Förster Resonant Energy Transfer Signatures in Optically Driven Quantum Dot Molecules

  • Juan E. RolonEmail author
  • Sergio E. Ulloa
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 14)


The present chapter discusses the optical signatures of Förster resonant energy transfer (FRET) in optically pumped and electrically gated quantum dot molecules (QDMs). To this end, an excitonic dressed Hamiltonian is constructed and the level occupation of each exciton is calculated as function of the pump laser energy and applied electric field. Level occupation maps can offer a systematic way of identifying FRET signatures through the analysis of the spectral weight and level anticrossing behavior of each exciton that is pumped in the QDM. The resulting level occupation maps show a clear splitting of the spatially-direct excitons and nontrivial satellites following the spectral lines of the spatially-indirect excitons. These lines are clearly visible starting at the molecular resonance regime up to a regime where charge tunneling is suppressed. In this sense, FRET induces a non-trivial behavior on the spatially-indirect excitons, which is reflected by a robust signature that can be coherently controlled to avoid the detrimental effects of charge tunneling and direct exciton recombination. In addition, our work suggests that FRET optical signatures in QDMs can be addressed via pump-probe differential transmission or level anticrossing PL spectroscopy.


Exciton State Rabi Oscillation Indirect Exciton Resonant Energy Transfer Exciton Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bayer, M., et al.: Science 291, 451 (2001)CrossRefGoogle Scholar
  2. 2.
    Wang, L., et al.: Adv. Mater. 21, 2601 (2009)CrossRefGoogle Scholar
  3. 3.
    Krenner, H.J., et al.: Phys. Rev. Lett. 94, 057402 (2005)CrossRefGoogle Scholar
  4. 4.
    Stinaff, E.A., et al.: Science 311, 636 (2006)CrossRefGoogle Scholar
  5. 5.
    May, V., Kühn, O.: Charge and Energy Transfer Dynamics in Molecular Systems, 2nd edn. Wiley, Berlin (2004)Google Scholar
  6. 6.
    Förster, T.: Discuss. Faraday Soc. 27, 7 (1959)CrossRefGoogle Scholar
  7. 7.
    Dexter, J.: Chem. Phys. 21, 836 (1953)Google Scholar
  8. 8.
    Burghardt, I., et al.: Energy Transfer Dynamics in Biomaterial Systems. Springer, Berlin (2009)CrossRefGoogle Scholar
  9. 9.
    Govorov, A.O.: Phys. Rev. B 68, 075315 (2003)CrossRefGoogle Scholar
  10. 10.
    Govorov, A.O.: Phys. Rev. B 71, 155323 (2005)CrossRefGoogle Scholar
  11. 11.
    Nazir, A., et al.: Phys. Rev. B 71, 045334 (2005)CrossRefGoogle Scholar
  12. 12.
    Warburton, R.J., et al.: Phys. Rev. B 65, 113303 (2002)CrossRefGoogle Scholar
  13. 13.
    Silverman, K.L., et al.: Appl. Phys. Lett. 82, 4552 (2003)CrossRefGoogle Scholar
  14. 14.
    Muller, A., et al.: Appl. Phys. Lett. 84, 981 (2004)CrossRefGoogle Scholar
  15. 15.
    Al-Ahmadi, A.N., Ulloa, S.E.: Appl. Phys. Lett. 88, 043110 (2006)CrossRefGoogle Scholar
  16. 16.
    Lacowicz, J.R.: Principles of Fluorescence Spectroscopy. Springer, New York (2006)CrossRefGoogle Scholar
  17. 17.
    Schumann, O., et al.: Phys. Rev. B 71, 245316 (2005)CrossRefGoogle Scholar
  18. 18.
    Gerardot, B.D., et al.: J. Cryst. Growth 252, 44 (2003)CrossRefGoogle Scholar
  19. 19.
    Leegwater, J.A.: J. Phys. Chem. 100, 14403 (1996)CrossRefGoogle Scholar
  20. 20.
    Ledentsov, N.N., et al.: Phys. Rev. B 54, 8743 (1996)CrossRefGoogle Scholar
  21. 21.
    Bester, G., et al.: Phys. Rev. B 71, 075325 (2005)CrossRefGoogle Scholar
  22. 22.
    Stievater, T.H., et al.: Phys. Rev. Lett. 87, 133603 (2001)CrossRefGoogle Scholar
  23. 23.
    Zrenner, A., et al.: Nature 418, 612 (2002)CrossRefGoogle Scholar
  24. 24.
    Cohen-Tannoudji, C., et al.: Atom-Photon Interactions. Wiley, New York (1992)Google Scholar
  25. 25.
    Scheibner, M., et al.: Nat. Phys. 4, 291 (2008)CrossRefGoogle Scholar
  26. 26.
    Villas-Boas, J.M., et al.: Phys. Rev. B 69, 125342 (2004)CrossRefGoogle Scholar
  27. 27.
    Muller, A., et al.: Phys. Rev. Lett. 101, 027401 (2008)CrossRefGoogle Scholar
  28. 28.
    Jundt, G., et al.: Phys. Rev. Lett. 100, 177401 (2008)CrossRefGoogle Scholar
  29. 29.
    Boyle, S.J., et al.: Phys. Rev. Lett. 102, 207401 (2009)CrossRefGoogle Scholar
  30. 30.
    Rolon, J.E., Ulloa, S.E.: Phys. Rev. B 79, 245309 (2009)CrossRefGoogle Scholar
  31. 31.
    Bardot, C., et al.: Phys. Rev. B 72, 035314 (2005)CrossRefGoogle Scholar
  32. 32.
    Narvaez, G.A., et al.: Phys. Rev. B 72, 245318 (2005)CrossRefGoogle Scholar
  33. 33.
    Xu, X., et al.: Science 317, 929 (2007)CrossRefGoogle Scholar
  34. 34.
    Williamson, A.J., et al.: Phys. Rev. B 62, 12963 (2000)CrossRefGoogle Scholar
  35. 35.
    Stock, E., et al.: Phys. Rev. B 83, 041304 (2011)CrossRefGoogle Scholar
  36. 36.
    Ortner, G., et al.: Phys. Rev. B 72, 165353 (2005)CrossRefGoogle Scholar
  37. 37.
    Cheche, T.O.: Europhys. Lett. 86, 67011 (2009)CrossRefGoogle Scholar
  38. 38.
    Bayer, M., et al.: Phys. Rev. B 58, 4740 (1998)CrossRefGoogle Scholar
  39. 39.
    Dalgarno, P.A., et al.: Phys. Rev. B 77, 245311 (2008)CrossRefGoogle Scholar
  40. 40.
    Klimov, V., et al.: Phys. Rev. B 50, 8110 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Department of Physics and Astronomy and Nanoscale and Quantum Phenomena InstituteOhio UniversityAthensUSA

Personalised recommendations