 42–50 (2007). doi: 10.1016/s1369-7021(07)70278-x CrossRefGoogle Scholar
  6. 6.
    Brown, G.F., Wu, J.: Third generation photovoltaics. Laser Photon. Rev. 3(4), 394–405 (2009). doi: 10.1002/lpor.200810039 ADSCrossRefGoogle Scholar
  7. 7.
    Gee, J.M.: A comparison of different module configurations for multi-band-gap solar cells. Solar Cells 24(1–2), 147–155 (1988). doi: 10.1016/0379-6787(88)90044-0 CrossRefGoogle Scholar
  8. 8.
    De Vos, A., Pauwels, H.: On the thermodynamic limit of photovoltaic energy conversion. Appl. Phys. Mater. Sci. Process. 25(2), 119–125 (1981). doi: 10.1007/bf00901283 CrossRefGoogle Scholar
  9. 9.
    Polman, A., Atwater, H.A.: Photonic design principles for ultrahigh-efficiency photovoltaics. Nat. Mater. 11(3), 174–177 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Luque, A., Martí, A.: Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 78(26), 5014–5017 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    Nozawa, T., Arakawa, Y.: Detailed balance limit of the efficiency of multilevel intermediate band solar cells. Appl. Phys. Lett. 98(17), 171108-1–171108-3 (2011)Google Scholar
  12. 12.
    Yu, K.M., Walukiewicz, W., Ager III, J.W., Bour, D., Farshchi, R., Dubon, O.D., Li, S.X., Sharp, I.D., Haller, E.E.: Multiband GaNAsP quaternary alloys. Appl. Phys. Lett. 88(9), 092110–092113 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Yu, K.M., Walukiewicz, W., Wu, J., Shan, W., Beeman, J.W., Scarpulla, M.A., Dubon, O.D., Becla, P.: Diluted II–VI oxide semiconductors with multiple band gaps. Phys. Rev. Lett. 91(24), 246403 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    Antolin, E., Marti, A., Olea, J., Pastor, D., Gonzalez-Diaz, G., Martil, I., Luque, A.: Lifetime recovery in ultrahighly titanium-doped silicon for the implementation of an intermediate band material. Appl. Phys. Lett. 94(4), 042115-1–042115-3 (2009)Google Scholar
  15. 15.
    Wahnón, P., Tablero, C.: Ab initio electronic structure calculations for metallic intermediate band formation in photovoltaic materials. Phys. Rev. B 65(16), 165115 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Martí, A., López, N., Antolín, E., Cánovas, E., Stanley, C., Farmer, C., Cuadra, L., Luque, A.: Novel semiconductor solar cell structures: the quantum dot intermediate band solar cell. Thin Solid Films 511–512, 638–644 (2006). doi: 10.1016/j.tsf.2005.12.122 CrossRefGoogle Scholar
  17. 17.
    Marti, A., Luque, A.: Next Generation Photovoltaics – High Efficiency Through Full Spectrum Utilization. Optics and Optoelectronics. Institute of Physics Publishing, Bristol (2004)CrossRefGoogle Scholar
  18. 18.
    Martí, A., Antolín, E., Stanley, C.R., Farmer, C.D., López, N., Díaz, P., Cánovas, E., Linares, P.G., Luque, A.: Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell. Phys. Rev. Lett. 97(24), 247701 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Bailey, C.G., Forbes, D.V., Raffaelle, R.P., Hubbard, S.M.: Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells. Appl. Phys. Lett. 98(16), 163105-1–163105-3 (2011)Google Scholar
  20. 20.
    Guimard, D., Morihara, R., Bordel, D., Tanabe, K., Wakayama, Y., Nishioka, M., Arakawa, Y.: Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage. Appl. Phys. Lett. 96(20), 203507-1–203507-3 (2010)Google Scholar
  21. 21.
    Sugaya, T., Furue, S., Komaki, H., Amano, T., Mori, M., Komori, K., Niki, S., Numakami, O., Okano, Y.: Highly stacked and well-aligned In0.4Ga0.6As quantum dot solar cells with In0.2Ga0.8As cap layer. Appl. Phys. Lett. 97(18), 183104-1–183104-3 (2010)Google Scholar
  22. 22.
    Laghumavarapu, R.B., El-Emawy, M., Nuntawong, N., Moscho, A., Lester, L.F., Huffaker, D.L.: Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers. Appl. Phys. Lett. 91(24), 243115-1–243115-3 (2007)Google Scholar
  23. 23.
    Reid, W.M., Driscoll, T., Doty, M.F.: Forming delocalized intermediate states with realistic quantum dots. J. Appl. Phys. 111(5), 056102-1–056102-3 (2012)Google Scholar
  24. 24.
    Schlereth, T.W., Schneider, C., Höfling, S., Forchel, A.: Tailoring of morphology and emission wavelength of AlGaInAs quantum dots. Nanotechnology 19(4), 045601 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Schlereth, T.W., Gerhard, S., Kaiser, W., Hofling, S., Forchel, A.: High-performance short-wavelength (~760 nm) AlGaInAs quantum-dot lasers. IEEE Photon. Technol. Lett. 19(18), 1380–1382 (2007). doi: 10.1109/lpt.2007.902925 ADSCrossRefGoogle Scholar
  26. 26.
    Schlereth, T.W., Schneider, C., Kaiser, W., Hofling, S., Forchel, A.: Low threshold, high gain AlGaInAs quantum dot lasers. Appl. Phys. Lett. 90(22), 221113-1–221113-3 (2007)Google Scholar
  27. 27.
    Baklenov, O., Huffaker, D.L., Anselm, A., Deppe, D.G., Streetman, B.G.: Influence of Al content on formation of InAlGaAs quantum dots grown by molecular beam epitaxy. J. Appl. Phys. 82(12), 6362–6364 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    Hubbard, S.M., Cress, C.D., Bailey, C.G., Raffaelle, R.P., Bailey, S.G., Wilt, D.M.: Effect of strain compensation on quantum dot enhanced GaAs solar cells. Appl. Phys. Lett. 92(12), 123512–123513 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Kovsh, A.R., Zhukov, A.E., Egorov, A.Yu., Ustinov, V.M., Shernyakov, Yu.M., Maksimov, M.V., Tsatsul’nikov, A.F., Volovik, B.V., Lunev, A.V., Ledentsov, N.N., Kop’ev, P.S., Alferov, Zh.I.: Effect of the quantum-dot surface density in the active region on injection-laser characteristics Semiconductors 32, 997–1000 (1998)Google Scholar
  30. 30.
    Marti, A., Lopez, N., Antolin, E., Canovas, E., Luque, A., Stanley, C.R., Farmer, C.D., Diaz, P.: Emitter degradation in quantum dot intermediate band solar cells. Appl. Phys. Lett. 90(23), 233510–233513 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    Shoji, Y., Narahara, K., Tanaka, H., Kita, T., Akimoto, K., Okada, Y.: Effect of spacer layer thickness on multi-stacked InGaAs quantum dots grown on GaAs (311)B substrate for application to intermediate band solar cells. J. Appl. Phys. 111(7), 074305-1–074305-4 (2012)Google Scholar
  32. 32.
    Varshni, Y.P.: Temperature dependence of the energy gap in semiconductors. Physica 34(1), 149–154 (1967). doi: 10.1016/0031-8914(67)90062-6 ADSCrossRefGoogle Scholar
  33. 33.
    Huggenberger, A., Heckelmann, S., Schneider, C., Hofling, S., Reitzenstein, S., Worschech, L., Kamp, M., Forchel, A.: Narrow spectral linewidth from single site-controlled In(Ga)As quantum dots with high uniformity. Appl. Phys. Lett. 98(13), 131104-1–131104-3 (2011)Google Scholar
  34. 34.
    Mohan, A., Gallo, P., Felici, M., Dwir, B., Rudra, A., Faist, J., Kapon, E.: Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics. Small 6(12), 1268–1272 (2010). doi: 10.1002/smll.201000341 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Stefan Kremling
    • 1
  • Christian Schneider
    • 1
  • Sven Höfling
    • 1
  • Martin Kamp
    • 1
  • Alfred Forchel
    • 1
  1. 1.Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Research Center for Complex Material SystemsUniversität WürzburgWürzburgGermany

Personalised recommendations