Skip to main content

Hybrid Optoelectronic Devices with Colloidal Quantum Dots

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 15))

Abstract

The progresses of colloidal quantum dots (CQDs) in the last decade have brought many developments in related optoelectronic devices. Genuine CQD optoelectronic devices, however, still suffer from low efficiency and short life span, which seriously hinder their practical use. A novel integration scheme is proposed and demonstrated to alleviate these problems. By combination of regular semiconductor devices and CQD thin film layers, we can achieve a much better performance and avoid the lifetime issue. The CQD layer can be applied in both photovoltaic reaction and general illumination via its strong absorption and emission characteristics. The design principles, fabrication technology, and device analysis will be discussed in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Green MA (2007) Thin-film solar cells: review of materials, technologies and commercial status. J Mater Sci Mater Electron 18(S1):15–19

    Article  Google Scholar 

  2. Siebentritt S (2002) Wide gap chalcopyrites: material properties and solar cells. Thin Solid Films 403–404:1–8

    Article  Google Scholar 

  3. Klenk R, Klaer J, Scheer R, Lux-Steiner MC, Luck I, Meyer N, Ruhle U (2005) Solar cells based on CuInS2—an overview. Thin Solid Films 480–481:509–514

    Article  Google Scholar 

  4. Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV (2008) Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J Am Chem Soc 130(12):4007–4015

    Article  Google Scholar 

  5. Standridge SD, Schatz GC, Hupp JT (2009) Distance dependence of plasmon-enhanced photocurrent in dyesensitized solar cells. J Am Chem Soc 131(24):8407–8409

    Article  Google Scholar 

  6. Zhang Q, Chou TP, Russo B, Jenekhe SA, Cao G (2008) Polydisperse aggregates of ZnO nanocrystallites: a method for energy-conversion-efficiency enhancement in dye-sensitized solar cells. Adv Funct Mater 18(11):1654–1660

    Article  Google Scholar 

  7. Tanabe K (2009) A review of ultrahigh efficiency III-V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures. Energies 2(3):504–530

    Article  MathSciNet  Google Scholar 

  8. Baur C, Bett A, Dimroth F, Siefer G, Meusel M, Bensch W, Kostler W, Strobl G (2007) Triple-junction III–V based concentrator solar cells: perspectives and challenges. J Sol Energy Eng 129(3):258–265

    Article  Google Scholar 

  9. Takamoto T, Ikeda E, Kurita H, Ohmori M (1997) Over 30% efficient InGaP/GaAs tandem solar cells. Appl Phys Lett 70(3):381–383

    Article  ADS  Google Scholar 

  10. Guter W, Schone J, Philipps SP, Steiner M, Siefer G, Wekkeli A, Welser E, Oliva E, Bett AW, Dimroth F (2009) Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight. Appl Phys Lett 94(22):223504

    Article  ADS  Google Scholar 

  11. Yu P, Chang CH, Chiu CH, Yang CS, Yu JC, Kuo HC, Hsu SH, Chang YC (2009) Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns. Adv Mater (Deerfield Beach, Fla) 21(16):1618–1621

    Article  Google Scholar 

  12. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32(3):510–519

    Article  ADS  Google Scholar 

  13. Geyer S, Porter VJ, Halpert JE, Mentzel TS, Kastner MA, Bawendi MG (2010) Charge transport in mixed CdSe and CdTe colloidal nanocrystal films. Phys Rev B 82(15):155201

    Article  ADS  Google Scholar 

  14. Wang X, Koleilat GI, Tang J, Liu H, Kramer IJ, Debnath R, Brzozowski L, Barkhouse DAR, Levina L, Hoogland S, Sargent EH (2011) Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nat Photonics 5(8):480–484

    Article  ADS  Google Scholar 

  15. Caldwell MM (1979) Plant life and ultraviolet radiation: some perspective in the history of the earth’s UV climate. Bioscience 29(9):520–525

    Article  Google Scholar 

  16. Sun Q, Wang YA, Li LS, Wang D, Zhu T, Xu J, Yang C, Li Y (2007) Bright, multicoloured light-emitting diodes based on quantum dots. Nat Photonics 1(12):717–722

    Article  ADS  Google Scholar 

  17. Trupke T, Green MA, Würfel P (2002) Improving solar cell efficiencies by down-conversion of high-energy photons. J Appl Phys 92(3):1668–1674

    Article  ADS  Google Scholar 

  18. Chen H-C, Lin C-C, Han H-W, Tsai Y-L, Chang C-H, Wang H-W, Tsai M-A, Kuo H-C, Yu P (2011) Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers. Opt Express 19(S5 Suppl 5):A1141–A1147

    Article  Google Scholar 

  19. Klampaftis E, Ross D, McIntosh KR, Richards BS (2009) Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review. Sol Energy Mater Sol Cells 93(8):1182–1194

    Article  Google Scholar 

  20. Klampaftis E, Richards BS (2011) Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer. Prog Photovolt Res Appl 19(3):345–351

    Article  Google Scholar 

  21. Strümpel C, McCann M, Beaucarne G, Arkhipov V, Slaoui A, Švrcek VC, del Cañizo C, Tobias I (2007) Modifying the solar spectrum to enhance silicon solar cell efficiency—an overview of available materials. Sol Energy Mater Sol Cells 91(4):238–249

    Article  Google Scholar 

  22. Pi X, Li Q, Li D, Yang D (2011) Spin-coating silicon-quantum-dot ink to improve solar cell efficiency. Sol Energy Mater Sol Cells 95(10):2941–2945

    Article  Google Scholar 

  23. Mutlugun E, Soganci IM, Demir HV (2007) Nanocrystal hybridized scintillators for enhanced detection and imaging on Si platforms in UV. Opt Express 15(3):1128–1134

    Article  ADS  Google Scholar 

  24. The rapid transition to energy efficient lighting: an integrated policy approach by United Nations Environment Programme. The enlighten initiative, 2012 Brochure EN0412, p. 5: Electricity for lighting is responsible for nearly 20% of total end use electrical consumption and almost 6% of global greenhouse gas (GHG) emissions

    Google Scholar 

  25. Holonyak N, Bevacqua SF (1962) Coherent (visible) light emission from Ga (As1−xPx) junctions. Appl Phys Lett 1(4):82–83

    Article  ADS  Google Scholar 

  26. Kamat PV (2008) Quantum dot solar cells. semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753

    Article  Google Scholar 

  27. Sze SM (1981) Physics of Semiconductor Devices, 2nd edn. Wiley, New York, pp 804–805 (Chapter 14)

    Google Scholar 

  28. Tsao, J.Y., Coltrin, M.E., Crawford, M.H., Simmons, J.A.: Solid-state lighting: an integrated human factors, technology, and economic perspective. In: Proceedings of the IEEE, vol. 98, no. 7, pp. 1162–1179, July 2010

    Google Scholar 

  29. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101(46):9463–9475

    Article  Google Scholar 

  30. Chen K-J, Chen H-C, Tsai K-A, Lin C-C, Tsai H-H, Chien S-H, Cheng B-S, Hsu Y-J, Shih M-H, Tsai C-H, Shih H-H, Kuo H-C (2012) Resonant-enhanced full-color emission of quantum-dot-based display technology using a pulsed spray method. Adv Funct Mater 22(24):5138–5143. doi:10.1002/adfm.201200765

    Article  Google Scholar 

  31. Zhao JL, Bardecker JA, Munro AM, Liu MS, Niu YH, Ding IK, Luo JD, Chen BQ, Jen AKY, Ginger DS (2006) Nano Lett 6:463

    Article  ADS  Google Scholar 

  32. Zhu T, Shanmugasundaram K, Price SC, Ruzyllo J, Zhang F, Xu J, Mohney SE, Zhang Q, Wang AY (2008) Appl Phys Lett 92:023111

    Article  ADS  Google Scholar 

  33. Wood V, Panzer MJ, Chen J, Bradley MS, Halpert JE, Bawendi MC, Bulovic V (2009) Adv Mater 21:2151

    Article  Google Scholar 

  34. Haverinen HM, Myllyla RA, Jabbour GE (2009) Appl Phys Lett 94:073108

    Article  ADS  Google Scholar 

  35. Sargent EH (2012) Colloidal quantum dot solar cells. Nat Photonics 6:133–135

    Article  ADS  Google Scholar 

  36. Kshirsagar A, Pickering S, Xu J, Ruzyllo J (2011) ECS Trans 35:71

    Article  Google Scholar 

  37. Cho KS, Lee EK, Joo WJ, Jang E, Kim TH, Lee SJ, Kwon SJ, Han JY, Kim BK, Choi BL, Kim JM (2009) Nat Photonics 3:341

    Article  ADS  Google Scholar 

  38. Kim TH, Cho KS, Lee EK, Lee SJ, Chae J, Kim JW, Kim DH, Kwon JY, Amaratunga G, Lee SY, Choi BL, Kuk Y, Kim JM, Kim K (2011) Nat Photonics 5:176

    Article  ADS  Google Scholar 

  39. Kuo HC, Hung CW, Chen HC, Chen KJ, Wang CH, Sher CW, Yeh CC, Lin CC, Chen CH, Cheng YJ (2011) Opt Express 19:A930

    Article  ADS  Google Scholar 

  40. ASTMG 173-03, Standard Tables for Reference Solar Spectral Irradiances. ASTM International, West Conshohocken, Pennsylvania (2005)

    Google Scholar 

  41. Emery KA, Osterwald CR (1989) Solar cell calibration methods. Sol Cells 27:445–453

    Article  Google Scholar 

  42. Smestad GP, Krebs FC, Lampet CM, Granqvist CG, Chopra KL, Mathew X, Takakura H (2008) Reporting solar cell efficiencies in solar energy materials and solar cells. Sol Energy Mater Sol Cells 92:371–373

    Article  Google Scholar 

  43. Tseng PC, Yu P, Chen HC, Tsai YL, Han HW, Tsai MA, Chang CH, Kuo HC (2011) Angle-resolved characteristics of silicon photovoltaics with passivated conical-frustum nanostructures. Sol Energy Mater Sol Cells 95:2610–2615

    Article  Google Scholar 

  44. Tsai MA, Yu PC, Chiu CH, Kuo HC, Lu TC, Lin SH (2010) Self-assembled two-dimensional surface structures for beam shaping of GaN-based vertical-injection light-emitting diodes. IEEE Photon Technol Lett 22(1):12–14

    Article  ADS  Google Scholar 

  45. Li XH, Song RB, Ee YK, Kumnorkaew P, Gilchrist JF, Tansu N (2011) Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios. IEEE Photon J 3(3):489–499

    Article  Google Scholar 

  46. Ee, Y.K., Kumnorkaew, P., Tong, H., Arif, R.A., Gilchrist, J.F., Tansu, N.: Enhancement of light extraction efficiency of InGa quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures. In: Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting Xiii, vol. 7231 (2009)

    Google Scholar 

  47. Ee YK, Kumnorkaew P, Arif RA, Tong H, Zhao HP, Gilchrist JF, Tansu N (2009) Optimization of light extraction efficiency of III-nitride LEDs with self-assembled colloidal-based microlenses. IEEE J Sel Top Quantum Electron 15(4):1218–1225

    Article  Google Scholar 

  48. Ee YK, Arif RA, Tansu N, Kumnorkaew P, Gilchrist JF (2007) Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays. Appl Phys Lett 91(22):221107

    Article  ADS  Google Scholar 

  49. Lin CC, Chen HC, Tsai YL, Han HV, Shih HS, Chang YA, Kuo HC, Yu P (2012) Highly efficient CdS-quantum-dot-sensitized GaAs solar cells. Opt Express 20:A319–A326

    Article  ADS  Google Scholar 

  50. Leatherdale CA, Kagan CR, Morgan NY, Empedocles SA, Kastner MA, Bawendi MG (2000) Photoconductivity in CdSe quantum dot solids. Phys Rev B Condens Matter Mater Phys 62:2669–2680

    Article  ADS  Google Scholar 

  51. Nizamoglu S, Erdem T, Sun XW, Demir HV (2010) Opt Lett 35:3372

    Article  ADS  Google Scholar 

  52. Erdem T, Nizamoglu S, Sun XW, Demir HV (2010) Opt Express 18:340

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author would like to thank his colleagues and students for their technical supports, especially Prof. Hao-Chung Kuo and Prof. Peichen Yu of National Chiao Tung University for equipment sharing and fruitful discussions, and Dr. Hsin-Chu Chen, Mr. Kuo-Ju Chen, and Mr. Hau-Vei Han for their hard works on experimental demonstrations of the idea. C.C. Lin would also like to thank the financial support of National Science Council of Taiwan through the grant number: NSC101-2221-E-009-046-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Chung Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lin, CC. (2014). Hybrid Optoelectronic Devices with Colloidal Quantum Dots. In: Wu, J., Wang, Z. (eds) Quantum Dot Solar Cells. Lecture Notes in Nanoscale Science and Technology, vol 15. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8148-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8148-5_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8147-8

  • Online ISBN: 978-1-4614-8148-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics