Skip to main content

InP Ring-Shaped Quantum Dot Molecules by Droplet Epitaxy

  • Chapter
  • First Online:
Quantum Dot Molecules

Abstract

Droplet epitaxy technique is a key fabrication method to create ring-shaped nanostructures. InP ring-shaped quantum dot molecules are grown on In0.5Ga0.5P/GaAs(0 0 1) due to lattice mismatch of 3.8% between InP and In0.5Ga0.5P and isotropic migration property of In atoms during the crystallization step of In droplets on In0.5Ga0.5P. The ring shape, density of the ring and number of dots on the ring are controlled by various growth parameters such as deposition and crystallization temperatures, In deposition rate and thickness. InP ring-shaped quantum dot molecules provide photoluminescence peak at 740 nm (1.66 eV) with FWHM of 45 meV at 20 K. Potential applications of ring-shaped quantum dot molecules in quantum cellular automata are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmidt, O.G., Eberl, K.: Phys. Rev. B 61, 13721 (2000)

    Article  CAS  Google Scholar 

  2. Alfarov, Z.: Rev. Mod. Phys. 73, 767 (2001)

    Article  Google Scholar 

  3. Grundmann, M.: Physica E 5, 167–184 (2000)

    Article  Google Scholar 

  4. Tanabe, K., et al.: Appl. Phys. Lett. 100, 193905 (2012)

    Article  Google Scholar 

  5. Laouthaiwattana, K., et al.: Sol. Energy Mater. Sol. Cell 93, 746–749 (2009)

    Article  CAS  Google Scholar 

  6. Suraprapapich, S., et al.: J. Vac. Sci. Technol. B 24, 1665 (2006)

    Article  CAS  Google Scholar 

  7. Boonpeng, P., et al.: Microelectron. Eng. 86, 853–856 (2009)

    Article  CAS  Google Scholar 

  8. Wang, Z.M., et al.: Appl. Phys. Lett. 84, 1931 (2004)

    Article  CAS  Google Scholar 

  9. Lent, C.S., et al.: Nanotechnology 4, 49–57 (1993)

    Article  Google Scholar 

  10. Lent, C.S., Tougaw, P.D.: Proc. IEEE 85, 491 (1997)

    Article  Google Scholar 

  11. Porod, W.: J. Franklin Inst. 334B(5/6), 1147–1175 (1997)

    Article  Google Scholar 

  12. Bajec, I.L., et al.: Microelectron. Eng. 83, 1826–1829 (2006)

    Article  Google Scholar 

  13. Fisher, A.M.: Phys. Rev. Lett. 102, 076405 (2009)

    Article  Google Scholar 

  14. Watanabe, K., et al.: Jpn. J. Appl. Phys. 39, 179–181 (2000)

    Article  Google Scholar 

  15. Yamagiwa, M., et al.: Appl. Phys. Lett. 29, 113115 (2006)

    Article  Google Scholar 

  16. Sanguinetti, S., et al.: J. Appl. Phys. 104, 113519 (2008)

    Article  Google Scholar 

  17. Stemmann, A., et al.: J. Appl. Phys. 106, 064315 (2009)

    Article  Google Scholar 

  18. Mano, T., Mano, T., et al.: Thin Solid Films 515, 531–534 (2006)

    Article  CAS  Google Scholar 

  19. Heyn, C., et al.: Appl. Phys. Lett. 90, 203105 (2007)

    Article  Google Scholar 

  20. Strom, N.W., et al.: Nano Res. Lett. 2, 112 (2007)

    Article  CAS  Google Scholar 

  21. Esser, N., et al.: J. Vac. Sci. Technol. B 19, 1756–1761 (2001)

    Article  CAS  Google Scholar 

  22. Naraporn, P., et al.: J. Cryst. Growth 323, 282–285 (2011)

    Article  Google Scholar 

  23. Kurtenbach, A., et al.: J. Electron. Mater. 25, 395–400 (1996)

    Article  CAS  Google Scholar 

  24. Zundel, M.K., et al.: Appl. Phys. Lett. 73, 1784–1786 (1998)

    Article  CAS  Google Scholar 

  25. Lewis, G.M., et al.: Appl. Phys. Lett. 85, 1904–1906 (2004)

    Article  CAS  Google Scholar 

  26. Suraprapapich, S., et al.: Appl. Phys. Lett. 90, 183112 (2003)

    Article  Google Scholar 

  27. Suraprapapich, S., et al.: J. Cryst. Growth 302, 735–739 (2007)

    Article  Google Scholar 

  28. Mano, T., Kiguchi, N.: J. Cryst. Growth 278, 108–112 (2005)

    Article  CAS  Google Scholar 

  29. Lee, J.H., et al.: J. Appl. Phys. 106, 073106 (2009)

    Article  Google Scholar 

  30. Mazur, Y.I., et al.: Appl. Phys. Lett. 86, 063102 (2005)

    Article  Google Scholar 

  31. Somaschini, C., et al.: Nanotechnology 20, 185602 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This research article is an output which is supported by Thailand Research Fund (TRF) and Office of High Education Commission (OHEC) of Thailand in combined projects, i.e. Senior Research Scholar (RTA5080003), Distinguished Professor Grant (DPG5380002), the Royal Golden Jubilee Ph.D. program (Grant No. PHD/0040/2549). This research work is also supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (EN1180A-55) as well as by Nanotechnology Center of Thailand with counterpart fund from Chulalongkorn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somsak Panyakeow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jevasuwan, W., Ratanathammapan, S., Panyakeow, S. (2014). InP Ring-Shaped Quantum Dot Molecules by Droplet Epitaxy. In: Wu, J., Wang, Z. (eds) Quantum Dot Molecules. Lecture Notes in Nanoscale Science and Technology, vol 14. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8130-0_2

Download citation

Publish with us

Policies and ethics