Skip to main content

Fabrication of Semiconductor Quantum Dot Molecules: Droplet Epitaxy and Local Oxidation Nanolithography Techniques

  • Chapter
  • First Online:
Quantum Dot Molecules

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 14))

  • 1809 Accesses

Abstract

A semiconductor quantum dot molecule (QDM) composed of two interacting quantum dots (QDs) is the simplest coupled system formed by semiconductor quantum nanostructures. Potentially, a QDM is the ideal building block for the realization of a quantum computation device. However, the fabrication of QDMs is far from being a straightforward task, particularly if a precise control of QDs density, size, or spatial location is required. Recently, an important improvement in the control of these properties has been achieved by using patterned semiconductor substrates followed by preferential epitaxial growth. In this chapter we will overview two of such fabrication methods, which are based on: (1) in situ droplet epitaxy “nanodrilling” and (2) ex situ local oxidation nanolithography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM-LAO:

Atomic force microscopy local anodic oxidation

ALMBE:

Atomic layer molecular beam epitaxy

BEP:

Beam equivalent pressure

CCD:

Charge coupled device

MBE:

Molecular beam epitaxy

ML:

Monolayer

MSM:

Metal–semiconductor–metal

PL:

Photoluminescence

QD:

Quantum dot

QDM:

Quantum dot molecule

RH:

Relative humidity

RMS:

Root mean square

TEM:

Transmission electron microscopy

WL:

Wetting layer

References

  1. Benson, O., Santori, C., Pelton, M., Yamamoto, Y.: Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000)

    Article  CAS  Google Scholar 

  2. Stevenson, R.M., Young, R.J., Atkinson, P., Cooper, K., Ritchie, D.A., Shields, A.J.: A semiconductor source of triggered entangled photon pairs. Nature 439, 179–182 (2006)

    Article  CAS  Google Scholar 

  3. Yoshie, T., Scherer, A., Hendrickson, J., Khitrova, G., Gibbs, H.M., Rupper, G., Ell, C., Shchekin, O.B., Deppe, D.G.: Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004)

    Article  CAS  Google Scholar 

  4. Hennessy, K., Badolato, A., Winger, M., Gerace, D., Atature, M., Gulde, S., Falt, S., Hu, E.L., Imamoglu, A.: Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–899 (2007)

    Article  CAS  Google Scholar 

  5. Noda, S., Fujita, M., Asano, T.: Spontaneous-emission control by photonic crystals and nanocavities. Nat. Photonics 1, 449–458 (2007)

    Article  CAS  Google Scholar 

  6. Wang, L., Rastelli, A., Kiravittaya, S., Benyoucef, M., Schmidt, O.G.: Self-assembled quantum dot molecules. Adv. Mater. 21, 2601–2618 (2009)

    Article  CAS  Google Scholar 

  7. DiVincenzo, D.P.: Quantum computation. Science 270, 255–261 (1995)

    Article  CAS  Google Scholar 

  8. Xie, Q., Madhukar, A., Chen, P., Kobayashi, N.P.: Vertically self-organized InAs quantum box islands on GaAs(100). Phys. Rev. Lett. 75, 2542–2545 (1995)

    Article  CAS  Google Scholar 

  9. Wasilewski, Z.R., Fafard, S., McCaffrey, J.P.: Size and shape engineering of vertically stacked self-assembled quantum dots. J. Cryst. Growth 201–202, 1131–1135 (1999)

    Article  Google Scholar 

  10. Bayer, M., Hawrylak, P., Hinzer, K., Fafard, S., Korkusinski, M., Wasilewski, Z.R., Stern, O., Forchel, A.: Coupling and entangling of quantum states in quantum dot molecules. Science 291, 451–453 (2001)

    Article  CAS  Google Scholar 

  11. Ortner, G., Bayer, M., Lyanda-Geller, Y., Reinecke, T.L., Kress, A., Reithmaier, J.P., Forchel, A.: Control of vertically coupled InGaAs/GaAs quantum dots with electric fields. Phys. Rev. Lett. 94, 157401 (2005)

    Article  CAS  Google Scholar 

  12. Krenner, H.J., Sabathil, M., Clark, E.C., Kress, A., Schuh, D., Bichler, M., Abstreiter, G., Finley, J.J.: Direct observation of controlled coupling in an individual quantum dot molecule. Phys. Rev. Lett. 94, 057402 (2005)

    Article  CAS  Google Scholar 

  13. Stinaff, E.A., Scheibner, M., Bracker, A.S., Ponomarev, I.V., Korenev, V.L., Ware, M.E., Doty, M.F., Reinecke, T.L., Gammon, D.: Optical signatures of coupled quantum dots. Science 311, 636–639 (2006)

    Article  CAS  Google Scholar 

  14. Trotta, R., Zallo, E., Ortix, C., Atkinson, P., Plumhof, J.D., van den Brink, J., Rastelli, A., Schmidt, O.G.: Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry. Phys. Rev. Lett 109, 147401 (2012)

    Google Scholar 

  15. Robledo, L., Elzerman, J., Jundt, G., Atatüre, M., Högele, A., Fält, S., Imamoglu, A.: Conditional dynamics of interacting quantum dots. Science 320, 772–775 (2008)

    Article  CAS  Google Scholar 

  16. Beirne, G.J., Hermannstädter, C., Wang, L., Rastelli, A., Schmidt, O.G., Michler, P.: Quantum light emission of two lateral tunnel-coupled (In, Ga)As/GaAs quantum dots controlled by a tunable static electric field. Phys. Rev. Lett. 96, 137401 (2006)

    Article  CAS  Google Scholar 

  17. Muñoz-Matutano, G., Royo, M., Climente, J.I., Canet-Ferrer, J., Fuster, D., Alonso-González, P., Fernández-Martínez, I., Martínez-Pastor, J., González, Y., González, L., Briones, F., Alén, B.: Charge control in laterally coupled double quantum dots. Phys. Rev. B 84, 041308 (2011)

    Article  Google Scholar 

  18. Wang, L., Rastelli, A., Kiravittaya, S., Atkinson, P., Ding, F., Bufon, C.C.B., Hermannstädter, C., Witzany, M., Beirne, G.J., Michler, P., Schmidt, O.G.: Towards deterministically controlled InGaAs/GaAs lateral quantum dot molecules. New J. Phys. 10, 045010 (2008)

    Article  Google Scholar 

  19. Zallo, E., Atkinson, P., Wang, L., Rastelli, A., Schmidt, O.G.: Epitaxial growth of lateral quantum dot molecules. Phys. Status Solidi B 249, 702–709 (2012)

    Article  CAS  Google Scholar 

  20. Alonso-González, P., Martín-Sánchez, J., González, Y., Alén, B., Fuster, D., González, L.: Formation of lateral low density In(Ga)As quantum dot pairs in GaAs nanoholes. Cryst. Growth Design 9, 2525–2528 (2009)

    Article  Google Scholar 

  21. Songmuang, R., Kiravittaya, S., Schmidt, O.G.: Formation of lateral quantum dot molecules around self-assembled nanoholes. Appl. Phys. Lett. 82, 2892–2894 (2003)

    Article  CAS  Google Scholar 

  22. Martín-Sánchez, J., Alonso-González, P., Herranz, J., González, Y., González, L.: Site-controlled lateral arrangements of InAs quantum dots grown on GaAs (0 0 1) patterned substrates by atomic force microscopy local oxidation nanolithography. Nanotechnology 20, 125302 (2009)

    Article  Google Scholar 

  23. Lee, J.H., Wang, Z.M., Strom, N.W., Mazur, Y.I., Salamo, G.J.: InGaAs quantum dot molecules around self-assembled GaAs nanomound templates. Appl. Phys. Lett. 89, 202101–202103 (2006)

    Article  Google Scholar 

  24. Yakes, M.K., Cress, C.D., Tischler, J.G., Bracker, A.S.: Three-dimensional control of self-assembled quantum dot configurations. ACS Nano 4, 3877–3882 (2010)

    Article  CAS  Google Scholar 

  25. Alonso-Gonzalez, P., Gonzalez, L., Fuster, D., Martin-Sanchez, J., Gonzalez, Y.: Surface localization of buried III–V semiconductor nanostructures. Nanoscale Res. Lett. 4, 873–877 (2009)

    Article  CAS  Google Scholar 

  26. Alonso-González, P., González, L., González, Y., Fuster, D., Fernández-Martínez, I., Martín-Sánchez, J., Abelmann, L.: New process for high optical quality InAs quantum dots grown on patterned GaAs (0 0 1) substrates. Nanotechnology 18, 355302 (2007)

    Article  Google Scholar 

  27. Atkinson, P., Ward, M.B., Bremner, S.P., Anderson, D., Farrow, T., Jones, G.A.C., Shields, A.J., Ritchie, D.A.: Site-control of InAs quantum dots using ex-situ electron-beam lithographic patterning of GaAs substrates. Jpn. J. Appl. Phys. 45, 2519 (2006)

    Article  CAS  Google Scholar 

  28. Wang, Z.M., Liang, B.L., Sablon, K.A., Salamo, G.J.: Nanoholes fabricated by self-assembled gallium nanodrill on GaAs(1 0 0). Appl. Phys. Lett. 90, 113120 (2007)

    Article  Google Scholar 

  29. Liang, B.L., Wang, Z.M., Lee, J.H., Sablon, K., Mazur, Y.I., Salamo, G.J.: Low density InAs quantum dots grown on GaAs nanoholes. Appl. Phys. Lett. 89, 043113 (2006)

    Article  Google Scholar 

  30. Alonso-Gonzalez, P., Alen, B., Fuster, D., Gonzalez, Y., Gonzalez, L., Martinez-Pastor, J.: Formation and optical characterization of single InAs quantum dots grown on GaAs nanoholes. Appl. Phys. Lett. 91, 163104 (2007)

    Article  Google Scholar 

  31. Alonso-Gonzalez, P., Gonzalez, L., Martin-Sanchez, J., Gonzalez, Y., Fuster, D., Sales, D., Hernandez-Maldonado, D., Herrera, M., Molina, S.: Growth of low-density vertical quantum dot molecules with control in energy emission. Nanoscale Res. Lett. 5, 1913–1916 (2010)

    Article  CAS  Google Scholar 

  32. Martín-Sánchez, J., González, Y., González, L., Tello, M., García, R., Granados, D., García, J.M., Briones, F.: Ordered InAs quantum dots on pre-patterned GaAs (0 0 1) by local oxidation nanolithography. J. Cryst. Growth 284, 313–318 (2005)

    Article  Google Scholar 

  33. Kim, J.S., Kawabe, M., Koguchi, N.: Ordering of high-quality InAs quantum dots on defect-free nanoholes. Appl. Phys. Lett. 88, 072107 (2006)

    Article  Google Scholar 

  34. Martín-Sánchez, J., Muñoz-Matutano, G., Herranz, J., Canet-Ferrer, J., Alén, B., González, Y., Alonso-González, P., Fuster, D., González, L., Martínez-Pastor, J., Briones, F.: Single photon emission from site-controlled InAs quantum dots grown on GaAs (0 0 1) patterned substrates. ACS Nano 3, 1513–1517 (2009)

    Article  Google Scholar 

  35. Koguchi, N., Takahashi, S., Chikyow, T.: New MBE growth method for InSb quantum well boxes. J. Cryst. Growth 111, 688–692 (1991)

    Article  CAS  Google Scholar 

  36. Koguchi, N., Ishige, K., Takahashi, S.: New selective molecular-beam epitaxial growth method for direct formation of GaAs quantum dots. J. Vac. Sci. Technol. B 11, 787–790 (1993)

    Article  CAS  Google Scholar 

  37. Kim, J.S., Koguchi, N.: Near room temperature droplet epitaxy for fabrication of InAs quantum dots. Appl. Phys. Lett. 85, 5893–5895 (2004)

    Article  CAS  Google Scholar 

  38. Kim, J.S., Jeong, M.S., Byeon, C.C., Ko, D.-K., Lee, J., Kim, J.S., Kim, I.-S., Koguchi, N.: GaAs quantum dots with a high density on a GaAs (1 1 1)A substrate. Appl. Phys. Lett. 88, 241911 (2006)

    Article  Google Scholar 

  39. Mano, T., Kuroda, T., Sanguinetti, S., Ochiai, T., Tateno, T., Kim, J., Noda, T., Kawabe, M., Sakoda, K., Kido, G., Koguchi, N.: Self-assembly of concentric quantum double rings. Nano Lett. 5, 425–428 (2005)

    Article  CAS  Google Scholar 

  40. Cho, A.Y., Arthur, J.R.: Molecular beam epitaxy. Progr. Solid State Chem. 10(Part 3), 157–191 (1975)

    Article  Google Scholar 

  41. Briones, F., González, L., Ruiz, A.: Atomic layer molecular beam epitaxy (ALMBE) of III–V compounds: growth modes and applications. Appl. Phys. A 49, 729–737 (1989)

    Article  Google Scholar 

  42. Alonso-Gonzalez, P., Fuster, D., Gonzalez, L., Martin-Sanchez, J., Gonzalez, Y.: Low density InAs quantum dots with control in energy emission and top surface location. Appl. Phys. Lett. 93, 183106 (2008)

    Article  Google Scholar 

  43. Hernández-Maldonado, D., Herrera, M., Sales, D.L., Alonso-González, P., González, Y., González, L., Pizarro, J., Galindo, P.L., Molina, S.I.: Transmission electron microscopy study of vertical quantum dots molecules grown by droplet epitaxy. Appl. Surf. Sci. 256, 5659–5661 (2010)

    Article  Google Scholar 

  44. Koshiba, S., Nakamura, Y., Tsuchiya, M., Noge, H., Kano, H., Nagamune, Y., Noda, T., Sakaki, H.: Surface diffusion processes in molecular beam epitaxial growth of GaAs and AlAs as studied on GaAs (0 0 1)-(1 1 1)B facet structures. J. Appl. Phys. 76, 4138 (1994)

    Article  CAS  Google Scholar 

  45. Shen, X.-Q., Kishimoto, D., Nishinaga, T.: Arsenic pressure dependence of surface diffusion of Ga on nonplanar GaAs substrates. Jpn. J. Appl. Phys. 33, 11 (1994)

    Article  CAS  Google Scholar 

  46. Shitara, T., Zhang, J., Neave, J.H., Joyce, B.A.: As/Ga ratio dependence of Ga adatom incorporation kinetics at steps on vicinal GaAs (0 0 1) surfaces. J. Cryst. Growth 127, 494 (1993)

    Article  CAS  Google Scholar 

  47. Shen, X.Q., Nishinaga, T.: Arsenic pressure dependence of the surface diffusion in Molecular beam epitaxy on (1 1 1)B-(0 0 1) mesa-etched GaAs substrates studied by in situ scanning microprobe reflection high-energy electron diffraction. Jpn. J. Appl. Phys. 32, L1117 (1993)

    Article  CAS  Google Scholar 

  48. Hayakama, T., Morishima, M.: Surface reconstruction limited mechanism of molecular-beam epitaxial growth of AlGaAs on (1 1 1)B face. Appl. Phys. Lett. 59, 3321 (1991)

    Article  Google Scholar 

  49. Royo, M., Climente, J.I., Planelles, J.: Emission spectrum of quasiresonant laterally coupled quantum dots. Phys. Rev. B 84, 235312 (2011)

    Article  Google Scholar 

  50. Moskalenko, E.S., Larsson, M., Karlsson, K.F., Holtz, P.O., Monemar, B., Schoenfeld, W.V., Petroff, P.M.: Enhancement of the luminescence intensity of InAs/GaAs quantum dots induced by an external electric field. Nano Lett. 7, 188–193 (2006)

    Article  Google Scholar 

  51. Kowalik, K., Krebs, O., Lemaitre, A., Laurent, S., Senellart, P., Voisin, P., Gaj, J.A.: Influence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots. Appl. Phys. Lett. 86, 041907 (2005)

    Article  Google Scholar 

  52. Alén, B., Fuster, D., Fernández-Martínez, I., Martínez-Pastor, J., González, Y., Briones, F., González, L.: Electrical control of a laterally ordered InAs/InP quantum dash array. Nanotechnology 20, 475202 (2009)

    Article  Google Scholar 

  53. Peng, J., Bester, G.: Charged excitons and biexcitons in laterally coupled (In, Ga)As quantum dots. Phys. Rev. B 82, 235314 (2010)

    Article  Google Scholar 

  54. Climente, J.I., Bertoni, A., Goldoni, G.: Photoluminescence spectroscopy of trions in quantum dots: a theoretical description. Phys. Rev. B 78, 155316 (2008)

    Article  Google Scholar 

  55. Laasonen, K., Nieminen, R.M., Puska, M.J.: First-principles study of fully relaxed vacancies in GaAs. Phys. Rev. B 45, 4122–4130 (1992)

    Article  CAS  Google Scholar 

  56. Dagata, J.A., Schneir, J., Harary, H.H., Evans, C.J., Postek, M.T., Bennett, J.: Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air. Appl. Phys. Lett. 56, 2001–2003 (1990)

    Article  CAS  Google Scholar 

  57. García, R., Calleja, M., Rohrer, H.: Patterning of silicon surfaces with noncontact atomic force microscopy: field-induced formation of nanometer-size water bridges. J. Appl. Phys. 86, 1898–1903 (1999)

    Article  Google Scholar 

  58. Gómez-Moñivas, S., Sáenz, J.J., Calleja, M., García, R.: Field-induced formation of nanometer-sized water bridges. Phys. Rev. Lett. 91, 056101 (2003)

    Article  Google Scholar 

  59. Wang, D., Tsau, L., Wang, K.L.: Nanometer-structure writing on Si(1 0 0) surfaces using a non-contact-mode atomic force microscope. Appl. Phys. Lett. 65, 1415–1417 (1994)

    Article  CAS  Google Scholar 

  60. Huang, W.P., Cheng, H.H., Jian, S.R., Chuu, D.S., Hsieh, J.Y., Lin, C.M., Chiang, M.S.: Localized electrochemical oxidation of p-GaAs (1 0 0) using atomic force microscopy with a carbon nanotube probe. Nanotechnology 17, 3838–3843 (2006)

    Article  Google Scholar 

  61. Calleja, M., García, R.: Nano-oxidation of silicon surfaces by noncontact atomic-force micros-copy: size dependence on voltage and pulse duration. Appl. Phys. Lett. 76, 3427 (2000)

    Article  CAS  Google Scholar 

  62. Atkinson, P., Kiravittaya, S., Benyoucef, M., Rastelli, A., Schmidt, O.G.: Site-controlled growth and luminescence of InAs quantum dots using in situ Ga-assisted deoxidation of patterned substrates. Appl. Phys. Lett. 93, 101908 (2008)

    Article  Google Scholar 

  63. Schneider, C., Straub, M., Sünner, T., Huggenberger, A., Wiener, D., Reitzenstein, S., Kamp, M., Höfling, S., Forchel, A.: Lithographic alignment to site-controlled quantum dots for de-vice integration. Appl. Phys. Lett. 92, 183101 (2008)

    Article  Google Scholar 

  64. Kiravittaya, S., Songmuang, R., Rastelli, A., Heidemeyer, H., Schmidt, O.G.: Multi-scale ordering of self-assembled InAs/GaAs (0 0 1) quantum dots. Nanoscale Res. Lett. 1, 1–10 (2006)

    Article  Google Scholar 

  65. Pelucchi, E., Watanabe, S., Leifer, K., Zhu, Q., Dwir, B., De Los Rios, P., Kapon, E.: Mechanisms of quantum dot energy engineering by metalorganic vapor phase epitaxy on patterned nonplanar substrates. Nano Lett. 7, 1282–1285 (2007)

    Article  CAS  Google Scholar 

  66. Kiravittaya, S., Heidemeyer, H., Schmidt, O.G.: Growth of three-dimensional quantum dot crystals on patterned GaAs (0 0 1) substrates. Physica E 23, 253–259 (2004)

    Article  CAS  Google Scholar 

  67. Martín-Sánchez, J., González, Y., Alonso-González, P., González, L.: Improvement of InAs quantum dots optical properties in close proximity to GaAs (0 0 1) substrate surface. J. Cryst. Growth 310, 4676–4680 (2008)

    Article  Google Scholar 

  68. Sugaya, T., Kawabe, M.: Low-temperature cleaning of GaAs substrate by atomic hydrogen irradiation. Jpn. J. Appl. Phys. 30, L402 (1991)

    Article  CAS  Google Scholar 

  69. Tomkiewicz, P., Winkler, A., Krzywiecki, M., Chasse, T., Szuber, J.: Analysis of mechanism of carbon removal from GaAs (0 0 1) surface by atomic hydrogen. Appl. Surf. Sci. 254, 8035 (2008)

    Article  CAS  Google Scholar 

  70. Heidemeyer, H., Müller, C., Schmidt, O.G.: Highly ordered arrays of In(Ga)As quantum dots on patterned GaAs (0 0 1) substrates. J. Cryst. Growth 261, 444–449 (2004)

    Article  CAS  Google Scholar 

  71. Li, S.S., Xia, J.B., Liu, J.L., Yang, F.H., Niu, Z.C., Freng, S.L., Zheng, H.Z.: InAs/GaAs single-electron quantum dot qubit. J. Appl. Phys. 90, 6151 (2001)

    Article  CAS  Google Scholar 

  72. Yang, B., Liu, F., Lagally, M.G.: Local strain-mediated chemical potential control of quantum dot self-organization in heteroepitaxy. Phys. Rev. Lett. 92, 025502 (2004)

    Article  Google Scholar 

  73. Feucker, M., Seguin, R., Rodt, S., Hoffmann, A., Bimberg, D.: Decay dynamics of neutral and charged excitonic complexes in single InAs/GaAs quantum dots. Appl. Phys. Lett. 92, 063116 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the MBE group of the “Instituto de Microelectrónica de Madrid (IMM-CNM-CSIC)” where these works were carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Alonso-González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Alonso-González, P., Martín-Sánchez, J. (2014). Fabrication of Semiconductor Quantum Dot Molecules: Droplet Epitaxy and Local Oxidation Nanolithography Techniques. In: Wu, J., Wang, Z. (eds) Quantum Dot Molecules. Lecture Notes in Nanoscale Science and Technology, vol 14. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8130-0_1

Download citation

Publish with us

Policies and ethics