Skip to main content

Formation Principles and Exciton Relaxation in Semiconductor Quantum Dot–Dye Nanoassemblies

  • Chapter
  • First Online:
Quantum Dot Molecules

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 14))

Abstract

In this chapter we discuss “bottom-up” non-covalent self-assembly principles which define a strategy for the formation of organic–inorganic nanoassemblies containing colloidal semiconductor quantum dots (QD) of different types (based on a CdSe core) and various heterocyclic molecules (dyes) with functionalized anchoring side substituents (meso-pyridyl substituted porphyrins and perylene diimides). Using a combination of ensemble and single molecule spectroscopy of “QD–Dye” nanoassemblies, we show that single functionalized molecules can be considered as extremely sensitive probes for studying the complex interface physics and chemistry (influence of the embedding environment and temperature) and related exciton relaxation processes in QDs. It will be quantitatively laid out that the major part of the observed QD photoluminescence (PL) quenching in nanoassemblies can be understood, on the one hand, in terms of exciton wave function tunneling under the condition of quantum confinement and, on the other hand, by the influence of ligand dynamics. In nanoassemblies, photoinduced Foerster-type energy transfer (FRET) QD → Dye is often only a small contribution to the PL quenching and is effectively suppressed already in slightly polar solvents which is often overlooked in literature. Finally we would like to point out that properties of “QD–Dye” nanoassemblies are not only interesting in themselves but also provide a valuable tool to study surface-related phenomena in QDs on an extremely low level of surface modification, thus providing the data for a further development of defined multi-component structures for exploitation as artificial light-harvesting complexes, electro- and photochemical devices or nanosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moyano DF, Goldsmith M, Solfiell DJ, Landesman-Milo D, Miranda OR, Peer D, Rotello VM (2012) J Am Chem Soc 134:3965

    CAS  Google Scholar 

  2. De Mello Donega C (2011) Chem Soc Rev 40:1512

    Google Scholar 

  3. Mocatta D, Cohen G, Schattner J, Millo O, Rabani E, Banin U (2011) Science 332:77

    CAS  Google Scholar 

  4. Liang G-X, Li L-L, Liu H-Y, Zhang J-R, Burda C, Zhu J-J (2010) Chem Commun 46:2974

    CAS  Google Scholar 

  5. Cheng H-M (2011) Chem Commun 47:6763

    Google Scholar 

  6. Mansoori GA (2005) Principles of Nanotechnology. Molecular-Based Study of Condensed Matter in Small Systems. University of Illinois at Chicago, Chicago

    Google Scholar 

  7. Nicolini C.: Nanobiotechnology and Nanobiosciences. Pan Stanford Series on Nanobiotechnology, vol. 1 (2009) PANStanford Publishing, Singapore

    Google Scholar 

  8. Whitesides GM, Grzybowski B (2002) Science 295:2418

    CAS  Google Scholar 

  9. Lehn J-M (1990) Angew Chem Int Ed Engl 29:1304

    Google Scholar 

  10. Klimov V (2000) In: Nalwa HS (ed) Handbook of Nanostructured Materials and Nanotechnology, vol 4. Academic Press, San Diego, Orlando, pp 451–527

    Google Scholar 

  11. Woggon U (2006) Optical Properties of Semiconductor Quantum Dots. Springer, Berlin

    Google Scholar 

  12. Rogach AL (ed) (2008) Semiconductor Nanocrystal Quantum Dots: Synthesis, Assembly, Spectroscopy and Applications. Springer, Wien

    Google Scholar 

  13. Gaponenko SV (2010) Introduction to Nanophotonics. Cambridge University Press, Cambridge

    Google Scholar 

  14. Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2010) Chem Rev 110:389

    CAS  Google Scholar 

  15. Coe-Sullivan S, Woo W-K, Steckel JS, Bawendi M, Bulovic V (2003) Electronics 4:123

    CAS  Google Scholar 

  16. Wang M, Moon S-J, Xu M, Chittibabu K, Wang P, Cevey-Ha N-L, Humphry-Baker R, Zakeeruddin SM, Graetzel M (2010) Small 6:319

    CAS  Google Scholar 

  17. Medintz IL, Stewart MH, Trammell SA, Susumi K, Delahanty JB, Mey BC, Melinger JS, Blanco-Canosa JB, Dawson FE, Mattoussi H (2010) Nat Mater 9:676

    CAS  Google Scholar 

  18. Frasco MF, Chaniotakis N (2009) Sensors 9:7266

    CAS  Google Scholar 

  19. Hetsch F, Xu X, Wang H, Kershaw SV, Rogach AL (2011) J Phys Chem Lett 2:1879

    CAS  Google Scholar 

  20. McDowell M, Wright AE, Hammer NI (2010) Materials 3:614

    CAS  Google Scholar 

  21. Schmitt F-J, Maksimov EG, Suedmeyer H, Jeyasangar V, Theiss C, Paschenko VZ, Eichler HJ, Renger G (2011) Photonics Nanostruct: Fundam Appl 9:190

    Google Scholar 

  22. Rakovich A, Savateeva D, Rakovich T, Donegan JF, Rakovich YP, Kelly V, Lesnyak V, Eychmueller A (2010) Nanoscale Res Lett 5:753

    CAS  Google Scholar 

  23. Knowles KE, Frederick MT, Tice DB, Morris-Cohen AJ, Weiss EA (2012) J Phys Chem Lett 3:18

    CAS  Google Scholar 

  24. Amelia M, Credi A (2012) Inorg Chim Acta 381:247

    CAS  Google Scholar 

  25. Michler P (ed) (2009) Single Semiconductor Quantum Dots. Springer, Berlin

    Google Scholar 

  26. Efros AL, Rosen M (2000) Annu Rev Mater Sci 30:475

    CAS  Google Scholar 

  27. Reiss P, Protiere M, Li L (2009) Small 5:154

    CAS  Google Scholar 

  28. Morris-Cohen AJ, Donakowski MD, Knowles KE, Weiss EA (2010) J Phys Chem C 114:897

    CAS  Google Scholar 

  29. Evans CM, Evans ME, Krauss TD (2010) J Am Chem Soc 132:10973

    CAS  Google Scholar 

  30. Ji X, Copenhaver D, Sichmeller C, Peng X (2008) J Am Chem Soc 130:5726

    CAS  Google Scholar 

  31. Koole R, Schapotschnikow P, De Mello Donega C, Vlugt TJH, Meijerink A (2008) ACS Nano 2:1703

    CAS  Google Scholar 

  32. Kaluzhny G, Murray RW (2005) J Phys Chem B 109:7012

    Google Scholar 

  33. Munro AM, Ginger DS (2008) Nano Lett 8:2585

    CAS  Google Scholar 

  34. Munro AM, Jen-La Plante I, Ng MS, Ginger DS (2007) J Phys Chem C 111:6220

    CAS  Google Scholar 

  35. Querner C, Reiss P, Bleuse J, Pron A (2004) J Am Chem Soc 126:11574

    CAS  Google Scholar 

  36. Dayal S, Lou Y, Samia ACS, Berlin JC, Kenney ME, Burda C (2006) J Am Chem Soc 128:13974

    CAS  Google Scholar 

  37. Lim TC, Bailey VJ, Ho Y-P, Wang T-H (2008) Nanotechnology 19:75701

    Google Scholar 

  38. Ren T, Mandal PK, Erker W, Liu Z, Avlasevich Y, Puhl L, Müllen K, Basché T (2008) J Am Chem Soc 130:17242

    CAS  Google Scholar 

  39. Bullen C, Mulvaney P (2006) Langmuir 22:3007

    CAS  Google Scholar 

  40. Knowles KE, Tice DB, McArthur EA, Solomon GC, Weiss EA (2010) J Am Chem Soc 132:1041

    CAS  Google Scholar 

  41. Jin R (2008) Angew Chem Int Ed 47:6750

    CAS  Google Scholar 

  42. Gur I, Fromer NA, Chen C-P, Kanaras AG, Alivisatos AP (2007) Nano Lett 7:402

    Google Scholar 

  43. Mansur HS, Mansur AAP (2011) Mater Chem Phys 125:709

    CAS  Google Scholar 

  44. von Holt B, Kudera S, Weiss A, Schrader TE, Manna L, Parak WJ, Braun M (2008) J Mater Chem 18:2728

    Google Scholar 

  45. Schmelz O, Mews A, Basché T, Herrmann A, Müllen K (2001) Langmuir 17:2861

    CAS  Google Scholar 

  46. Williard DM, Carillo LL, Jung J, van Orden A (2001) Nano Lett 1:469

    Google Scholar 

  47. Schmitt FJ (2010) J Opt 12:084008

    Google Scholar 

  48. Voznyy O (2011) J Phys Chem C 115:15927

    CAS  Google Scholar 

  49. Smith AM, Duan HW, Rhyner MN, Ruan G, Nie SM (2006) Phys Chem Chem Phys 8:3895

    CAS  Google Scholar 

  50. Qu LH, Peng XG (2002) J Am Chem Soc 124:2049

    CAS  Google Scholar 

  51. Xie RG, Kolb U, Li JB, Basche T, Mews A (2005) J Am Chem Soc 127:7480

    CAS  Google Scholar 

  52. Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2001) Nano Lett 1:207

    CAS  Google Scholar 

  53. Kalyuzhny G, Murray R (2005) J Phys Chem B 109:7012

    CAS  Google Scholar 

  54. Underwood DF, Kippeny T, Rosenthal SJ (2001) J Phys Chem B 105:436

    CAS  Google Scholar 

  55. Lee WZ, Shu GW, Wang JS, Shen JL, Lin CA, Chang WH, Ruaan RC, Chou WC, Lu CH, Lee YC (2005) Nanotechnology 16:1517

    CAS  Google Scholar 

  56. Frenzel J, Joswig J-O, Seifert G (2007) J Phys Chem C 111:10761

    CAS  Google Scholar 

  57. Kilina S, Ivanov S, Tretiak S (2009) J Am Chem Soc 131:7717

    CAS  Google Scholar 

  58. Albert V, Ivanov S, Tretiak S, Kilina S (2011) J Phys Chem C 115:15793

    CAS  Google Scholar 

  59. Anni M, Manna L, Cigolani R, Valerini D, Creti A, Lomascolo M (2004) Appl Phys Lett 85:4169

    CAS  Google Scholar 

  60. Clapp R, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H (2004) J Am Chem Soc 126:301

    CAS  Google Scholar 

  61. Potapova I, Mruk R, Hübner C, Zentel R, Basché T, Mews A (2005) Angew Chem 117:2490

    Google Scholar 

  62. Zenkevich E, Cichos F, Shulga A, Petrov E, Blaudeck T, von Borczyskowski C (2005) J Phys Chem B 109:8679

    CAS  Google Scholar 

  63. Blaudeck T, Zenkevich E, Cichos F, von Borczyskowski C (2008) J Phys Chem C 112:20251

    CAS  Google Scholar 

  64. Blaudeck T, Zenkevich E, Abdel-Mottaleb M, Szwaykowska K, Kowerko D, Cichos F, von Borczyskowski C (2012) Chemphyschem 13:959

    CAS  Google Scholar 

  65. Zenkevich EI, Blaudeck T, Kowerko D, Stupak AP, Cichos F, von Borczyskowski C (2012) Macroheterocycles 5:98

    CAS  Google Scholar 

  66. Califano M, Franceschetti A, Zunger A (2005) Nano Lett 5:2360

    CAS  Google Scholar 

  67. Issac A, von Borczyskowski C, Cichos F (2005) Phys Rev B 71:161302

    Google Scholar 

  68. Klimov V (2000) In: Nalwa HS (ed) Handbook of Nanostructured Materials and Nanotechnology, Chapter 7, vol 4. Academic Press, San Diego, Orlando, pp 451–527

    Google Scholar 

  69. Hohng S, Ha T (2004) J Am Chem Soc 126:1324

    CAS  Google Scholar 

  70. Fomenko V, Nesbitt DJ (2008) Nano Lett 8:287

    CAS  Google Scholar 

  71. Gomez DE, van Embden J, Jasieniak J, Smith TA, Mulvaney P (2006) Small 2:204

    CAS  Google Scholar 

  72. Hammer NI, Early KT, Sill K, Odoi MY, Emrick T, Barnes MD (2006) J Phys Chem B 110:14167

    CAS  Google Scholar 

  73. Odoi MY, Hammer NI, Early KT, McCarthy KD, Tangirala R, Emrick T, Barnes MD (2007) Nano Lett 7:2769

    CAS  Google Scholar 

  74. Kowerko D, Schuster J, Amecke N, Abdel-Mottaleb M, Dobrawa R, Wuerthner F, von Borczyskowski C (2010) Phys Chem Chem Phys 12:4112

    CAS  Google Scholar 

  75. Zenkevich EI, Stupak AP, Kowerko D, von Borczyskowski C (2012) Chem Phys 406:21

    CAS  Google Scholar 

  76. Krebs FC, Senkovskyy V, Kiriy A (2010) IEEE J Sel Top Quantum Electron 16:1821

    CAS  Google Scholar 

  77. Marjanovic N, Hammerschmidt J, Perelaer J, Farnsworth S, Rawson I, Kus M, Yenel E, Tilki S, Schubert US, Baumann RR (2011) J Mater Chem 21:13634

    CAS  Google Scholar 

  78. Crooker SA, Barrick T, Hollinthworth JA, Klimov VI (2003) Appl Phys Lett 82:2793

    CAS  Google Scholar 

  79. Labeau O, Tamarat P, Lounis B (2003) Phys Rev Lett 90:257404

    Google Scholar 

  80. De Mello Donega C, Meijerink A (2006) Phys Rev B 74:085320

    Google Scholar 

  81. van Driel AF, Allan G, Delerue C, Lodahl P, Vos WL, Vanmaekelbergh D (2005) Phys Rev Lett 95:236804

    Google Scholar 

  82. Wuister SF, De Mello Donega C, Bode M, Meijerink A (2004) J Am Chem Soc 126:10397

    CAS  Google Scholar 

  83. Wuister SF, De Mello Donega C, Bode M, Meijerink A (2004) J Phys Chem B 108:17393

    CAS  Google Scholar 

  84. Karakoti AS, Sanghavi S, Nachimuthu P, Yang P, Thevuthasan S (2011) J Phys Chem Lett 2:2925

    CAS  Google Scholar 

  85. Issac A, Jin S, Lian T (2008) J Am Chem Soc 130:11280

    CAS  Google Scholar 

  86. Ko HC, Yuan CT, Lin SH, Jau T (2011) J Phys Chem C 115:13977

    CAS  Google Scholar 

  87. Cui S-C, Tachikawa T, Fujitsuka M, Majima T (2011) J Phys Chem C 115:01824

    CAS  Google Scholar 

  88. Koposov AY, Szymanski P, Cardolaccia T, Meyer TJ, Klimov VI, Sykora M (2011) Adv Funct Mater 21:3159

    CAS  Google Scholar 

  89. Clapp R, Medintz IL, Mattoussi H (2006) ChemPhysChem 7:47

    CAS  Google Scholar 

  90. Zenkevich EI, Sagun EI, Yarovoi AA, Shulga AM, Knyukshto VN, Stupak AP, von Borczyskowski C (2007) Opt Spectrosc 103:998

    Google Scholar 

  91. Clapp AR, Medintz IL, Fisher BR, Anderson GP, Mattoussi H (2005) J Am Chem Soc 127:1242

    CAS  Google Scholar 

  92. Halpert JE, Tischler JR, Nair G, Walker BJ, Liu W, Bulovic V, Bawendi MG (2009) J Phys Chem C 113:9986

    CAS  Google Scholar 

  93. Lee J, Kim H-J, Cheng T, Lee K, Kim K-S, Glotzer SC, Kim J, Kotov NA (2009) J Phys Chem C 113:109

    CAS  Google Scholar 

  94. Kowerko D, Krause S, Amecke N, Abdel-Mottaleb M, Schuster J, von Borczyskowski C (2009) Int J Mol Sci 10:5239

    CAS  Google Scholar 

  95. D’Souza S, Antunes E, Litwinski C, Nyokong T (2011) J Photochem Photobiol A Chem 220:011

    Google Scholar 

  96. Burda C, Green TC, Link S, El-Sayed MA (1999) J Phys Chem B 103:1783

    CAS  Google Scholar 

  97. Tsay JM, Trzoss M, Shi L, Kong X, Selke M, Jung ME, Weiss S (2007) J Am Chem Soc 129:6865

    CAS  Google Scholar 

  98. Rakshit S, Vasudevan S (2009) J Phys Chem C 113:16424

    CAS  Google Scholar 

  99. Jhonsi MA, Rengnathan R (2010) J Colloid Interface Sci 344:596

    CAS  Google Scholar 

  100. Pons T, Medintz IL, Wang X, English DS, Mattoussi H (2006) J Am Chem Soc 128:15324

    CAS  Google Scholar 

  101. Zenkevich E, Blaudeck T, Shulga A, Cichos F, von Borczyskowski C (2007) J Lumin 122–123:784

    Google Scholar 

  102. Lim TC, Bailey VJ, Ho Y-P, Wang T-H (2008) Nanotechnology 19:075701

    Google Scholar 

  103. Orlova AO, Gubanova MS, Maslov VG, Vinogradova GN, Baranov AV, Fedorov AV, Gounko L (2010) Optika i Spectroscopiya 108:975 (in Russian)

    Google Scholar 

  104. Guyot-Sionnest P, Shim M, Matranga C, Hines M (1999) Phys Rev B Condens Matter Mater Phys 60:R2181

    CAS  Google Scholar 

  105. Klimov VI, Mikhailovsky AA, McBranch DW, Leatherdale CA, Bawendi MG (2000) Phys Rev B 61:13349

    Google Scholar 

  106. Schapotschnikow P, Hommersom B, Vlugt TJH (2009) J Phys Chem C 113:12690

    CAS  Google Scholar 

  107. Chernook AV, Shulga AM, Zenkevich EI, Rempel U, von Borczyskowski C (1996) J Phys Chem 100:1918

    CAS  Google Scholar 

  108. Chernook AV, Rempel U, von Borczyskowski C, Zenkevich EI, Shulga AM (1996) Chem Phys Lett 254:229

    CAS  Google Scholar 

  109. Dobrawa, R., Würthner, F.: Chem. Commun. 1878 (2002)

    Google Scholar 

  110. Lang E, Würthner F, Köhler J (2005) ChemPhysChem 6:935

    CAS  Google Scholar 

  111. Zenkevich EI, von Borczyskowski C, Shulga AM, Bachilo SM, Rempel U, Willert A (2002) Chem Phys 275:185

    CAS  Google Scholar 

  112. Sagun EI, Zenkevich EI, Knyukshto VN, Shulga AM, Starukhin DA, von Borczyskowski C (2002) Chem Phys 275:211

    CAS  Google Scholar 

  113. Zenkevich EI, von Borczyskowski C (2012) Photoinduced relaxation processes self-assembled nanostructures: multiporphyrin complexes and composites “CdSе/ZnS quantum dot-porphyrin”. In: Kim D (ed) Multiporphyrin Arrays: Fundamentals and Applications, Chapter 5. Pan Stanford Publishing Pte. Ltd., Singapore, pp 217–288

    Google Scholar 

  114. Zenkevich EI, Sagun EI, Knyukshto VN, Stasheuski AS, Galievsky VA, Stupak AP, Blaudeck T, von Borczyskowski C (2011) J Phys Chem C 115:21535

    CAS  Google Scholar 

  115. Kilin DS, Tsemekhman K, Prezhdo OV, Zenkevich EI, von Borczyskowski C (2007) J Photochem Photobiol A Chem 190:342

    CAS  Google Scholar 

  116. Kapitonov AM, Stupak AP, Gaponenko SV, Petrov EP, Rogach AL, Eychmueller A (1999) J Phys Chem B 103:10109

    CAS  Google Scholar 

  117. Javier A, Magana D, Jennings T, Strouse JF (2003) Appl Phys Lett 83:1423

    CAS  Google Scholar 

  118. Petrov EP, Cichos F, von Borczyskowski C (2006) J Lumin 119–120:412

    Google Scholar 

  119. Pons T, Medintz IL, Sykora M, Mattoussi H (2006) Phys Rev B 73:245302

    Google Scholar 

  120. Petrov EP, Cichos F, Zenkevich E, Starukhin D, von Borczyskowski C (2005) Chem Phys Lett 402:233

    CAS  Google Scholar 

  121. Mattoussi H, Mauro JM, Goldman ER, Anderson JP, Sundar VC, Mikulec FV, Bawendi MG (2000) J Am Chem Soc 122:12142

    CAS  Google Scholar 

  122. Gouterman M (1961) J Mol Spectrosc 6:138

    CAS  Google Scholar 

  123. Blaudeck, T.: Self-assembly of functionalized porphyrin molecules on semiconductor nanocrystal surfaces. Dissertation, University of Technology, Chemnitz (2007)

    Google Scholar 

  124. Cichos F, von Borczyskowski C, Orrit M (2007) Curr Opin Colloid Interface Sci 12:272

    CAS  Google Scholar 

  125. Tachiya MJ (1982) Chem Phys Lett 76:340

    CAS  Google Scholar 

  126. Song N, Zhu H, Jin S, Zhan W, Lian T (2011) ACS Nano 5:613

    CAS  Google Scholar 

  127. Zenkevich EI, Blaudeck T, Shulga AM, Cichos F, von Borczyskowski C (2007) J Lumin 122–123:784–788

    Google Scholar 

  128. Valeur B (2002) Molecular Fluorescence: Principles and Applications. Wiley-VCH, New York

    Google Scholar 

  129. van Sark WGJHM, Frederix PLTM, Bol AA, Gerritsen HC, Meijerink A (2002) ChemPhysChem 3:871

    Google Scholar 

  130. Kowerko D, Schuster J, von Borczyskowski C (2009) Mol Phys 107:1911

    CAS  Google Scholar 

  131. Schlegel G, Bohnenberger J, Potapova I, Mews A (2002) Phys Rev Lett 88:137401

    Google Scholar 

  132. Fisher BR, Eisler H-J, Stott NE, Bawendi MG (2004) J Phys Chem B 108:143

    CAS  Google Scholar 

  133. Zhang K, Chang H, Fu A, Alivisatos AP, Yang H (2006) Nano Lett 6:843

    Google Scholar 

  134. Fron E, Pilot R, Schweitzer G, Qu J, Herrmann A, Muellen K, Hofkens J, der Auweraer MV, Schryver FCD (2008) Photochem Photobiol Sci 7:597

    CAS  Google Scholar 

  135. Sirota M, Minkin E, Lifshitz E, Hensel V, Labav M (2001) J Phys Chem B 105:6792

    CAS  Google Scholar 

  136. Basko D, La Rocca JC, Bassani F, Agranovich VM (1999) Eur Phys J B 8:353

    CAS  Google Scholar 

  137. Förster T (1965) Delocalized excitation and excitation transfer. In: Sinanoglu O (ed) Modern Quantum Chemistry. Academic, New York, p 93

    Google Scholar 

  138. Zenkevich EI, Shulga AM, Chernook AV, Gurinovich GP (1986) J Appl Spectrosc 45:984

    CAS  Google Scholar 

  139. Lakowicz J (2006) Principles of Fluorescence Spectroscopy. Springer, New York

    Google Scholar 

  140. Gerlach F, Täuber D, von Borczyskowski C (2013) Chem Phys Lett 572:90

    Google Scholar 

  141. Krause S, Kowerko D, Börner R, Hübner CG, von Borczyskowski C (2011) ChemPhysChem 12:303

    CAS  Google Scholar 

  142. Reiss P, Carayon S, Bleuse J, Pron A (2003) Synth Met 139:649

    CAS  Google Scholar 

  143. Kimura J, Uematsu T, Maenosono S, Yamaguchi Y (2004) J Phys Chem B 108:13258–13264

    CAS  Google Scholar 

  144. Potapova I, Mruk F, Prehl S, Zentel R, Basché T, Mews A (2003) J Am Chem Soc 125:320

    CAS  Google Scholar 

  145. Querner C, Reiss P, Sadki S, Zagorska M, Pron A (2005) Phys Chem Chem Phys 7:3204

    CAS  Google Scholar 

  146. Willard DM, Mutschler T, Jung M, Yu J, van Orden A (2006) Anal Bioanal Chem 384:564

    CAS  Google Scholar 

  147. Leatherdale CA, Bawendi MG (2001) Phys Rev B 63:165315

    Google Scholar 

  148. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) J Phys Chem B 101:9463

    CAS  Google Scholar 

  149. Haus JW, Zhou HS, Homma I, Komiyama H (1993) Phys Rev B 47:1359

    CAS  Google Scholar 

  150. Zenkevich EI, von Borczyskowski C (2009) Macroheterocycles 2:206

    CAS  Google Scholar 

  151. Nirmal M, Dabbousi BO, Bawendi MG, Macklin JJ, Trautman JK, Harris TD, Brus LE (1996) Nature 383:802

    CAS  Google Scholar 

  152. Wolf HC, Port H (1976) J Lumin 12–13:33

    Google Scholar 

  153. Rempel JY, Trout BL, Bawendi MG, Jensen KF (2005) J Phys Chem B 109:19320

    CAS  Google Scholar 

  154. Rempel JY, Trout BL, Bawendi MG (2006) J Phys Chem B 110:18007

    CAS  Google Scholar 

  155. Schuster R, Barth M, Gruber A, Cichos F (2005) Chem Phys Lett 413:280

    CAS  Google Scholar 

  156. Landes C, Burda C, Braun M, El-Sayed MA (2001) J Phys Chem B 105:2981

    CAS  Google Scholar 

  157. Mews Z (2007) Phys Chem 221:295

    CAS  Google Scholar 

  158. Trotzky S, Kolny-Olesiak J, Falke SM, Hoyer T, Lienau C, Tuszynski W, Parisi J (2008) J Phys D Appl Phys 41:102004

    Google Scholar 

  159. Pradhan N, Reifsnyder D, Xie R, Aldana J, Peng X (2007) J Am Chem Soc 129:9500

    CAS  Google Scholar 

  160. Ning Z, Molnár M, Chen Y, Friberg P, Gan L, Ågren H, Fu Y (2011) Phys Chem Chem Phys 13:5848

    CAS  Google Scholar 

  161. Yu WW, Yang YA, Peng X (2003) Chem Mater 15:4300

    CAS  Google Scholar 

  162. Kowerko, D.: Dynamic processes in functionalised perylene bisimide molecules, semiconductor nanocrystals and assemblies. Dissertation, University of Technology, Chemnitz (2010)

    Google Scholar 

  163. Zenkevich, E.I., Blaudeck, T., Milekhin, A., von Borczyskowski, C.: Int. J. Spectrosc. (2012). doi:10.1155/2012/971791

  164. Zenkevich EI, Stupak AP, Kowerko D, von Borczyskowski C (2012) Theoreticheskaya i Experimentalnaya Khimiya 48:18 (in Russian)

    Google Scholar 

  165. Liptay TJ, Ram RJ (2006) Appl Phys Lett 89:223132

    Google Scholar 

  166. Holzhauer JK, Ziegler WT (1975) J Phys Chem 79:590

    CAS  Google Scholar 

  167. Dayal S, Burda C (2007) J Am Chem Soc 129:7977

    CAS  Google Scholar 

  168. Morello G, De Giorgi M, Kudera S, Manna L, Cingolani R, Anni M (2007) J Phys Chem C 111:5846

    CAS  Google Scholar 

  169. Liptay TJ, Marshall LF, Rao PS, Ram RJ, Bawendi MG (2007) Phys Rev B 76:155314

    Google Scholar 

  170. Fernee MJ, Littleton BN, Cooper S, Rubinsztein-Dunlop H, Gomez DE, Mulvaney PJ (2008) Phys Chem C 112:1878

    CAS  Google Scholar 

  171. Peng X, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) J Am Chem Soc 19:7019

    Google Scholar 

  172. Zenkevich EI, von Borczyskowski C (2002) Multiporphyrin self-assembled arrays in solutions and films: thermodynamics, spectroscopy and photochemistry. In: Tripathy SK, Kumar J, Nalwa HS (eds) Handbook of Polyelectrolytes and Their Applications, vol 2. Amer. Sci. Publ, Valencia, pp 301–348

    Google Scholar 

  173. Kim D, Holten D, Gouterman M (1984) J Am Chem Soc 106:2793

    CAS  Google Scholar 

  174. Kruglik SG, Ermolenkov VV, Shvedko AG, Orlovich VA, Galievsky VA, Chirvony VS, Otto C, Turpin PY (1997) Chem Phys Lett 270:293

    CAS  Google Scholar 

  175. Asano M, Kaizu Y, Kobayashi H (1988) J Chem Phys 89:6567

    CAS  Google Scholar 

  176. Klimov V (2007) Annu Rev Phys Chem 58:635

    CAS  Google Scholar 

  177. Meloun M, Havel J, Högfeldt E (1988) Computation of Solution Equilibria. Ellis Horwood, Chichester

    Google Scholar 

  178. Al Salman A, Tortschanoff A, van der Zwan G, van Mourik F, Chergui M (2009) Chem Phys 357:96–101

    CAS  Google Scholar 

  179. Lee JRI, Whitley HD, Meulenberg RW, Wolcott A, Zhang JZ, Prendergast D, Lovingood DD, Strouse GF, Ogitsu T, Schwegler E, Terminello LJ, van Buuren T (2012) Nano Lett 12:2763

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Volkswagen Foundation (Priority Program “Physics, Chemistry and Biology with Single Molecules”), DFG GRK 829/3 (“Accumulation of single molecules to nanostructures”), German Academic Exchange Service (DAAD, grant № A/08/08573, EZ), Belarussian Foundation for Basic Research (grant № Ф10СО-005), Belarussian State Program for Scientific Research “Convergence 3.2.08—Photophysics of Bioconjugates, Semiconductor and Metallic Nanostructures and Supramolecular Complexes and Their Biomedical Applications.” Prof. E. Zenkevich thanks B.I. Stepanov Institute of Physics NAS, Minsk, Belarus and the DFG FOR877 (“From local constraints to macroscopic transport”) for financial support. The first experiments in 2002 have only been possible by providing CdSe/ZnS QDs by Dr. A. Rogach (Ludwig-Maximilians-University Munich, Germany) and Dr. D. Talapin (University of Hamburg, Germany) which are gratefully acknowledged. We also thank Dr. A. Shulga (B.I. Stepanov Institute of Physics NAS, Minsk, Belarus) for the synthesis of all tetrapyrrole compounds including monomers and chemical dimers and Prof. F. Wuerthner (Wuerzburg University) for supplying all perylene diimide dyes. We thank Dr. Habil. E. Sagun, Dr. A. Stupak, Dr. V. Knyukshto, Dr. V. Galievsky, A. Stasheuski, and A. Yarovoi (B.I. Stepanov Institute of Physics NAS, Minsk, Belarus), who have performed many experiments in Minsk or in Chemnitz, Dr. T. Blaudeck (now at ENAS, Chemnitz), Dr. D. Kowerko (now at University of Zürich), S. Krause, Prof. M. Abdel-Mottaleb (now at Nile University, Centre for Nanotechnology, Cairo), K. Szwaykowska (now at California Institute of Technology), for performing mutual experiments, theoretical analysis, and fruitful discussions in Chemnitz. Titration and FRET experiments in TEHOS have been performed by F. Gerlach (now at Fibotec oberoptics GmbH, Meiningen, Germany). Dr. D. Kilin (now at the University of South Dakota, USA) has performed helpful calculations on QD–Dye nanoassemblies. We thank Prof. Dr. S.V. Gaponenko (B.I. Stepanov Institute of Physics, National Academy of Sciences, Minsk, Belarus) for fruitful discussion. We also thank Prof. F. Cichos (now at Molecular Nanophotonics, University of Leipzig, Germany) for stimulating and guiding many of the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian von Borczyskowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

von Borczyskowski, C., Zenkevich, E. (2014). Formation Principles and Exciton Relaxation in Semiconductor Quantum Dot–Dye Nanoassemblies. In: Wu, J., Wang, Z. (eds) Quantum Dot Molecules. Lecture Notes in Nanoscale Science and Technology, vol 14. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8130-0_4

Download citation

Publish with us

Policies and ethics