Skip to main content

AlGaInAs Quantum Dots for Intermediate Band Formation in Solar Cell Devices

  • Chapter
  • First Online:
Quantum Dot Solar Cells

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 15))

Abstract

In this chapter, we focus on the integration of composition tailored AlGaInAs quantum dots (QDs) into AlGaAs p–i–n diode structures for solar cell (SC) applications. This type of QDs can absorb a wide range of the solar spectrum from the red visible to the near infrared spectral range. Moreover, the size, density, and eigenenergies of these quaternary QDs can be easily adjusted via varying their material composition, e.g. the aluminum content. We anticipate that the suitable choice of material composition, dot shape, and inter-dot barrier thickness can compensate the built-in potential of the p-i-n junction and electronic coupling between QD layers will be established to generate an electronically isolated intermediate band (IB). In order to probe the operation principle of an IBSC utilizing AlGaInAs QDs, two photon absorption measurements were performed. We show that two sub-bandgap photons produce photocurrent while the first photon pumps electrons from the valence band (VB) to the IB and a second photon lifts the electrons from the IB to the conduction band (CB). Based on our result we propose a route towards intermediate band solar cells (IBSCs) with these quaternary QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lewis, N.S.: Toward cost-effective solar energy use. Science 315(5813), 798–801 (2007). doi:10.1126/science.1137014

    Article  ADS  Google Scholar 

  2. Green, M.A.: Third generation photovoltaics: ultra-high conversion efficiency at low cost. Prog. Photovolt. Res. Appl. 9(2), 123–135 (2001). doi:10.1002/pip.360

    Article  Google Scholar 

  3. Chapin, D.M., Fuller, C.S., Pearson, G.L.: A new silicon p–n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25(5), 676–677 (1954)

    Article  ADS  Google Scholar 

  4. Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)

    Article  ADS  Google Scholar 

  5. Conibeer, G.: Third-generation photovoltaics. Mater. Today 10(11), 42–50 (2007). doi:10.1016/s1369-7021(07)70278-x

    Article  Google Scholar 

  6. Brown, G.F., Wu, J.: Third generation photovoltaics. Laser Photon. Rev. 3(4), 394–405 (2009). doi:10.1002/lpor.200810039

    Article  ADS  Google Scholar 

  7. Gee, J.M.: A comparison of different module configurations for multi-band-gap solar cells. Solar Cells 24(1–2), 147–155 (1988). doi:10.1016/0379-6787(88)90044-0

    Article  Google Scholar 

  8. De Vos, A., Pauwels, H.: On the thermodynamic limit of photovoltaic energy conversion. Appl. Phys. Mater. Sci. Process. 25(2), 119–125 (1981). doi:10.1007/bf00901283

    Article  Google Scholar 

  9. Polman, A., Atwater, H.A.: Photonic design principles for ultrahigh-efficiency photovoltaics. Nat. Mater. 11(3), 174–177 (2012)

    Article  ADS  Google Scholar 

  10. Luque, A., Martí, A.: Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 78(26), 5014–5017 (1997)

    Article  ADS  Google Scholar 

  11. Nozawa, T., Arakawa, Y.: Detailed balance limit of the efficiency of multilevel intermediate band solar cells. Appl. Phys. Lett. 98(17), 171108-1–171108-3 (2011)

    Google Scholar 

  12. Yu, K.M., Walukiewicz, W., Ager III, J.W., Bour, D., Farshchi, R., Dubon, O.D., Li, S.X., Sharp, I.D., Haller, E.E.: Multiband GaNAsP quaternary alloys. Appl. Phys. Lett. 88(9), 092110–092113 (2006)

    Article  ADS  Google Scholar 

  13. Yu, K.M., Walukiewicz, W., Wu, J., Shan, W., Beeman, J.W., Scarpulla, M.A., Dubon, O.D., Becla, P.: Diluted II–VI oxide semiconductors with multiple band gaps. Phys. Rev. Lett. 91(24), 246403 (2003)

    Article  ADS  Google Scholar 

  14. Antolin, E., Marti, A., Olea, J., Pastor, D., Gonzalez-Diaz, G., Martil, I., Luque, A.: Lifetime recovery in ultrahighly titanium-doped silicon for the implementation of an intermediate band material. Appl. Phys. Lett. 94(4), 042115-1–042115-3 (2009)

    Google Scholar 

  15. Wahnón, P., Tablero, C.: Ab initio electronic structure calculations for metallic intermediate band formation in photovoltaic materials. Phys. Rev. B 65(16), 165115 (2002)

    Article  ADS  Google Scholar 

  16. Martí, A., López, N., Antolín, E., Cánovas, E., Stanley, C., Farmer, C., Cuadra, L., Luque, A.: Novel semiconductor solar cell structures: the quantum dot intermediate band solar cell. Thin Solid Films 511–512, 638–644 (2006). doi:10.1016/j.tsf.2005.12.122

    Article  Google Scholar 

  17. Marti, A., Luque, A.: Next Generation Photovoltaics – High Efficiency Through Full Spectrum Utilization. Optics and Optoelectronics. Institute of Physics Publishing, Bristol (2004)

    Book  Google Scholar 

  18. Martí, A., Antolín, E., Stanley, C.R., Farmer, C.D., López, N., Díaz, P., Cánovas, E., Linares, P.G., Luque, A.: Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell. Phys. Rev. Lett. 97(24), 247701 (2006)

    Article  ADS  Google Scholar 

  19. Bailey, C.G., Forbes, D.V., Raffaelle, R.P., Hubbard, S.M.: Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells. Appl. Phys. Lett. 98(16), 163105-1–163105-3 (2011)

    Google Scholar 

  20. Guimard, D., Morihara, R., Bordel, D., Tanabe, K., Wakayama, Y., Nishioka, M., Arakawa, Y.: Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage. Appl. Phys. Lett. 96(20), 203507-1–203507-3 (2010)

    Google Scholar 

  21. Sugaya, T., Furue, S., Komaki, H., Amano, T., Mori, M., Komori, K., Niki, S., Numakami, O., Okano, Y.: Highly stacked and well-aligned In0.4Ga0.6As quantum dot solar cells with In0.2Ga0.8As cap layer. Appl. Phys. Lett. 97(18), 183104-1–183104-3 (2010)

    Google Scholar 

  22. Laghumavarapu, R.B., El-Emawy, M., Nuntawong, N., Moscho, A., Lester, L.F., Huffaker, D.L.: Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers. Appl. Phys. Lett. 91(24), 243115-1–243115-3 (2007)

    Google Scholar 

  23. Reid, W.M., Driscoll, T., Doty, M.F.: Forming delocalized intermediate states with realistic quantum dots. J. Appl. Phys. 111(5), 056102-1–056102-3 (2012)

    Google Scholar 

  24. Schlereth, T.W., Schneider, C., Höfling, S., Forchel, A.: Tailoring of morphology and emission wavelength of AlGaInAs quantum dots. Nanotechnology 19(4), 045601 (2008)

    Article  ADS  Google Scholar 

  25. Schlereth, T.W., Gerhard, S., Kaiser, W., Hofling, S., Forchel, A.: High-performance short-wavelength (~760 nm) AlGaInAs quantum-dot lasers. IEEE Photon. Technol. Lett. 19(18), 1380–1382 (2007). doi:10.1109/lpt.2007.902925

    Article  ADS  Google Scholar 

  26. Schlereth, T.W., Schneider, C., Kaiser, W., Hofling, S., Forchel, A.: Low threshold, high gain AlGaInAs quantum dot lasers. Appl. Phys. Lett. 90(22), 221113-1–221113-3 (2007)

    Google Scholar 

  27. Baklenov, O., Huffaker, D.L., Anselm, A., Deppe, D.G., Streetman, B.G.: Influence of Al content on formation of InAlGaAs quantum dots grown by molecular beam epitaxy. J. Appl. Phys. 82(12), 6362–6364 (1997)

    Article  ADS  Google Scholar 

  28. Hubbard, S.M., Cress, C.D., Bailey, C.G., Raffaelle, R.P., Bailey, S.G., Wilt, D.M.: Effect of strain compensation on quantum dot enhanced GaAs solar cells. Appl. Phys. Lett. 92(12), 123512–123513 (2008)

    Article  ADS  Google Scholar 

  29. Kovsh, A.R., Zhukov, A.E., Egorov, A.Yu., Ustinov, V.M., Shernyakov, Yu.M., Maksimov, M.V., Tsatsul’nikov, A.F., Volovik, B.V., Lunev, A.V., Ledentsov, N.N., Kop’ev, P.S., Alferov, Zh.I.: Effect of the quantum-dot surface density in the active region on injection-laser characteristics Semiconductors 32, 997–1000 (1998)

    Google Scholar 

  30. Marti, A., Lopez, N., Antolin, E., Canovas, E., Luque, A., Stanley, C.R., Farmer, C.D., Diaz, P.: Emitter degradation in quantum dot intermediate band solar cells. Appl. Phys. Lett. 90(23), 233510–233513 (2007)

    Article  ADS  Google Scholar 

  31. Shoji, Y., Narahara, K., Tanaka, H., Kita, T., Akimoto, K., Okada, Y.: Effect of spacer layer thickness on multi-stacked InGaAs quantum dots grown on GaAs (311)B substrate for application to intermediate band solar cells. J. Appl. Phys. 111(7), 074305-1–074305-4 (2012)

    Google Scholar 

  32. Varshni, Y.P.: Temperature dependence of the energy gap in semiconductors. Physica 34(1), 149–154 (1967). doi:10.1016/0031-8914(67)90062-6

    Article  ADS  Google Scholar 

  33. Huggenberger, A., Heckelmann, S., Schneider, C., Hofling, S., Reitzenstein, S., Worschech, L., Kamp, M., Forchel, A.: Narrow spectral linewidth from single site-controlled In(Ga)As quantum dots with high uniformity. Appl. Phys. Lett. 98(13), 131104-1–131104-3 (2011)

    Google Scholar 

  34. Mohan, A., Gallo, P., Felici, M., Dwir, B., Rudra, A., Faist, J., Kapon, E.: Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics. Small 6(12), 1268–1272 (2010). doi:10.1002/smll.201000341

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the state of Bavaria. The authors would like to thank N. Tarakina, T. Braun, M. Adams, M. Lermer, T. Steinl, A. Härtl, S. Reitzenstein, and L. Worschech for sample preparation, measurements, and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Forchel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kremling, S., Schneider, C., Höfling, S., Kamp, M., Forchel, A. (2014). AlGaInAs Quantum Dots for Intermediate Band Formation in Solar Cell Devices. In: Wu, J., Wang, Z. (eds) Quantum Dot Solar Cells. Lecture Notes in Nanoscale Science and Technology, vol 15. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8148-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8148-5_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8147-8

  • Online ISBN: 978-1-4614-8148-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics