Skip to main content

Recent Progress in Colloidal Quantum Dot-Sensitized Solar Cells

  • Chapter
  • First Online:
Quantum Dot Solar Cells

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 15))

Abstract

Among the third-generation solar cells based on quantum dots, the quantum dot-sensitized solar cells (QDSSCs) have received substantial attention probably because they are a straightforward extension of the very popular dye-sensitized solar cells. The nature of the quantum dots (QDs) and their mode of attachment to a wide band gap semiconductor (oxide) are important factors determining the efficiency of the corresponding devices. In this respect, the QDSSCs can be classified into two main groups: those prepared by in situ deposition of the QDs on the oxide template and those resulting from the adsorption of pre-formed, colloidal quantum dots on the oxide surface. Most of the studies on these cells appeared in the last few years have focused on the former type, while the effort devoted to colloidal QDSSCs has been comparatively minor. However, the latter allow for a better control of the device structure and for a separate optimization of different aspects. In addition, there are fundamental reasons to believe that colloidal QDSSCs may have advantages over those prepared by in situ QD deposition, particularly in what refers to recombination. In this chapter, we review and discuss the state of the art in colloidal QDSSCs with a focus on the results obtained in our laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burda, C., Chen, X., Narayanan, R., El-Sayed, M.A.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005)

    Google Scholar 

  2. Nozik, A.J.: Quantum dot solar cell. Physica E 14, 115–120 (2002)

    ADS  Google Scholar 

  3. Rühle, S., Shalom, M., Zaban, A.: Quantum-dot-sensitized solar cells. Chemphyschem 11, 2290–2304 (2010)

    Google Scholar 

  4. Emin, S., Singh, S.P., Han, L., Satoh, N., Islam, A.: Colloidal quantum dot solar cells. Solar Energy 85, 1264–1282 (2011)

    Google Scholar 

  5. Luther, J.M., Law, M., Beard, M.C., Song, Q., Reese, M.O., Ellingson, R.J., Nozik, A.J.: Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 8, 3488–3492 (2008)

    ADS  Google Scholar 

  6. Pattantyus-Abraham, A.G., Kramer, I.J., Barkhouse, A.R., Wang, X., Konstantatos, G., Debnath, R., Levina, L., Raabe, I., Nazeeruddin, M.K., Grätzel, M., Sargent, E.H.: Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 4, 3374–3380 (2010)

    Google Scholar 

  7. Greenham, N.C., Peng, X., Alivisatos, A.P.: Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B 54, 17628–17637 (1996)

    ADS  Google Scholar 

  8. O’Regan, B., Grätzel, M.: A low cost, high-efficiency solar based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)

    Google Scholar 

  9. Zaban, A., Micic, O.I., Gregg, B.A., Nozik, A.J.: Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir 14, 3153–3156 (1998)

    Google Scholar 

  10. Zhang, H., Cheng, K., Hou, Y.M., Fang, Z., Pan, Z.X., Wu, W.J., Hua, J.L., Zhong, X.H.: Efficient CdSe quantum dot-sensitized solar cells prepared by a postsynthesis assembly approach. Chem. Commun. 48, 11235–11237 (2012)

    Google Scholar 

  11. Grätzel, M.: Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 44, 6841–6851 (2005)

    Google Scholar 

  12. Guijarro, N., Lana-Villarreal, T., Shen, Q., Toyoda, T., Gómez, R.: Sensitization of titanium dioxide photoanodes with cadmium selenide quantum dots prepared by SILAR: photoelectrochemical and carrier dynamics studies. J. Phys. Chem. C 114, 21928–21937 (2010)

    Google Scholar 

  13. Nozik, A.J.: Multiple exciton generation in semiconductor quantum dots. Chem. Phys. Lett. 457, 3–11 (2008)

    ADS  Google Scholar 

  14. Parkinson, B.A.: Multiple exciton collection in a sensitized photovoltaic system. Science 330, 63 (2010)

    ADS  Google Scholar 

  15. Nozik, A.J.: Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011)

    ADS  Google Scholar 

  16. Shah, A., Torres, P., Tscharner, R., Wyrsch, N., Keppner, H.: Photovoltaic technology: the case for thin-film solar cells. Science 285, 692–698 (1999)

    Google Scholar 

  17. Spanhel, L., Weller, H., Henglein, A.: Photochemistry of semiconductor colloids. 22. Electron injection from illuminated CdS into attached TiO2 and ZnO particles. J. Am. Chem. Soc. 109, 6632–6635 (1987)

    Google Scholar 

  18. Hotchandani, S., Kamat, P.V.: Charge-transfer processes in coupled semiconductor systems. Photochemistry and photoelectrochemistry of the colloidal CdS–ZnO system. J. Phys. Chem. 96, 6834–6839 (1992)

    Google Scholar 

  19. Giménez, S., Mora-Seró, I., Macor, L., Guijarro, N., Lana-Villarreal, T., Gómez, R., Diguna, L.J., Shen, Q., Toyoda, T., Bisquert, J.: Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnology 20, 295204 (2009)

    Google Scholar 

  20. Lee, W., Kang, S.H., Min, S.K., Sung, Y.-E., Han, S.-H.: Co-sensitization of vertically aligned TiO2 nanotubes with two different sizes of CdSe quantum dots for broad spectrum. Electrochem. Commun. 10, 1579–1582 (2008)

    Google Scholar 

  21. Samadpour, M., Iraji zad, A., Taghavinia, N., Molaei, M.: A new structure to increase the photostability of CdTe quantum dot sensitized solar cells. J. Phys. D Appl. Phys. 44, 045103 (2011)

    ADS  Google Scholar 

  22. Kongkanand, A., Tvrdy, K., Takechi, K., Kuno, M., Kamat, P.V.: Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe–TiO2 architecture. J. Am. Chem. Soc. 130, 4007–4015 (2008)

    Google Scholar 

  23. Toyoda, T., Shen, Q.: Quantum-dot-sensitized solar cells: effect of nanostructured TiO2 morphologies on photovoltaic properties. J. Phys. Chem. Lett. 3, 1885–1893 (2012)

    Google Scholar 

  24. Samadpour, M., Giménez, S., Iraji zad, A., Taghavinia, N., Mora-Seró, I.: Easily manufactured TiO2 hollow fibers for quantum dot sensitized solar cells. Phys. Chem. Chem. Phys. 14, 522–528 (2012)

    Google Scholar 

  25. Samadpour, M., Giménez, S., Boix, P.P., Shen, Q., Calvo, M.E., Taghavinia, N., Iraji zad, A., Toyoda, T., Míguez, H., Mora-Seró, I.: Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells. Electrochim. Acta 75, 139–147 (2012)

    Google Scholar 

  26. Barceló, I., Lana-Villarreal, T., Gómez, R.: Efficient sensitization of ZnO nanoporous films with CdSe QDs grown by Successive Ionic Layer Adsorption and Reaction (SILAR). J. Photochem. Photobiol. A 220, 47–53 (2011)

    Google Scholar 

  27. Sun, X.W., Chen, J., Song, J.L., Zhao, D.W., Deng, W.Q., Lei, W.: Ligand capping effect for dye solar cells with CdSe quantum dot sensitized ZnO nanorod photoanode. Opt. Express 18, 1296–1301 (2010)

    ADS  Google Scholar 

  28. Luan, C., Vaneski, A., Susha, A.S., Xu, X., Wang, H.-E., Chen, X., Xu, J., Zhang, W., Lee, C.-S., Rogach, A.L., Zapien, J.A.: Facile solution growth of vertically aligned ZnO nanorods sensitized with aqueous CdS and CdSe quantum dots for photovoltaic applications. Nanoscale Res. Lett. 6, 340 (2011)

    ADS  Google Scholar 

  29. Chen, J., Li, C., Song, J.L., Sun, X.W., Lei, W., Deng, W.Q.: Bilayer ZnO nanostructure fabricated by chemical bath and its application in quantum dot sensitized solar cell. Appl. Surf. Sci. 255, 7508–7511 (2009)

    ADS  Google Scholar 

  30. Sudhagar, P., Song, T., Lee, D.H., Mora-Seró, I., Bisquert, J., Laudenslager, M., Sigmund, W.M., Park, W.I., Paik, U., Kang, Y.S.: High open circuit voltage quantum dot sensitized solar cells manufactured with ZnO nanowire arrays and Si/ZnO branched hierarchical structures. J. Phys. Chem. Lett. 2, 1984–1990 (2011)

    Google Scholar 

  31. Vogel, R., Hoyer, P., Weller, H.: Quantum-sized PbS, CdS, Ag2S, Sb2S3 and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J. Phys. Chem. 98, 3183–3188 (1994)

    Google Scholar 

  32. Hossain, M.A., Jennings, J.R., Koh, Z.Y., Wang, Q.: Carrier generation and collection in CdS/CdSe-sensitized SnO2 solar cells exhibiting unprecedented photocurrent densities. ACS Nano 5, 3172–3181 (2011)

    Google Scholar 

  33. Leventis, H.C., O’Mahony, F., Akhtar, J., Afzaal, M., O’Brien, P., Haque, S.A.: Transient optical studies of interfacial charge transfer at nanostructures metal oxide/PbS quantum dot/organic hole conductor heterojuntion. J. Am. Chem. Soc. 132, 2743–2750 (2010)

    Google Scholar 

  34. Hossain, M.A., Yang, G., Parameswaran, M., Jennings, J.R., Wang, Q.: Mesoporous SnO2 spheres synthesized by electrochemical anodization and their application in CdSe-sensitized solar cells. J. Phys. Chem. C 114, 21878–21884 (2010)

    Google Scholar 

  35. Shinde, D.V., Lim, I., Kim, C.S., Lee, J.K., Mane, R.S., Han, S.-H.: Upright-standing SnO2 nanowalls: fabrication, dual-photosensitization and photovoltaic properties. Chem. Phys. Lett. 542, 66–69 (2012)

    ADS  Google Scholar 

  36. Sheeney-Haj-Ichia, L., Basnar, B., Willner, I.: Efficient generation of photocurrents by using CdS/carbon nanotube assemblies on electrodes. Angew. Chem. Int. Ed. 44, 78–83 (2005)

    Google Scholar 

  37. Farrow, B., Kamat, P.V.: CSe quantum dot sensitized solar cells. Shuttling electrons through stacked carbon nanocups. J. Am. Chem. Soc. 131, 11124–11131 (2009)

    Google Scholar 

  38. Guo, C.X., Yang, H.B., Sheng, Z.M., Lu, Z.S., Song, Q.L., Li, C.M.: Layered graphene/quantum dots for photovoltaic devices. Angew. Chem. Int. Ed. 49, 3014–3017 (2010)

    Google Scholar 

  39. Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., Chen, Y.: Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2, 463–470 (2008)

    Google Scholar 

  40. Chen, J., Xu, F., Wu, J., Qasim, K., Zhou, Y., Lei, W., Sun, L.-T., Zhang, Y.: Flexible photovoltaic cell based on a graphene-CdSe quantum dot nanocomposite. Nanoscale 4, 441–443 (2012)

    ADS  Google Scholar 

  41. Lightcap, I.V., Kamat, P.V.: Fortification of CdSe quantum dots with graphene oxide. Excited state interactions and light energy conversion. J. Am. Chem. Soc. 134, 7109–7116 (2012)

    Google Scholar 

  42. Brown, P., Kamat, P.V.: Quantum dot solar cells. Electrophoretic deposition of CdSe–C60 composites films and capture of photogenerated electrons with nC60 cluster shell. J. Am. Chem. Soc. 130, 8890–8891 (2008)

    Google Scholar 

  43. Shibu, E.S., Sonoda, A., Tao, Z., Feng, Q., Furube, A., Masuo, S., Wang, L., Tamai, N., Ishikawa, M., Biju, V.: Photofabrication of fullerene-shelled quantum dots supramolecular nanoparticles for solar energy harvesting. ACS Nano 6, 1601–1608 (2012)

    Google Scholar 

  44. Guijarro, N., Shen, Q., Giménez, S., Mora-Seró, I., Bisquert, J., Lana-Villarreal, T., Toyoda, T., Gómez, R.: Direct correlation between ultrafast injection and photoanode performance in quantum dot sensitized solar cells. J. Phys. Chem. C 114, 22352–22360 (2010)

    Google Scholar 

  45. Bang, J.H., Kamat, P.V.: Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano 3, 1467–1476 (2009)

    Google Scholar 

  46. Benehkohal, N.P., González-Pedro, V., Boix, P.P., Chavhan, S., Tena-Zaera, R., Demopoulos, G.P., Mora-Seró, I.: Colloidal PbS and PbSeS quantum dot sensitized solar cells prepared by electrophoretic deposition. J. Phys. Chem. C 116, 16391–16397 (2012)

    Google Scholar 

  47. Pijpers, J.J.H., Koole, R., Evers, W.H., Houtepen, A.J., Boehme, S., de Mello Donega, C., Vanmaekelberg, D., Bonn, M.: Spectroscopic studies of electron injection in quantum dot sensitized mesoporous oxide film. J. Phys. Chem. C 114, 18866–18873 (2010)

    Google Scholar 

  48. Yu, P., Zhu, K., Normal, A.G., Ferrere, S., Frank, A.J., Nozik, A.J.: Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. J. Phys. Chem. B 110, 25451–25454 (2006)

    Google Scholar 

  49. Sambur, J.B., Parkinson, B.A.: CdSe/ZnS core/shell quantum dot sensitization of low index TiO2 single crystal surfaces. J. Am. Chem. Soc. 132, 2130–2131 (2010)

    Google Scholar 

  50. Pan, Z., Zhang, H., Cheng, K., Hou, Y., Hua, J., Zhong, Z.: Highly efficient inverted type-I CdS/CdSe core/shell structure QD-sensitized solar cells. ACS Nano 6, 3982–3991 (2012)

    Google Scholar 

  51. Ning, Z., Tian, H., Yuan, C., Fu, Y., Qin, H., Sun, L., Agren, H.: Solar cells sensitized with type-II ZnSe–CdS core/shell colloidal quantum dots. Chem. Commun. 47, 1536–1538 (2011)

    Google Scholar 

  52. Song, X., Wang, M., Shi, Y., Deng, J., Yang, Z., Yao, X.: In situ hydrothermal growth of CdSe(S) nanocrystals on mesoporous TiO2 films for quantum dot-sensitized solar cells. Electrochim. Acta 81, 260–267 (2012)

    Google Scholar 

  53. Hu, Z., Zhang, Q., Huang, Z., Li, D., Luo, Y., Meng, Q.: Aqueous colloidal CuInS2 for quantum dot sensitized solar cells. J. Mater. Chem. 21, 15903–15905 (2011)

    Google Scholar 

  54. Kuo, K.-T., Liu, D.-M., Chen, S.-Y., Lin, C.-C.: Core-shell CuInS2/ZnS quantum dots assembled on short ZnO nanowires with enhanced photo-conversion efficiency. J. Mater. Chem. 19, 6780–6788 (2009)

    Google Scholar 

  55. Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W., Park, N.-G.: 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011)

    ADS  Google Scholar 

  56. de Mello Donegá, C., Liljeroth, P., Vanmaekelbergh, D.: Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small 1, 1152–1162 (2005)

    Google Scholar 

  57. Murray, C.B., Norris, D.J., Bawendi, M.G.: Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993)

    Google Scholar 

  58. Peng, Z.A., Peng, X.: Formation of high-quality CdTe, CdSe. CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123, 183–184 (2001)

    Google Scholar 

  59. Zhuang, Z., Peng, Q., Li, Y.: Controlled synthesis of semiconductor nanostructures in the liquid phase. Chem. Soc. Rev. 40, 5492–5513 (2011)

    Google Scholar 

  60. Wang, Q., Pan, D., Jiang, S., Ji, X., An, L., Jiang, B.: A solvothermal route to size- and shape-controlled CdSe and CdTe nanocrystals. J. Cryst. Growth 286, 83–90 (2006)

    ADS  Google Scholar 

  61. Li, T.-L., Teng, H.: Solution synthesis of high-quality CuInS2 quantum dots as sensitizers for TiO2 photoelectrodes. J. Mater. Chem. 20, 3656–3664 (2010)

    Google Scholar 

  62. Li, Y., Jing, L., Qiao, R., Gao, M.: Aqueous synthesis of CdTe nanocrystals: progresses and perspectives. Chem. Commun. 47, 9293–9311 (2011)

    Google Scholar 

  63. Rogach, A.L., Franzi, T., Klar, T.A., Feldmann, J., Gaponik, N., Lesnyak, V., Shavel, A., Eychmüller, A., Rakovich, Y.P., Donegan, J.F.: Aqueous synthesis of thiol-capped CdTe nanocrystals: state-of-the-art. J. Phys. Chem. C 111, 14628–14637 (2007)

    Google Scholar 

  64. Wang, H., Luan, C., Xu, X., Kershaw, S.V., Rogach, A.L.: In situ versus ex situ assembly of aqueous-based thioacid capped CdSe nanocrystals within mesoporous TiO2 films for quantum dot sensitized solar cells. J. Phys. Chem. C 116, 484–489 (2012)

    Google Scholar 

  65. Salant, A., Shalom, M., Hod, I., Faust, A., Zaban, A., Banin, U.: Quantum dot sensitized solar cells with improved efficiency prepared using electrophoretic deposition. ACS Nano 4, 5962–5968 (2010)

    Google Scholar 

  66. Guijarro, N., Lana-Villarreal, T., Mora-Seró, I., Bisquert, J., Gómez, R.: CdSe quantum dot-sensitized TiO2 electrodes: effect of quantum dot coverage and mode of attachment. J. Phys. Chem. C 113, 4208–4214 (2009)

    Google Scholar 

  67. Chen, J., Zhao, D.W., Song, J.L., Sun, X.W., Deng, W.Q., Liu, X.W., Lei, W.: Directly assembled CdSe quantum dots on TiO2 in aqueous solution by adjusting pH value for quantum dot sensitized solar cells. Electrochem. Commun. 11, 2265–2267 (2009)

    Google Scholar 

  68. Fan, S.-Q., Fang, B., Kim, J.H., Kim, J.-J., Yu, J.-S., Ko, J.: Hierarchical nanostructured spherical carbon with hollow core/mesoporous shell as a highly efficient counter electrode in CdSe quantum-dot-sensitized solar cells. Appl. Phys. Lett. 96, 063501 (2010)

    ADS  Google Scholar 

  69. Shalom, M., Dor, S., Rühle, S., Grinis, L., Zaban, A.: Core/CdS quantum dot/shell mesoporous solar cell with improved stability and efficiency using an amorphous TiO2 coating. J. Phys. Chem. C 113, 3895–3898 (2009)

    Google Scholar 

  70. Lee, H.J., Yum, J.-H., Leventis, H.C., Zakeeruddin, S.M., Haque, S.A., Chen, P., Seok, S.I., Grätzel, M., Nazeeruddin, M.K.: CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at full-sun intensity. J. Phys. Chem. C 112, 11600–11608 (2008)

    Google Scholar 

  71. Ning, Z., Yuan, C., Tian, H., Fu, Y., Li, L., Sun, L., Ågren, H.: Type-II colloidal quantum dot sensitized solar cells with a thiourea based organic redox couple. J. Mater. Chem. 22, 6032–6037 (2012)

    Google Scholar 

  72. Santra, P.K., Kamat, P.V.: Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. J. Am. Chem. Soc. 134, 2508–2511 (2012)

    Google Scholar 

  73. Lee, H., Wang, M., Chen, P., Gamelin, D.R., Zakeeruddin, S.M., Grätzel, M.: Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process. Nano Lett. 9, 4221–4227 (2009)

    ADS  Google Scholar 

  74. Chang, J.A., Rhee, J.H., Im, S.H., Lee, Y.H., Kim, H., Seok, S.I., Nazeeruddin, M.K., Gratzel, M.: High-performance nanostructured inorganic–organic heterojunction solar cells. Nano Lett. 10, 2609–2612 (2010)

    ADS  Google Scholar 

  75. Moon, S.-J., Itzhaik, Y., Yum, J.-H., Zakeeruddin, S.M., Hodes, G., Grätzel, M.: Sb2S3-based mesoscopic solar cell using an organic hole conductor. J. Phys. Chem. Lett. 1, 1524–1527 (2010)

    Google Scholar 

  76. Im, S.H., Lim, C.-S., Chang, J.A., Lee, Y.H., Maiti, N., Kim, H.-J., Nazeeruddin, M.K., Grätzel, M., Seok, S.I.: Toward interaction of sensitizer and functional moieties in hole-transporting materials for efficient semiconductor-sensitized solar cells. Nano Lett. 11, 4789–4793 (2011)

    ADS  Google Scholar 

  77. Jovanovski, V., González-Pedro, V., Giménez, S., Azaceta, E., Cabañero, G., Grande, H., Bisquert, J.: A sulfide/polysulfide-based ionic liquid electrolyte for quantum dot-sensitized solar cells. J. Am. Chem. Soc. 133, 20156–20159 (2011)

    Google Scholar 

  78. Snaith, H.J., Stavrinadis, A., Docampo, P., Watt, A.A.R.: Lead-sulphide quantum-dot sensitization of tin oxide based hybrid solar cells. Solar Energy 85, 1283–1290 (2011)

    Google Scholar 

  79. Zeng, T., Gladwin, E., Claus, R.O.: Self-assembled InP quantum dot – TiO2 solid Grätzel solar cell. MRS Symp. Proc. 764, 171–175 (2003)

    Google Scholar 

  80. Günes, S., Neugebauer, H., Sariciftci, N.S., Roither, J., Kovalenko, M., Pillwein, G., Heiss, W.: Hybrid solar cells using HgTe nanocrystals and nanoporous TiO2 electrodes. Adv. Funct. Mater. 16, 1095–1099 (2006)

    Google Scholar 

  81. Kniprath, R., Rabe, J.P., McLeskey Jr., J.T., Wang, D., Kirstein, S.: Hybrid photovoltaic cells with II–VI quantum dot sensitizers fabricated by layer-by-layer deposition of water-soluble components. Thin Solid Films 518, 295–298 (2009)

    ADS  Google Scholar 

  82. Zeng, T.-W., Liu, I.-S., Hsu, F.-C., Huang, K.-T., Liao, H.-C., Su, W.-F.: Effects of bifunctional linker on the performance of P3HT/CdSe quantum dot-linker-ZnO nanocolumn photovoltaic device. Opt. Express 18, A357–A365 (2010)

    ADS  Google Scholar 

  83. Barceló, I., Campiña, J.M., Lana-Villarreal, T., Gómez, R.: A solid-state CdSe quantum dot sensitized solar cell based on a quaterthiophene as a hole transporting material. Phys. Chem. Chem. Phys. 14, 5801–5807 (2012)

    Google Scholar 

  84. Kim, S., Im, S.H., Kang, M., Heo, J.H., Seok, S.I., Kim, S.-W., Mora-Seró, I., Bisquert, J.: Air-stable and efficient inorganic–organic heterojunction solar cells using PbS colloidal quantum dots co-capped by 1-dodecanethiol and oleic acid. Phys. Chem. Chem. Phys. 14, 14999–15002 (2012)

    Google Scholar 

  85. He, J., Lindström, H., Hagfeldt, A., Lindquist, S.-E.: Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell. J. Phys. Chem. B 103, 8940–8943 (1999)

    Google Scholar 

  86. Nattestad, A., Ferguson, M., Kerr, R., Cheng, Y.-B., Bach, U.: Dye-sensitized nickel(II)oxide photocathodes for tandem solar cell applications. Nanotechnology 19, 295304 (2008)

    Google Scholar 

  87. Qin, P., Linder, M., Brinck, T., Boschloo, G., Hagfeldt, A., Sun, L.: High incident photon-to-current conversion efficiency of p-type dye-sensitized solar cells based on NiO and organic chromophores. Adv. Mat. 21, 2993–2996 (2009)

    Google Scholar 

  88. Gibson, E.A., Smeigh, A.L., Le Pleux, L., Fortage, J., Boschloo, G., Blart, E., Pellegrin, Y., Odobel, F., Hagfeldt, A., Hammarström, L.: A p-type NiO-based dye-sensitized solar cell with an open-circuit voltage of 0.35 V. Angew. Chem. Int. Ed. 48, 4402–4405 (2009)

    Google Scholar 

  89. Li, L., Gibson, E.A., Qin, P., Boschloo, G., Gorlov, M., Hagfeldt, A., Sun, L.: Double-layered NiO photocathodes for p-type DSSCs with record IPCE. Adv. Mater. 22, 1759–1762 (2010)

    Google Scholar 

  90. Nattestad, A., Mozer, A.J., Fischer, M.K.R., Cheng, Y.-B., Mishra, A., Bauerle, P., Bach, U.: Highly efficient photocathodes for dye-sensitized tandem solar cells. Nat. Mater. 9, 31–35 (2010)

    ADS  Google Scholar 

  91. Uehara, S., Sumikura, S., Suzuki, E., Mori, S.: Retardation of electron injection at NiO/dye/electrolyte interface by aluminium alkoxide treatment. Energy Environ. Sci. 3, 641–644 (2010)

    Google Scholar 

  92. Odobel, F., Le Pleux, L., Pellegrin, Y., Blart, E.: New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities. Acc. Chem. Res. 43, 1063–1071 (2010)

    Google Scholar 

  93. Chan, X.-H., Jennings, J.R., Hossain, M.A., Yu, K.K.Z., Wang, Q.: Characteristics of p-NiO thin films prepared by spray pyrolysis and their application in CdS-sensitized photocathodes. J. Electrochem. Soc. 158, H733–H740 (2011)

    Google Scholar 

  94. Kang, S.H., Zhu, K., Neale, N.R., Frank, A.J.: Hole transport in sensitized CdS–NiO nanoparticle photocathodes. Chem. Commun. 47, 10419–10421 (2011)

    Google Scholar 

  95. Wu, X., Yeow, E.K.L.: Charge-transfer processes in single CdSe/ZnS quantum dots with p-type NiO nanoparticles. Chem. Commun. 46, 4390–4392 (2010)

    Google Scholar 

  96. Lampert, C.M.: Electrochromic materials and devices for energy efficient windows. Solar Energy Mater. 11, 1–27 (1984)

    Google Scholar 

  97. Kuang, D.-B., Lei, B.-X., Pan, Y.-P., Yu, X.-Y., Su, C.-Y.: Fabrication of novel hierarchical β-Ni(OH)2 and NiO microspheres via an easy hydrothermal process. J. Phys. Chem. C 113, 5508–5513 (2009)

    Google Scholar 

  98. Vera, F., Schrebler, R., Muñoz, E., Suarez, C., Cury, P., Gómez, H., Córdova, R., Marotti, R.E., Dalchiele, E.A.: Preparation and characterization of Eosin B- and Erythrosin J-sensitized nanostructured NiO thin film photocathodes. Thin Solid Films 490, 182–188 (2005)

    ADS  Google Scholar 

  99. He, J., Lindström, H., Hagfeldt, A., Lindquist, S.-E.: Dye-sensitized nanostructured tandem cell-first demonstrated cell with a dye-sensitized photocathode. Sol. Energy Mater. Sol. Cells 62, 265–273 (2000)

    Google Scholar 

  100. Mori, S., Fukuda, S., Sumikura, S., Takeda, Y., Tamaki, Y., Suzuki, E., Abe, T.: Charge-transfer processes in dye-sensitized NiO solar cells. J. Phys. Chem. C 112, 16134–16139 (2008)

    Google Scholar 

  101. Gibson, E.A., Smeigh, A.L., Le Pleux, L., Hammarström, L., Odobel, F., Boschloo, G., Hagfeldt, A.: Cobalt polypyridyl-based electrolytes for p-type dye-sensitized solar cells. J. Phys. Chem. C 115, 9772–9779 (2011)

    Google Scholar 

  102. Natu, G., Huang, Z., Ji, Z., Wu, Y.: The effect of an atomically deposited layer of alumina on NiO in p-type dye-sensitized solar cells. Langmuir 28, 950–956 (2011)

    Google Scholar 

  103. Hodes, G.: Photoelectrochemical cell measurements: getting the basics right. J. Phys. Chem. Lett. 3, 1208–1213 (2012)

    Google Scholar 

  104. De Angelis, F., Fantacci, S., Selloni, A., Nazeeruddin, M.K., Grätzel, M.: First-principles modeling of the adsorption geometry and electronic structure of Ru(II) dyes on extended TiO2 substrates for dye-sensitized solar cell applications. J. Phys. Chem. C 114, 6054–6061 (2010)

    Google Scholar 

  105. Xiao, D.Q., Martini, L.A., Snoeberger, R.C., Crabtree, R.H., Batista, V.S.: Inverse design and synthesis of acac-Coumarin anchors for robust TiO2 sensitization. J. Am. Chem. Soc. 133, 9014–9022 (2011)

    Google Scholar 

  106. Martsinovich, N., Ambrosio, F., Troisi, A.: Adsorption and electron injection of the N3 metal-organic dye on the TiO2 rutile (110) surface. Phys. Chem. Chem. Phys. 14, 16668–16676 (2012)

    Google Scholar 

  107. Le Bahers, T., Labat, F., Pauporté, T., Lainé, P.P., Ciofini, I.: Theoretical procedure for optimizing dye-sensitized solar cells: from electronic structure to photovoltaic efficiency. J. Am. Chem. Soc. 133, 8005–8013 (2011)

    Google Scholar 

  108. Maggio, E., Martsinovich, N., Troisi, A.: Evaluating charge recombination rate in dye-sensitized solar cells from electronic structure calculations. J. Phys. Chem. C 116, 7638–7649 (2012)

    Google Scholar 

  109. Martsinovich, N., Troisi, A.: How TiO2 crystallographic surfaces influence charge injection rates from a chemisorbed dye sensitiser. Phys. Chem. Chem. Phys. 14, 13392–13401 (2012)

    Google Scholar 

  110. Califano, M., Franceschetti, A., Zunger, A.: Temperature dependence of excitonic radiative decay in CdSe quantum dots: the role of surface hole traps. Nano Lett. 5, 260–2364 (2005)

    Google Scholar 

  111. Efros, A.I.L., Rosen, M.: The electronic structure of semiconductor nanocrystals. Annu. Rev. Mater. Sci. 30, 475–521 (2000)

    ADS  Google Scholar 

  112. Califano, M., Zunger, A., Franceschetti, A.: Efficient inverse Auger recombination at threshold in CdSe nanocrystals. Nano Lett. 4, 525–531 (2004)

    ADS  Google Scholar 

  113. Rabani, E., Baer, R.: Theory of multiexciton generation in semiconductor nanocrystals. Chem. Phys. Lett. 496, 227–235 (2010)

    ADS  Google Scholar 

  114. Rabani, E., Baer, R.: Distribution of multiexciton generation rates in CdSe and InAs nanocrystals. Nano Lett. 8, 4488–4492 (2008)

    ADS  Google Scholar 

  115. Ellingson, R.J., Beard, M.C., Johnson, J.C., Yu, P., Micic, O.I., Nozik, A.J., Shabaev, A., Efros, A.L.: Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5, 865–871 (2005)

    ADS  Google Scholar 

  116. Dahnovsky, Y.: Quantum correlated electron dynamics in a quantum-dot sensitized solar cells: Keldysh function approach. Phys. Rev. B 83, 165306 (2011)

    ADS  Google Scholar 

  117. Patrick, C.E., Giustino, F.: Structural and electronic properties of semiconductor-sensitized solar-cell interfaces. Adv. Funct. Mater. 21, 4663–4667 (2011)

    Google Scholar 

  118. Dong, C., Li, X., Qi, J.: First-principles investigation on electronic properties of quantum dot-sensitized solar cells based on anatase TiO2 nanotubes. J. Phys. Chem. C 115, 20307–20315 (2011)

    Google Scholar 

  119. Long, R., Prezhdo, O.: Ab initio nonadiabatic molecular dynamics of the ultrafast electron injection from a PbSe quantum dot into the TiO2 surface. J. Am. Chem. Soc. 133, 19240–19249 (2011)

    Google Scholar 

  120. Ulbricht, R., Hendry, E., Shan, J., Heinz, T.F., Bonn, M.: Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83, 543–586 (2011)

    ADS  Google Scholar 

  121. Cánovas, E., Moll, P., Jensen, S.A., Gao, Y., Houtepen, A.J., Siebbeles, L.D.A., Kinge, S., Bonn, M.: Size-dependent electron transfer from PbSe quantum dots to SnO2 monitored by picosecond terahertz spectroscopy. Nano Lett. 11, 5234–5239 (2011)

    ADS  Google Scholar 

  122. Shen, Q., Katayama, K., Yamaguchi, M., Sawada, T., Toyoda, T.: Study of ultrafast carrier dynamics of nanostructured TiO2 films with and without CdSe quantum dot deposition using lens-free heterodyne detection transient grating technique. Thin Solid Films 486, 15–19 (2005)

    ADS  Google Scholar 

  123. Zídek, K., Zheng, K., Ponseca, C.S., Messing, M.E., Wallenberg, L.R., Chábera, P., Abdellah, M., Sundström, V., Pullerits, T.: Electron transfer in quantum-dot-sensitized ZnO nanowires: ultrafast time-resolved absorption and terahertz study. J. Am. Chem. Soc. 134, 12110–12117 (2012)

    Google Scholar 

  124. Robel, I., Kuno, M., Kamat, P.V.: Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc. 129, 4136–4137 (2007)

    Google Scholar 

  125. Tvrdy, K., Frantsuzov, P.A., Kamat, P.V.: Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 108, 29–34 (2011)

    ADS  Google Scholar 

  126. Hyun, B.-R., Zhong, Y.-W., Bartnik, A.C., Sun, L., Abruña, H.D., Wise, F.W., Goodreau, J.D., Matthews, J.R., Leslie, T.M., Borrelli, N.F.: Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles. ACS Nano 11, 2206–2212 (2008)

    Google Scholar 

  127. Yang, Y., Rodríguez-Córdoba, W., Xiang, X., Lian, T.: Strong electronic coupling and ultrafast electron transfer between PbS quantum dots and TiO2 nanocrystalline films. Nano Lett. 12, 303–309 (2012)

    ADS  Google Scholar 

  128. Chakrapani, V., Baker, D., Kamat, P.V.: Understanding the role of the sulfide redox couple (S2−/S n 2−) in quantum dot-sensitized solar cells. J. Am. Chem. Soc. 133, 9607–9615 (2011)

    Google Scholar 

  129. Plass, R., Pelet, S., Krueger, J., Grätzel, M., Bach, U.: Quantum dot sensitization of organic–inorganic hybrid solar cells. J. Phys. Chem. B 106, 7578–7580 (2002)

    Google Scholar 

  130. Guijarro, N., Lutz, T., Lana-Villarreal, T., O'Mahony, F., Gómez, R., Haque, S.A.: Toward antimony selenide sensitized solar cells: efficient charge photogeneration at spiro-OMeTAD/Sb2Se3/metal oxide heterojunctions. J. Phys. Chem. Lett. 3, 1351–1356 (2012)

    Google Scholar 

  131. Kilina, S., Ivanov, S., Tretiak, S.: Effect of surface ligands on optical and electronic spectra of semiconductor nanoclusters. J. Am. Chem. Soc. 131, 7717–7726 (2009)

    Google Scholar 

  132. Szymanski, P., Fuke, N., Koposov, A.Y., Manner, V.W., Hoch, L.B., Sykora, M.: Effect of organic passivation on photoinduced electron transfer across the quantum dot/TiO2 interface. Chem. Commun. 47, 6437–6439 (2011)

    Google Scholar 

  133. Lana-Villarreal, T., Font-Sanchis, E., Sastre-Santos, A., Fernández-Lázaro, F., Gómez, R.: Characterization and polymerization of thienylphenyl and selenylphenyl amines and their interaction with CdSe quantum dots. Chemphyschem 12, 1155–1164 (2011)

    Google Scholar 

  134. So, S., Fan, S.-Q., Choi, H., Kim, C., Cho, N., Song, K., Ko, J.: Stepwise cosensitization through chemically bonding organic dye to CdS quantum-dot-sensitized TiO2 electrode. Appl. Phys. Lett. 97, 263506 (2010)

    ADS  Google Scholar 

  135. Mora-Seró, I., Likodimos, V., Giménez, S., Martínez-Ferrero, E., Albero, J., Palomares, E., Kontos, A.G., Falaras, P., Bisquert, J.: Fast regeneration of CdSe quantum dots by Ru dye in sensitized TiO2 electrodes. J. Phys. Chem. C 114, 6755–6761 (2010)

    Google Scholar 

  136. Sarkar, S., Makhal, A., Lakshman, K., Bora, T., Dutta, J., Pal, S.K.: Dual-sensitization via electron and energy harvesting in CdTe quantum dots decorated ZnO nanorod-based dye-sensitized solar cells. J. Phys. Chem. C 116, 14248–14256 (2012)

    Google Scholar 

  137. Buhbut, S., Itzhakov, S., Tauber, E., Shalom, M., Hod, I., Geiger, T., Garini, Y., Oron, D., Zaban, A.: Built-in quantum dot antennas in dye-sensitized solar cells. ACS Nano 4, 1293–1298 (2010)

    Google Scholar 

  138. Poulose, A.C., Veeranarayanan, S., Varghese, S.H., Yoshida, Y., Maekawa, T., Kumar, D.S.: Functionalized electrophoretic deposition of CdSe quantum dots onto TiO2 electrode for photovoltaic application. Chem. Phys. Lett. 539–540, 197–203 (2012)

    Google Scholar 

  139. Salant, A., Shalom, M., Tachan, Z., Buhbut, S., Zaban, A., Banin, U.: Quantum rod-sensitized solar cell: nanocrystal shape effect on the photovoltaic properties. Nano Lett. 12, 2095–2100 (2012)

    ADS  Google Scholar 

  140. Yang, H., Fan, W., Vaneski, A., Susha, A.S., Teoh, W.Y., Rogach, A.L.: Heterojunction engineering of CdTe and CdSe quantum dots on TiO2 nanotube arrays: intricate effects of size-dependency and interfacial contact on photoconversion efficiencies. Adv. Funct. Mater. 22, 2821–2829 (2012)

    Google Scholar 

  141. King, L.A., Riley, D.J.: Importance of QD purification procedure on surface adsorbance of QDs and performance of QD sensitized photoanodes. J. Phys. Chem. C 116, 3349–3355 (2012)

    Google Scholar 

  142. Shalom, M., Ruhle, S., Hod, I., Yahav, S., Zaban, A.: Energy level alignment in CdS quantum dot sensitized solar cells using molecular dipoles. J. Am. Chem. Soc. 131, 9876–9877 (2009)

    Google Scholar 

  143. Barea, E.M., Shalom, M., Giménez, S., Hod, I., Mora-Seró, I., Zaban, A., Bisquert, J.: Design of injection and recombination in quantum dot sensitized solar cells. J. Am. Chem. Soc. 132, 6834–6839 (2010)

    Google Scholar 

  144. Chi, C.-F., Chen, P., Lee, Y.-L., Liu, I.-P., Chou, S.-C., Zhang, X.-L., Bach, U.: Surface modifications of CdS/CdSe co-sensitized TiO2 photoelectrodes for solid-state quantum-dot-sensitized solar cells. J. Mater. Chem. 21, 17534–17540 (2011)

    Google Scholar 

  145. Guijarro, N., Lana-Villarreal, T., Lutz, T., Haque, S.A., Gómez, R.: Sensitization of TiO2 with PbSe quantum dots by SILAR: how mercaptophenol improves charge separation. J. Phys. Chem. Lett. 3, 3367–3372 (2012)

    Google Scholar 

  146. Yu, W.W., Falkner, J.C., Shih, B.S., Colvin, V.L.: Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent. Chem. Mater. 16, 3318–3322 (2004)

    Google Scholar 

  147. Greenwald, S., Rühle, S., Shalom, M., Yahav, S., Zaban, A.: Unpredicted electron in CdS/CdSe quantum dot sensitized ZrO2 solar cells. Phys. Chem. Chem. Phys. 13, 19302–19306 (2011)

    Google Scholar 

  148. Peter, L.M., Wijayantha, K.G.U., Riley, D.J., Wagget, P.: Band-edge tuning in self-assembled layers of Bi2S3 nanoparticles used to photosensitize nanocrystalline TiO2. J. Phys. Chem. B 107, 8378–8381 (2003)

    Google Scholar 

  149. Giménez, S., Lana-Villarreal, T., Gómez, R., Agouram, S., Muñoz-Sanjosé, V., Mora-Seró, I.: Determination of limiting factors in photovoltaic efficiency in quantum dot sensitized solar cells: correlation between cell performance and structural properties. J. Appl. Phys. 108, 064310 (2010)

    ADS  Google Scholar 

  150. Shalom, M., Dor, S., Rühle, S., Grinis, L., Zaban, A.: Core/CdS quantum dot/Shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating. J. Phys. Chem. C 113, 3895–3898 (2009)

    Google Scholar 

  151. Guijarro, N., Campiña, J.M., Shen, Q., Toyoda, T., Lana-Vilarreal, T., Gómez, R.: Uncovering the role of the ZnS treatment in the performance of quantum dot sensitized solar cells. Phys. Chem. Chem. Phys. 13, 12024–12032 (2011)

    Google Scholar 

  152. Liu, Z., Miyauchi, M., Uemura, Y., Cui, Y., Hara, K., Zhao, Z., Sunahara, K., Furube, A.: Enhancing the performance of quantum dots sensitized solar cells by SiO2 surface coating. Appl. Phys. Lett. 96, 233107 (2010)

    ADS  Google Scholar 

  153. Palomares, E., Clifford, J.N., Haque, S.A., Lutz, T., Durrant, J.R.: Slow charge recombination in dye-sensitized solar cells (DSSC) using A2O3 coated nanoporous TiO2 films. Chem. Commun. 1464–1465 (2002)

    Google Scholar 

  154. Liu, Y., Gibbs, M., Perkins, C.L., Tolentino, J., Zarghami, M.H., Bustamante, J., Law, M.: Robust, functional nanocrystal solids by infilling with atomic layer deposition. Nano Lett. 11, 5349–5355 (2011)

    ADS  Google Scholar 

Download references

Acknowledgments

Financial support from the Spanish Ministry of Economy and Competitiveness through projects HOPE CSD2007-00007 (CONSOLIDER-INGENIO 2010), MAT2009-14004 (FONDOS FEDER), and PRI-PIBIN-2011-0816 is gratefully acknowledged. N.G. thanks the Spanish Ministry of Education for the award of an FPU grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barceló, I., Guijarro, N., Lana-Villarreal, T., Gómez, R. (2014). Recent Progress in Colloidal Quantum Dot-Sensitized Solar Cells. In: Wu, J., Wang, Z. (eds) Quantum Dot Solar Cells. Lecture Notes in Nanoscale Science and Technology, vol 15. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8148-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8148-5_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8147-8

  • Online ISBN: 978-1-4614-8148-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics