Advertisement

Fabrication of Semiconductor Quantum Dot Molecules: Droplet Epitaxy and Local Oxidation Nanolithography Techniques

  • Pablo Alonso-GonzálezEmail author
  • Javier Martín-Sánchez
Chapter
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 14)

Abstract

A semiconductor quantum dot molecule (QDM) composed of two interacting quantum dots (QDs) is the simplest coupled system formed by semiconductor quantum nanostructures. Potentially, a QDM is the ideal building block for the realization of a quantum computation device. However, the fabrication of QDMs is far from being a straightforward task, particularly if a precise control of QDs density, size, or spatial location is required. Recently, an important improvement in the control of these properties has been achieved by using patterned semiconductor substrates followed by preferential epitaxial growth. In this chapter we will overview two of such fabrication methods, which are based on: (1) in situ droplet epitaxy “nanodrilling” and (2) ex situ local oxidation nanolithography.

Keywords

GaAs Surface Preferential Nucleation High Optical Quality Atomic Force Microscopy Topography Double Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AFM-LAO

Atomic force microscopy local anodic oxidation

ALMBE

Atomic layer molecular beam epitaxy

BEP

Beam equivalent pressure

CCD

Charge coupled device

MBE

Molecular beam epitaxy

ML

Monolayer

MSM

Metal–semiconductor–metal

PL

Photoluminescence

QD

Quantum dot

QDM

Quantum dot molecule

RH

Relative humidity

RMS

Root mean square

TEM

Transmission electron microscopy

WL

Wetting layer

Notes

Acknowledgments

The authors would like to acknowledge the MBE group of the “Instituto de Microelectrónica de Madrid (IMM-CNM-CSIC)” where these works were carried out.

References

  1. 1.
    Benson, O., Santori, C., Pelton, M., Yamamoto, Y.: Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000)CrossRefGoogle Scholar
  2. 2.
    Stevenson, R.M., Young, R.J., Atkinson, P., Cooper, K., Ritchie, D.A., Shields, A.J.: A semiconductor source of triggered entangled photon pairs. Nature 439, 179–182 (2006)CrossRefGoogle Scholar
  3. 3.
    Yoshie, T., Scherer, A., Hendrickson, J., Khitrova, G., Gibbs, H.M., Rupper, G., Ell, C., Shchekin, O.B., Deppe, D.G.: Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004)CrossRefGoogle Scholar
  4. 4.
    Hennessy, K., Badolato, A., Winger, M., Gerace, D., Atature, M., Gulde, S., Falt, S., Hu, E.L., Imamoglu, A.: Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–899 (2007)CrossRefGoogle Scholar
  5. 5.
    Noda, S., Fujita, M., Asano, T.: Spontaneous-emission control by photonic crystals and nanocavities. Nat. Photonics 1, 449–458 (2007)CrossRefGoogle Scholar
  6. 6.
    Wang, L., Rastelli, A., Kiravittaya, S., Benyoucef, M., Schmidt, O.G.: Self-assembled quantum dot molecules. Adv. Mater. 21, 2601–2618 (2009)CrossRefGoogle Scholar
  7. 7.
    DiVincenzo, D.P.: Quantum computation. Science 270, 255–261 (1995)CrossRefGoogle Scholar
  8. 8.
    Xie, Q., Madhukar, A., Chen, P., Kobayashi, N.P.: Vertically self-organized InAs quantum box islands on GaAs(100). Phys. Rev. Lett. 75, 2542–2545 (1995)CrossRefGoogle Scholar
  9. 9.
    Wasilewski, Z.R., Fafard, S., McCaffrey, J.P.: Size and shape engineering of vertically stacked self-assembled quantum dots. J. Cryst. Growth 201–202, 1131–1135 (1999)CrossRefGoogle Scholar
  10. 10.
    Bayer, M., Hawrylak, P., Hinzer, K., Fafard, S., Korkusinski, M., Wasilewski, Z.R., Stern, O., Forchel, A.: Coupling and entangling of quantum states in quantum dot molecules. Science 291, 451–453 (2001)CrossRefGoogle Scholar
  11. 11.
    Ortner, G., Bayer, M., Lyanda-Geller, Y., Reinecke, T.L., Kress, A., Reithmaier, J.P., Forchel, A.: Control of vertically coupled InGaAs/GaAs quantum dots with electric fields. Phys. Rev. Lett. 94, 157401 (2005)CrossRefGoogle Scholar
  12. 12.
    Krenner, H.J., Sabathil, M., Clark, E.C., Kress, A., Schuh, D., Bichler, M., Abstreiter, G., Finley, J.J.: Direct observation of controlled coupling in an individual quantum dot molecule. Phys. Rev. Lett. 94, 057402 (2005)CrossRefGoogle Scholar
  13. 13.
    Stinaff, E.A., Scheibner, M., Bracker, A.S., Ponomarev, I.V., Korenev, V.L., Ware, M.E., Doty, M.F., Reinecke, T.L., Gammon, D.: Optical signatures of coupled quantum dots. Science 311, 636–639 (2006)CrossRefGoogle Scholar
  14. 14.
    Trotta, R., Zallo, E., Ortix, C., Atkinson, P., Plumhof, J.D., van den Brink, J., Rastelli, A., Schmidt, O.G.: Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry. Phys. Rev. Lett 109, 147401 (2012)Google Scholar
  15. 15.
    Robledo, L., Elzerman, J., Jundt, G., Atatüre, M., Högele, A., Fält, S., Imamoglu, A.: Conditional dynamics of interacting quantum dots. Science 320, 772–775 (2008)CrossRefGoogle Scholar
  16. 16.
    Beirne, G.J., Hermannstädter, C., Wang, L., Rastelli, A., Schmidt, O.G., Michler, P.: Quantum light emission of two lateral tunnel-coupled (In, Ga)As/GaAs quantum dots controlled by a tunable static electric field. Phys. Rev. Lett. 96, 137401 (2006)CrossRefGoogle Scholar
  17. 17.
    Muñoz-Matutano, G., Royo, M., Climente, J.I., Canet-Ferrer, J., Fuster, D., Alonso-González, P., Fernández-Martínez, I., Martínez-Pastor, J., González, Y., González, L., Briones, F., Alén, B.: Charge control in laterally coupled double quantum dots. Phys. Rev. B 84, 041308 (2011)CrossRefGoogle Scholar
  18. 18.
    Wang, L., Rastelli, A., Kiravittaya, S., Atkinson, P., Ding, F., Bufon, C.C.B., Hermannstädter, C., Witzany, M., Beirne, G.J., Michler, P., Schmidt, O.G.: Towards deterministically controlled InGaAs/GaAs lateral quantum dot molecules. New J. Phys. 10, 045010 (2008)CrossRefGoogle Scholar
  19. 19.
    Zallo, E., Atkinson, P., Wang, L., Rastelli, A., Schmidt, O.G.: Epitaxial growth of lateral quantum dot molecules. Phys. Status Solidi B 249, 702–709 (2012)CrossRefGoogle Scholar
  20. 20.
    Alonso-González, P., Martín-Sánchez, J., González, Y., Alén, B., Fuster, D., González, L.: Formation of lateral low density In(Ga)As quantum dot pairs in GaAs nanoholes. Cryst. Growth Design 9, 2525–2528 (2009)CrossRefGoogle Scholar
  21. 21.
    Songmuang, R., Kiravittaya, S., Schmidt, O.G.: Formation of lateral quantum dot molecules around self-assembled nanoholes. Appl. Phys. Lett. 82, 2892–2894 (2003)CrossRefGoogle Scholar
  22. 22.
    Martín-Sánchez, J., Alonso-González, P., Herranz, J., González, Y., González, L.: Site-controlled lateral arrangements of InAs quantum dots grown on GaAs (0 0 1) patterned substrates by atomic force microscopy local oxidation nanolithography. Nanotechnology 20, 125302 (2009)CrossRefGoogle Scholar
  23. 23.
    Lee, J.H., Wang, Z.M., Strom, N.W., Mazur, Y.I., Salamo, G.J.: InGaAs quantum dot molecules around self-assembled GaAs nanomound templates. Appl. Phys. Lett. 89, 202101–202103 (2006)CrossRefGoogle Scholar
  24. 24.
    Yakes, M.K., Cress, C.D., Tischler, J.G., Bracker, A.S.: Three-dimensional control of self-assembled quantum dot configurations. ACS Nano 4, 3877–3882 (2010)CrossRefGoogle Scholar
  25. 25.
    Alonso-Gonzalez, P., Gonzalez, L., Fuster, D., Martin-Sanchez, J., Gonzalez, Y.: Surface localization of buried III–V semiconductor nanostructures. Nanoscale Res. Lett. 4, 873–877 (2009)CrossRefGoogle Scholar
  26. 26.
    Alonso-González, P., González, L., González, Y., Fuster, D., Fernández-Martínez, I., Martín-Sánchez, J., Abelmann, L.: New process for high optical quality InAs quantum dots grown on patterned GaAs (0 0 1) substrates. Nanotechnology 18, 355302 (2007)CrossRefGoogle Scholar
  27. 27.
    Atkinson, P., Ward, M.B., Bremner, S.P., Anderson, D., Farrow, T., Jones, G.A.C., Shields, A.J., Ritchie, D.A.: Site-control of InAs quantum dots using ex-situ electron-beam lithographic patterning of GaAs substrates. Jpn. J. Appl. Phys. 45, 2519 (2006)CrossRefGoogle Scholar
  28. 28.
    Wang, Z.M., Liang, B.L., Sablon, K.A., Salamo, G.J.: Nanoholes fabricated by self-assembled gallium nanodrill on GaAs(1 0 0). Appl. Phys. Lett. 90, 113120 (2007)CrossRefGoogle Scholar
  29. 29.
    Liang, B.L., Wang, Z.M., Lee, J.H., Sablon, K., Mazur, Y.I., Salamo, G.J.: Low density InAs quantum dots grown on GaAs nanoholes. Appl. Phys. Lett. 89, 043113 (2006)CrossRefGoogle Scholar
  30. 30.
    Alonso-Gonzalez, P., Alen, B., Fuster, D., Gonzalez, Y., Gonzalez, L., Martinez-Pastor, J.: Formation and optical characterization of single InAs quantum dots grown on GaAs nanoholes. Appl. Phys. Lett. 91, 163104 (2007)CrossRefGoogle Scholar
  31. 31.
    Alonso-Gonzalez, P., Gonzalez, L., Martin-Sanchez, J., Gonzalez, Y., Fuster, D., Sales, D., Hernandez-Maldonado, D., Herrera, M., Molina, S.: Growth of low-density vertical quantum dot molecules with control in energy emission. Nanoscale Res. Lett. 5, 1913–1916 (2010)CrossRefGoogle Scholar
  32. 32.
    Martín-Sánchez, J., González, Y., González, L., Tello, M., García, R., Granados, D., García, J.M., Briones, F.: Ordered InAs quantum dots on pre-patterned GaAs (0 0 1) by local oxidation nanolithography. J. Cryst. Growth 284, 313–318 (2005)CrossRefGoogle Scholar
  33. 33.
    Kim, J.S., Kawabe, M., Koguchi, N.: Ordering of high-quality InAs quantum dots on defect-free nanoholes. Appl. Phys. Lett. 88, 072107 (2006)CrossRefGoogle Scholar
  34. 34.
    Martín-Sánchez, J., Muñoz-Matutano, G., Herranz, J., Canet-Ferrer, J., Alén, B., González, Y., Alonso-González, P., Fuster, D., González, L., Martínez-Pastor, J., Briones, F.: Single photon emission from site-controlled InAs quantum dots grown on GaAs (0 0 1) patterned substrates. ACS Nano 3, 1513–1517 (2009)CrossRefGoogle Scholar
  35. 35.
    Koguchi, N., Takahashi, S., Chikyow, T.: New MBE growth method for InSb quantum well boxes. J. Cryst. Growth 111, 688–692 (1991)CrossRefGoogle Scholar
  36. 36.
    Koguchi, N., Ishige, K., Takahashi, S.: New selective molecular-beam epitaxial growth method for direct formation of GaAs quantum dots. J. Vac. Sci. Technol. B 11, 787–790 (1993)CrossRefGoogle Scholar
  37. 37.
    Kim, J.S., Koguchi, N.: Near room temperature droplet epitaxy for fabrication of InAs quantum dots. Appl. Phys. Lett. 85, 5893–5895 (2004)CrossRefGoogle Scholar
  38. 38.
    Kim, J.S., Jeong, M.S., Byeon, C.C., Ko, D.-K., Lee, J., Kim, J.S., Kim, I.-S., Koguchi, N.: GaAs quantum dots with a high density on a GaAs (1 1 1)A substrate. Appl. Phys. Lett. 88, 241911 (2006)CrossRefGoogle Scholar
  39. 39.
    Mano, T., Kuroda, T., Sanguinetti, S., Ochiai, T., Tateno, T., Kim, J., Noda, T., Kawabe, M., Sakoda, K., Kido, G., Koguchi, N.: Self-assembly of concentric quantum double rings. Nano Lett. 5, 425–428 (2005)CrossRefGoogle Scholar
  40. 40.
    Cho, A.Y., Arthur, J.R.: Molecular beam epitaxy. Progr. Solid State Chem. 10(Part 3), 157–191 (1975)CrossRefGoogle Scholar
  41. 41.
    Briones, F., González, L., Ruiz, A.: Atomic layer molecular beam epitaxy (ALMBE) of III–V compounds: growth modes and applications. Appl. Phys. A 49, 729–737 (1989)CrossRefGoogle Scholar
  42. 42.
    Alonso-Gonzalez, P., Fuster, D., Gonzalez, L., Martin-Sanchez, J., Gonzalez, Y.: Low density InAs quantum dots with control in energy emission and top surface location. Appl. Phys. Lett. 93, 183106 (2008)CrossRefGoogle Scholar
  43. 43.
    Hernández-Maldonado, D., Herrera, M., Sales, D.L., Alonso-González, P., González, Y., González, L., Pizarro, J., Galindo, P.L., Molina, S.I.: Transmission electron microscopy study of vertical quantum dots molecules grown by droplet epitaxy. Appl. Surf. Sci. 256, 5659–5661 (2010)CrossRefGoogle Scholar
  44. 44.
    Koshiba, S., Nakamura, Y., Tsuchiya, M., Noge, H., Kano, H., Nagamune, Y., Noda, T., Sakaki, H.: Surface diffusion processes in molecular beam epitaxial growth of GaAs and AlAs as studied on GaAs (0 0 1)-(1 1 1)B facet structures. J. Appl. Phys. 76, 4138 (1994)CrossRefGoogle Scholar
  45. 45.
    Shen, X.-Q., Kishimoto, D., Nishinaga, T.: Arsenic pressure dependence of surface diffusion of Ga on nonplanar GaAs substrates. Jpn. J. Appl. Phys. 33, 11 (1994)CrossRefGoogle Scholar
  46. 46.
    Shitara, T., Zhang, J., Neave, J.H., Joyce, B.A.: As/Ga ratio dependence of Ga adatom incorporation kinetics at steps on vicinal GaAs (0 0 1) surfaces. J. Cryst. Growth 127, 494 (1993)CrossRefGoogle Scholar
  47. 47.
    Shen, X.Q., Nishinaga, T.: Arsenic pressure dependence of the surface diffusion in Molecular beam epitaxy on (1 1 1)B-(0 0 1) mesa-etched GaAs substrates studied by in situ scanning microprobe reflection high-energy electron diffraction. Jpn. J. Appl. Phys. 32, L1117 (1993)CrossRefGoogle Scholar
  48. 48.
    Hayakama, T., Morishima, M.: Surface reconstruction limited mechanism of molecular-beam epitaxial growth of AlGaAs on (1 1 1)B face. Appl. Phys. Lett. 59, 3321 (1991)CrossRefGoogle Scholar
  49. 49.
    Royo, M., Climente, J.I., Planelles, J.: Emission spectrum of quasiresonant laterally coupled quantum dots. Phys. Rev. B 84, 235312 (2011)CrossRefGoogle Scholar
  50. 50.
    Moskalenko, E.S., Larsson, M., Karlsson, K.F., Holtz, P.O., Monemar, B., Schoenfeld, W.V., Petroff, P.M.: Enhancement of the luminescence intensity of InAs/GaAs quantum dots induced by an external electric field. Nano Lett. 7, 188–193 (2006)CrossRefGoogle Scholar
  51. 51.
    Kowalik, K., Krebs, O., Lemaitre, A., Laurent, S., Senellart, P., Voisin, P., Gaj, J.A.: Influence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots. Appl. Phys. Lett. 86, 041907 (2005)CrossRefGoogle Scholar
  52. 52.
    Alén, B., Fuster, D., Fernández-Martínez, I., Martínez-Pastor, J., González, Y., Briones, F., González, L.: Electrical control of a laterally ordered InAs/InP quantum dash array. Nanotechnology 20, 475202 (2009)CrossRefGoogle Scholar
  53. 53.
    Peng, J., Bester, G.: Charged excitons and biexcitons in laterally coupled (In, Ga)As quantum dots. Phys. Rev. B 82, 235314 (2010)CrossRefGoogle Scholar
  54. 54.
    Climente, J.I., Bertoni, A., Goldoni, G.: Photoluminescence spectroscopy of trions in quantum dots: a theoretical description. Phys. Rev. B 78, 155316 (2008)CrossRefGoogle Scholar
  55. 55.
    Laasonen, K., Nieminen, R.M., Puska, M.J.: First-principles study of fully relaxed vacancies in GaAs. Phys. Rev. B 45, 4122–4130 (1992)CrossRefGoogle Scholar
  56. 56.
    Dagata, J.A., Schneir, J., Harary, H.H., Evans, C.J., Postek, M.T., Bennett, J.: Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air. Appl. Phys. Lett. 56, 2001–2003 (1990)CrossRefGoogle Scholar
  57. 57.
    García, R., Calleja, M., Rohrer, H.: Patterning of silicon surfaces with noncontact atomic force microscopy: field-induced formation of nanometer-size water bridges. J. Appl. Phys. 86, 1898–1903 (1999)CrossRefGoogle Scholar
  58. 58.
    Gómez-Moñivas, S., Sáenz, J.J., Calleja, M., García, R.: Field-induced formation of nanometer-sized water bridges. Phys. Rev. Lett. 91, 056101 (2003)CrossRefGoogle Scholar
  59. 59.
    Wang, D., Tsau, L., Wang, K.L.: Nanometer-structure writing on Si(1 0 0) surfaces using a non-contact-mode atomic force microscope. Appl. Phys. Lett. 65, 1415–1417 (1994)CrossRefGoogle Scholar
  60. 60.
    Huang, W.P., Cheng, H.H., Jian, S.R., Chuu, D.S., Hsieh, J.Y., Lin, C.M., Chiang, M.S.: Localized electrochemical oxidation of p-GaAs (1 0 0) using atomic force microscopy with a carbon nanotube probe. Nanotechnology 17, 3838–3843 (2006)CrossRefGoogle Scholar
  61. 61.
    Calleja, M., García, R.: Nano-oxidation of silicon surfaces by noncontact atomic-force micros-copy: size dependence on voltage and pulse duration. Appl. Phys. Lett. 76, 3427 (2000)CrossRefGoogle Scholar
  62. 62.
    Atkinson, P., Kiravittaya, S., Benyoucef, M., Rastelli, A., Schmidt, O.G.: Site-controlled growth and luminescence of InAs quantum dots using in situ Ga-assisted deoxidation of patterned substrates. Appl. Phys. Lett. 93, 101908 (2008)CrossRefGoogle Scholar
  63. 63.
    Schneider, C., Straub, M., Sünner, T., Huggenberger, A., Wiener, D., Reitzenstein, S., Kamp, M., Höfling, S., Forchel, A.: Lithographic alignment to site-controlled quantum dots for de-vice integration. Appl. Phys. Lett. 92, 183101 (2008)CrossRefGoogle Scholar
  64. 64.
    Kiravittaya, S., Songmuang, R., Rastelli, A., Heidemeyer, H., Schmidt, O.G.: Multi-scale ordering of self-assembled InAs/GaAs (0 0 1) quantum dots. Nanoscale Res. Lett. 1, 1–10 (2006)CrossRefGoogle Scholar
  65. 65.
    Pelucchi, E., Watanabe, S., Leifer, K., Zhu, Q., Dwir, B., De Los Rios, P., Kapon, E.: Mechanisms of quantum dot energy engineering by metalorganic vapor phase epitaxy on patterned nonplanar substrates. Nano Lett. 7, 1282–1285 (2007)CrossRefGoogle Scholar
  66. 66.
    Kiravittaya, S., Heidemeyer, H., Schmidt, O.G.: Growth of three-dimensional quantum dot crystals on patterned GaAs (0 0 1) substrates. Physica E 23, 253–259 (2004)CrossRefGoogle Scholar
  67. 67.
    Martín-Sánchez, J., González, Y., Alonso-González, P., González, L.: Improvement of InAs quantum dots optical properties in close proximity to GaAs (0 0 1) substrate surface. J. Cryst. Growth 310, 4676–4680 (2008)CrossRefGoogle Scholar
  68. 68.
    Sugaya, T., Kawabe, M.: Low-temperature cleaning of GaAs substrate by atomic hydrogen irradiation. Jpn. J. Appl. Phys. 30, L402 (1991)CrossRefGoogle Scholar
  69. 69.
    Tomkiewicz, P., Winkler, A., Krzywiecki, M., Chasse, T., Szuber, J.: Analysis of mechanism of carbon removal from GaAs (0 0 1) surface by atomic hydrogen. Appl. Surf. Sci. 254, 8035 (2008)CrossRefGoogle Scholar
  70. 70.
    Heidemeyer, H., Müller, C., Schmidt, O.G.: Highly ordered arrays of In(Ga)As quantum dots on patterned GaAs (0 0 1) substrates. J. Cryst. Growth 261, 444–449 (2004)CrossRefGoogle Scholar
  71. 71.
    Li, S.S., Xia, J.B., Liu, J.L., Yang, F.H., Niu, Z.C., Freng, S.L., Zheng, H.Z.: InAs/GaAs single-electron quantum dot qubit. J. Appl. Phys. 90, 6151 (2001)CrossRefGoogle Scholar
  72. 72.
    Yang, B., Liu, F., Lagally, M.G.: Local strain-mediated chemical potential control of quantum dot self-organization in heteroepitaxy. Phys. Rev. Lett. 92, 025502 (2004)CrossRefGoogle Scholar
  73. 73.
    Feucker, M., Seguin, R., Rodt, S., Hoffmann, A., Bimberg, D.: Decay dynamics of neutral and charged excitonic complexes in single InAs/GaAs quantum dots. Appl. Phys. Lett. 92, 063116 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Pablo Alonso-González
    • 1
    Email author
  • Javier Martín-Sánchez
    • 1
  1. 1.Instituto de Microelectrónica de Madrid (CNM-CSIC)Tres CantosSpain

Personalised recommendations