Skip to main content

Graphene Quantum Dot-Based Organic Solar Cells

  • Chapter
  • First Online:
Quantum Dot Solar Cells

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 15))

Abstract

Current research in organic photovoltaic (OPV) is largely focused on the development of low cost OPV materials such as semiconductor quantum dots (QDs). Graphene quantum dots (GQDs) are a fascinating class of QDs having size below 10 nm. They have emerged as an alternative to semiconductor QDs in photovoltaics due to their size-dependent photoluminescence (PL) and tunable band gap properties. They are expected to be a versatile candidate due to their low cost, non-toxicity, and biocompatibility. Recently, it has been shown that they are promising for efficient light harvesting in solar cells. Keeping this in view, we present a comprehensive review of the progress made so far for the application of GQDs in organic solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  2. Novoselov, K.S., et al.: Unconventional quantum hall effect and Berry’s phase of 2π in bilayer graphene. Nat. Phys. 2, 177 (2006)

    Article  Google Scholar 

  3. Jiang, Z., et al.: Quantum hall effect in graphene. Solid State Commun. 143, 14–19 (2007)

    Article  ADS  Google Scholar 

  4. Jiang, Z., et al.: Quantum hall states near the charge-neutral Dirac point in graphene. Phys. Rev. Lett. 99(106802), 1–4 (2007)

    Google Scholar 

  5. Zhang, Y.B., et al.: Experimental observation of the quantum hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005)

    Article  ADS  Google Scholar 

  6. Novoselov, K.S., et al.: Room-temperature quantum hall effect in graphene. Science 315, 1379 (2007)

    Article  ADS  Google Scholar 

  7. Ozyilmaz, B., et al.: Electronic transport and quantum hall effect in bipolar graphene p-n-p Junctions. Phys. Rev. Lett. 99(186804), 1–4 (2007)

    Google Scholar 

  8. Bolotin, K.I., et al.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)

    Article  ADS  Google Scholar 

  9. Novoselov, K.S., et al.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    Article  ADS  Google Scholar 

  10. Morozov, S.V., et al.: Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100(016602), 1–4 (2008)

    Google Scholar 

  11. Han, M., et al.: Electronic transport measurements in graphene nanoribbons. Phys. Status Solidi B Basic Solid State Phys. 244, 4134–4137 (2007)

    Article  ADS  Google Scholar 

  12. Nair, R.R., et al.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)

    Article  ADS  Google Scholar 

  13. Yan, X., et al.: Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett. 10(5), 1869–1873 (2010)

    Article  ADS  Google Scholar 

  14. Nakada, K., et al.: Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996)

    Article  ADS  Google Scholar 

  15. Son, Y.W., et al.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  16. Li, X.L., et al.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)

    Article  ADS  Google Scholar 

  17. Bai, J., et al.: Graphene nanomash. Nat. Nanotechnol. 5, 190–194 (2010)

    Article  ADS  Google Scholar 

  18. Shen, J., et al.: Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48(31), 3686–3699 (2012)

    Article  Google Scholar 

  19. Pan, D., et al.: Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 22, 734–738 (2010)

    Article  Google Scholar 

  20. Yan, X., et al.: Synthesis of large, stable colloidal graphene quantum dots with tunable size. J. Am. Chem. Soc. 132, 5944–5945 (2010)

    Article  Google Scholar 

  21. Gupta, V., et al.: Luminscent graphene quantum dots for organic photovoltaic devices. J. Am. Chem. Soc. 133, 9960–9963 (2011)

    Article  Google Scholar 

  22. Li, Y., et al.: An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 23, 776–780 (2011)

    Article  Google Scholar 

  23. Kim, S., et al.: Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape. ACS Nano 6(9), 8203–8208 (2012)

    Article  Google Scholar 

  24. Shen, J., et al.: One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J. Chem. 36, 97–101 (2012)

    Article  Google Scholar 

  25. Dutta, M., et al.: ZnO/Graphene quantum dot solid state solar cell. J. Phys. Chem. C 116(38), 20127–20131 (2012)

    Article  Google Scholar 

  26. Hu, C., et al.: One-step preparation of nitrogen-doped graphene quantum dots from oxidized debris of graphene oxide. J. Mater. Chem. B 1, 39–42 (2013)

    Article  Google Scholar 

  27. Iwan, A., Chuchmała, A.: Perspectives of applied graphene: polymer solar cells. Prog. Polym. Sci. 37, 1805–1828 (2012)

    Article  Google Scholar 

  28. Lee, J., et al.: Uniform graphene quantum dots patterned from self-assembled silica nanodots. Nano Lett. 12(12), 6078–6083 (2012)

    Article  ADS  Google Scholar 

  29. Fan, L.: Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT. Talanta 101, 192–197 (2012)

    Article  Google Scholar 

  30. Giangregorio, M.M., et al.: Synthesis and characterization of plasmon resonant gold nanoparticles and graphene for photovoltaics. Mater. Sci. Eng. B (2012, in press). doi:10.1016/j.mseb.2012.10.034

  31. Zhang, X., et al.: Highly sensitive humidity sensing properties of carbon quantum dots films. Mater. Res. Bull. 48(2), 790–794 (2013)

    Google Scholar 

  32. Cao, L., et al.: Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 46(1), 171–180 (2013)

    Google Scholar 

  33. Tetsuka, H., et al.: Optically tunable amino-functionalized graphene quantum dots. Adv. Mater. 24(39), 5333–5338 (2012)

    Article  Google Scholar 

  34. Shinde, D.B., Pillai, V.K.: Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes. Chem. Eur. J. 18(39), 12522–12528 (2012)

    Article  Google Scholar 

  35. Long, R., et al.: Photo-induced charge separation across the graphene−TiO2 interface is faster than energy losses: a time-domain ab initio analysis. J. Am. Chem. Soc. 134(34), 14238–14248 (2012)

    Article  Google Scholar 

  36. Xu, M., et al.: Unique synthesis of graphene-based materials for clean energy and biological sensing applications. Chin. Sci. Bull. 57(23), 3000–3009 (2012)

    Article  Google Scholar 

  37. Wei, W., Qu, X.: Extraordinary physical properties of functionalized graphene. Small 8(14), 2138–2151 (2012)

    Article  Google Scholar 

  38. Zhu, S., et al.: Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications. Adv. Funct. Mater. 22(22), 4732–4740 (2012)

    Article  Google Scholar 

  39. Pan, S., Liu, X.: ZnS–graphene nanocomposite: synthesis, characterization and optical properties. J. Solid State Chem. 191, 51–56 (2012)

    Article  ADS  Google Scholar 

  40. Tang, L., et al.: Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6(6), 5102–5110 (2012)

    Article  Google Scholar 

  41. Pan, Z., et al.: Graphene-based functional materials for organic solar cells. Opt. Mater. Express 2(6), 814–824 (2012)

    Article  Google Scholar 

  42. Chernozatonskii, L.A., et al.: Formation of graphene quantum dots by “Planting” hydrogen atoms at a graphene nanoribbon. JETP Lett. 95(5), 266–270 (2012)

    Article  ADS  Google Scholar 

  43. Mirtchev, P., et al.: Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO2 solar cells. J. Mater. Chem. 22(4), 1265–1269 (2012)

    Article  Google Scholar 

  44. Zhang, Z., Wu, P.: Hydrothermal aggregation induced crystallization: a facial route towards polycrystalline graphite quantum dots with blue photoluminescence. Cryst. Eng. Commun. 14(21), 7149–7152 (2012)

    Article  Google Scholar 

  45. Chen, S., et al.: Unusual emission transformation of graphene quantum dots induced by self-assembled aggregation. Chem. Commun. 48(61), 7637–7639 (2012)

    Article  ADS  Google Scholar 

  46. Kwon, W., et al.: Formation of highly luminescent nearly monodisperse carbon quantum dots via emulsion-templated carbonization of carbohydrates. RSC Adv. 2(30), 11223–11226 (2012)

    Article  Google Scholar 

  47. Kwon, W., Rhee, S.: Facile synthesis of graphitic carbon quantum dots with size tunability and uniformity using reverse micelles. Chem. Commun. 48(43), 5256–5258 (2012)

    Article  Google Scholar 

  48. Dong, Y., et al.: One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. J. Mater. Chem. 22(18), 8764–8766 (2012)

    Article  Google Scholar 

  49. Zhu, S., et al.: Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission. RSC Adv. 2(7), 2717–2720 (2012)

    Article  Google Scholar 

  50. Song, T., et al.: Prospects and challenges of organic/group IV nanomaterial solar cells. J. Mater. Chem. 22(10), 4216–4232 (2012)

    Article  Google Scholar 

  51. Xin, G., et al.: Investigation of charge-transfer complexes formation between photoluminescent graphene oxide and organic molecules. Nanoscale 4(2), 405–407 (2012)

    Article  ADS  Google Scholar 

  52. Zhang, Z., et al.: Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy Environ. Sci. 5(10), 8869–8890 (2012)

    Article  Google Scholar 

  53. Li, M., et al.: Synthesis and upconversion luminescence of N-doped graphene quantum dots. Appl. Phys. Lett. 101(10), 103107 (2012)

    Article  ADS  Google Scholar 

  54. Pan, D., et al.: Cutting sp2 clusters in graphene sheets into colloidal grapheme quantum dots with strong green fluorescence. J. Mater. Chem. 22(8), 3314–3318 (2012)

    Article  Google Scholar 

  55. Zhu, S., et al.: Control the size and surface chemistry of graphene for the rising fluorescent materials. Chem. Commun. 48(38), 4527–4539 (2012)

    Article  Google Scholar 

  56. Li, H., et al.: Carbon nanodots: synthesis, properties and applications. J. Mater. Chem. 22(46), 24230–24253 (2012)

    Article  ADS  Google Scholar 

  57. Luo, P., et al.: Synthesis of gold@carbon dots composite nanoparticles for surface enhanced Raman scattering. Phys. Chem. Chem. Phys. 14(20), 7360–7366 (2012)

    Article  Google Scholar 

  58. Wan, X., et al.: Graphene – a promising material for organic photovoltaic cells. Adv. Mater. 23(45), 5342–5358 (2011)

    Article  Google Scholar 

  59. Pan, S., et al.: Preparation of Ag2S–Graphene nanocomposite from a single source precursor and its surface-enhanced Raman scattering and photoluminescent activity. Mater. Char. 62(11), 1094–1101 (2011)

    Article  Google Scholar 

  60. Liu, R., et al.: Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J. Am. Chem. Soc. 133(39), 15221–15223 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Indo-UK project “Advancing the effectiveness and production potential of excitonic solar cells (APEX).” The authors would like to thank the director, NPL, for his support. Tanvi Upreti would like to thank the Department of Science and Technology for Senior Research Fellowship. Thanks are due to R. Srivastava, N. Chaudhary, G.D. Sharma, and R. Bhardwaj for their support in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gupta, V., Upreti, T., Chand, S. (2014). Graphene Quantum Dot-Based Organic Solar Cells. In: Wu, J., Wang, Z. (eds) Quantum Dot Solar Cells. Lecture Notes in Nanoscale Science and Technology, vol 15. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8148-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8148-5_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8147-8

  • Online ISBN: 978-1-4614-8148-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics