Skip to main content

Tamoxifen and Irinotecan Pharmacogenomics

  • Chapter
  • First Online:
Molecular Diagnostics

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

  • 2120 Accesses

Abstract

Pharmacogenomics is defined as the use of a person’s genetic information to individualize treatment. This is a burgeoning field which is starting to have a major impact on many areas in medicine. Notable examples are the following: The use of cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase complex subunit 1 (VKORC1) genotyping to predict response to warfarin, the use of serotonin transporter (SLC6A4) promoter length polymorphism for prediction of response to serotonin reuptake inhibitors, the use of CYP2C19 genotyping to predict response to clopidogrel, the use of HLA-B*5701 genotyping to predict hypersensitivity reactions to abacavir, and the use of HLA-B*1502 genotyping to identifying individuals of Asian ancestry who are at risk of developing Stevens–Johnson syndrome and toxic epidermal necrolysis when administered carbamazepine, phenytoin, or fosphenytoin therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeSantis C, Siegel R, Bandi P, Jemal A. Breast cancer statistics, 2011. CA Cancer J Clin. 2011;61(6):409–18. doi:10.3322/caac.20134.

    Article  PubMed  Google Scholar 

  2. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin. 2006;56:106–30.

    Article  PubMed  Google Scholar 

  3. Micromedex® Healthcare Series [intranet database] version 5.1. Greenwood Village, Colo: Thomson Reuters (Healthcare) Inc.

    Google Scholar 

  4. Desta Z, Ward B, Soukhova N, Flockhart DA. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther. 2004;310:1062–75.

    Article  PubMed  CAS  Google Scholar 

  5. Goetz MP, Rae JM, Suman VJ, et al. Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol. 2005;23:9312–8.

    Article  PubMed  CAS  Google Scholar 

  6. Goetz M, Knox S, Suman V, et al. The impact of cytochrome P450 2D6 metabolism in women receiving adjuvant tamoxifen. Breast Cancer Res Treat. 2007;101:113–21.

    Article  PubMed  CAS  Google Scholar 

  7. Bonanni B, Macis D, Maisonneuve P, et al. Polymorphism in the CYP2D6 tamoxifen-metabolizing gene influences clinical effect but not hot flashes: data from the Italian Tamoxifen Trial. J Clin Oncol. 2006;24:3708–9.

    Article  PubMed  Google Scholar 

  8. Schroth W, Antoniadou L, Fritz P, et al. Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol. 2007;25:5187–93.

    Article  PubMed  CAS  Google Scholar 

  9. Xu Y, Sun Y, Yao L, et al. Association between CYP2D6*10 genotype and survival of breast cancer patients receiving tamoxifen treatment. Ann Oncol. 2008;19:1423–9.

    Article  PubMed  CAS  Google Scholar 

  10. Schroth W, Goetz M, Hamann U, et al. Association between CYP2D6 polymorphisms and outcomes amoung women with early stage breast cancer treated with tamoxifen. JAMA. 2009;302:1429–36.

    Article  PubMed  CAS  Google Scholar 

  11. Ramon y Cajal T, Altes A, Pare L, et al. Impact of CYP2D6 polymorphisms in tamoxifen adjuvant breast cancer treatment. Breast Cancer Res Treat. 2010;119:33–8.

    Article  PubMed  CAS  Google Scholar 

  12. Kiyotani K, Mushiroda T, Sasa M, et al. Impact of CYP2D6*10 on recurrence-free survival in breast cancer patients receiving adjuvant tamoxifen therapy. Cancer Sci. 2008;99:995–9.

    Article  PubMed  CAS  Google Scholar 

  13. Newman W, Hadfield K, Latif A, et al. Impaired tamoxifen metabolism reduces survival in familial breast cancer patients. Clin Cancer Res. 2008;14:5913–8.

    Article  PubMed  CAS  Google Scholar 

  14. Nowell S, et al. Association of genetic variation in tamoxifen-metabolizing enzymes with overall survival and recurrence of disease in breast cancer patients. Breast Cancer Res Treat. 2005 Jun;91(3):49–58.

    Google Scholar 

  15. Wegman P, Elingarami S, Carstensen J, Stal O, Nordenskjold B, Wingren S. Genetic variants of CYP3A5, CYP2D6, SULT1A1, UGT2B15, and tamoxifen response in postmenopausal patients with breast cancer. Breast Cancer Res. 2007;9:R7.

    Article  PubMed  Google Scholar 

  16. Wegman P, Vainikka L, Stal O, et al. Genotype of metabolic enzymes and the benefit of tamoxifen in postmenopausal breast cancer patients. Breast Cancer Res. 2005;7:R284–90.

    Article  PubMed  CAS  Google Scholar 

  17. Okishiro M, Taguchi T, Jin K, Shimazu K, Tamaki Y, Noguchi S. Genetic polymorphisms of CYP2D6*10 and CYP2C19*2, *3 are not associated with prognosis, endometrial thickness, or bone mineral density in Japanese breast cancer patients treated with adjuvant tamoxifen. Cancer. 2009;115:952–61.

    Article  PubMed  CAS  Google Scholar 

  18. Lammers L, Mathijssen R, Van Gelder T, et al. The impact of CYP2D6-predicted phenotype on tamoxifen treatment outcome in patietns with metastatic breast cancer. Br J Cancer. 2010;103:765–71.

    Article  PubMed  CAS  Google Scholar 

  19. Stingl J, Parmar S, Huber-Weschselberger A, et al. Impact of CYP2D6*4 genotype on progression free survival in tamoxifen breast cancer treatment. Curr Med Res Opin. 2010;26:2535–42.

    Article  PubMed  CAS  Google Scholar 

  20. Lim J, Chen X, Singh O, et al. Impact of CYP2D6, CYP3A5, CYP2C9, and CYP2C19 polymorphisms on tamoxifen pharmacokinetics in Asian breast cancer patients. Br J Clin Pharmacol. 2011;71:737–50.

    Article  PubMed  CAS  Google Scholar 

  21. Madlensky L, Natarajan L, Tchu S, et al. Tamoxifen metabolite concentrations, CYP2D6 genotype, and breast cancer outcomes. Clin Pharmacol Ther. 2011;89:718–25.

    Article  PubMed  CAS  Google Scholar 

  22. Seruga B, Amir E. Cytochrome P450 2D6 and outcomes of adjuvant tamoxifen therapy: results of a meta-analysis. Breast Cancer Res Treat. 2010;122:609–17.

    Article  PubMed  CAS  Google Scholar 

  23. Lash T, Lien E, Sorensen H, Hamilton-Dutoit S. Genotype-guided tamoxifen therapy: time to pause for reflection? Lancet Oncol. 2009;10:825–33.

    Article  PubMed  CAS  Google Scholar 

  24. Lundqvist E, Johansson I, Ingelman-Sundberg M. Genetic mechanisms for duplication and multiduplication of the CYP2D6 gene and methods for detection of duplicated CYP2D6 genes. Gene. 1999;226:327–38.

    Article  PubMed  CAS  Google Scholar 

  25. Black J, Walker D, O’Kane D, Harmandayan M. Frequency of undetected CYP2D6 hybrid genes in clinical samples: impact on phenotype prediction. Drug Metab Dispos. 2012;40(1):111–9. doi:10.1124/dmd.111.040832.

    Article  PubMed  CAS  Google Scholar 

  26. Hosono N, Kato M, Kiyotani K, et al. CYP2D6 genotype for functional-gene dosage analysis by allele copy number detection. Clin Chem. 2009;55:1546–54.

    Article  PubMed  CAS  Google Scholar 

  27. Kramer W, Walker D, O’Kane D, et al. CYP2D6: novel genomic structures and alleles. Pharmacogenet Genomics. 2009;19:813–22.

    Article  PubMed  CAS  Google Scholar 

  28. Ingelman-Sundberg M. Genetic polymorphisms of cytochrome p450 2D6 (CYP2D6) clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J. 2005;5:6–13.

    Article  PubMed  CAS  Google Scholar 

  29. Kirchheiner J, Nickchen K, Bauer M, et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry. 2004;9:442–73.

    Article  PubMed  CAS  Google Scholar 

  30. Steimer W, Zopf K, Von Amelunxen S, et al. Allele-specific change of concentration and functional gene dose for the prediction of steady-state serum concentrations of amitriptyline and nortriptyline in CYP2C19 and CY2D6 extensive and intermediate metabolizers. Clin Chem. 2004;50:1623–33.

    Article  PubMed  CAS  Google Scholar 

  31. Gaedigk A, Simon S, Pearce R, Bradford L, Kennedy M, Leeder J. The CYP2D6 activity score: translating genotype information into a qualitative measure of phenotype. Clin Pharmacol Ther. 2008;83:234–42.

    Article  PubMed  CAS  Google Scholar 

  32. Raimundi S, Fischer J, Eichelbaum M, Griese E, Schwab M, Zanger U. Elucidation of the genetic basis of the common ‘intermediate metabolizer’ phenotype for drug oxidation by CYP2D6. Pharmacogenetics. 2000;10:577–81.

    Article  Google Scholar 

  33. Bapiro T, Hasler J, Ridderstrom M, Masimirembwa C. The molecular and enzyme basis for the diminished activity of the cytochrome P450 2D6.17 variant. Biochem Pharmacol. 2002;64:1387–98.

    Article  PubMed  CAS  Google Scholar 

  34. Yu A, Kneller B, Rettie A, Haining R. Expression, purification, biochemical characterization, and comparative function of human cytochrome P450 2D6.1, 2D6.2, 2D6.10, and 2D6.17 allelic isoforms. J Pharmacol Exp Ther. 2002;303:1291–300.

    Article  PubMed  CAS  Google Scholar 

  35. Raimundo S, Toscano C, Klein K, et al. A novel intronic mutation, 2988G > A, with high predictivity for impaired function of cytochrome P450 2D6 in white subjects. Clin Pharmacol Ther. 2004;76:128–38.

    Article  PubMed  CAS  Google Scholar 

  36. Abduljalil K, Frank D, Gaedigk A, et al. Assessment of activity levels for CYP2D6*1, CYP2D6*2, and CYP2D6*41 genes by population pharmacokinetics of dextromethorphan. Clin Pharmacol Ther. 2010;88:643–51.

    Article  PubMed  CAS  Google Scholar 

  37. Lovlie R, Daly AK, Matre GE, Molven A, Steen VM. Polymorphisms in CYP2D6 duplication-negative individuals with the ultrarapid metabolizer phenotype: a role for the CYP2D6*35 allele in ultrarapid metabolism? Pharmacogenetics. 2001;11:45–55.

    Article  PubMed  CAS  Google Scholar 

  38. Zanger U, Fischer J, Raimundo S, et al. Comprehensive analysis of the genetic factors determining expression and function of hepatic CYP2D6. Pharmacogenetics. 2001;11:573–85.

    Article  PubMed  CAS  Google Scholar 

  39. American Cancer Society. Colorectal cancer facts and figures 2011–2013. Atlanta: American Cancer society; 2011.

    Google Scholar 

  40. Wasserman E, Myara A, Lokiec F, et al. Severe CPT-11 toxicity in patients with Gilbert’s syndrome: two case reports. Ann Oncol. 1997;8:1049–51.

    Article  PubMed  CAS  Google Scholar 

  41. Schulz C, Boeck S, Heinemann V, Stemmler H-J. UGT1A1 genotyping: a predictor of irinotecan-associated side effects and drug efficacy? Anticancer Drugs. 2009;20:867–79.

    Article  PubMed  CAS  Google Scholar 

  42. Xie R, Mathijssen R, Sparreboom A, Verweij J, Karlsson M. Clinical pharmacokinetics of irinotecan and its metabolites in relation with diarrhea. Clin Pharmacol Ther. 2002;72:265–75.

    Article  PubMed  CAS  Google Scholar 

  43. McLeod HL, Parodi L, Sargent D, et al. UGT1A1*28, toxicity and outcome in advanced colorectal cancer: results from trial N9741. ASCO Annual Meeting Proceedings Part I. J Clin Oncol. 2006;24:18S; Abstract 3520.

    Google Scholar 

  44. Iyer L, Das S, Janisch L, et al. UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J. 2002;2:43–7.

    Article  PubMed  CAS  Google Scholar 

  45. Innocenti F, Undevia S, Iyer L, et al. Genetic variants in the UDP-flucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol. 2004;22:1382–8.

    Article  PubMed  CAS  Google Scholar 

  46. Ando Y, Saka H, Ando M, et al. Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res. 2000;60:6921–6.

    PubMed  CAS  Google Scholar 

  47. Toffoli G, Cecchin E, Corona G, et al. The role of UGT1A1*28 polymorphism in the pharmacodynamics and pharmacokinetics of irinotecan in patients with metastatic colorectal cancer. J Clin Oncol. 2006;24:3061–8.

    Article  PubMed  CAS  Google Scholar 

  48. Rouits E, Boisdron-Celle M, Dumont A, Guerin O, Morel A, Gamelin E. Relevance of different UGT1A1 polymorphisms in irinotecan-induced toxicity: a molecular and clinical study of 75 patients. Clin Cancer Res. 2004;10:5151–9.

    Article  PubMed  CAS  Google Scholar 

  49. Roth A, Yan P, Dietrich D, et al. Does UGT1A1*28 homozygosity predict for severe toxicity in patients treated with 5-fluorouracil (5-FU)-irinotecan (IRI)? Results of the PETACC 3-EORTC 40993-SAKK 60/00 trial comparing IRI/5-FU/folinic acid (FA) to 5-FU/FA in stage II-III colon cancer. Gastrointestinal Cancers Symposium 2008:Abstract No. 277.

    Google Scholar 

  50. Liu C, Chen P, Chiou T, et al. UGT1A1*28 polymorphism predicts irinotecan-induced severe toxicities without affecting treatment outcome and survival in patients with metastatic colorectal carcinoma. Cancer. 2008;112:1932–40.

    Article  PubMed  CAS  Google Scholar 

  51. Kweekel D, Gelderblom H, Van der Straaten T, Antonini N, Punt C, Guchelaar H. UGT1A1*28 genotype and irinotecan dosage in patients with metastatic colorectal cancer: a Dutch Colorectal Cancer Group study. Br J Cancer. 2008;99:275–82.

    Article  PubMed  CAS  Google Scholar 

  52. Cote J, Kirzin S, Kramar A, et al. UGT1A1 polymorphism can predict hematologic toxicity in patients treated with irinotecan. Clin Cancer Res. 2007;13:3269–75.

    Article  PubMed  CAS  Google Scholar 

  53. Marcuello E, Altes A, Menoyo A, Del Rio E, Gomez-Pardo M, Baiget M. UGT1A1 gene variations and irinotecan treatment in patients with metastatic colorectal cancer. Br J Cancer. 2004;91:678–82.

    PubMed  CAS  Google Scholar 

  54. Seymour M, Braun M, Richman S, et al. Association of molecular markers with toxicity in a randomized trial of chemotherpya for advanced colorectal cancer (FOCUS). ASCO Annual Meeting Proceedings Part I. J Clin Oncol. 2006;24:18S; (June 20 Supplement), Abstract No. 2022.

    Google Scholar 

  55. Font A, Sanchez J, Taron M, et al. Weekly regimen of inirotecan/docetaxel in previously treated non-small cell lung cancer patients and correlation with uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) polymorphism. Invest New Drugs. 2003;21:435–43.

    Article  PubMed  CAS  Google Scholar 

  56. Schulz C, Heinemann V, Schalhorn A, et al. UGT1A1 gene polymorphisms: impact on toxicity and efficacy of irinotecan-based regimens in metastatic colorectal cancer. World J Gastroenterol. 2009;15:5058–66.

    Article  PubMed  CAS  Google Scholar 

  57. Innocenti F, Kroetz D, Schuetz E, et al. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J Clin Oncol. 2009;27:2604–14.

    Article  PubMed  CAS  Google Scholar 

  58. Cecchin E, Innocenti F, D’Andrea M, et al. Predictive role of the UGT1A1, UGT1A7, and UGT1A9 genetic variants and their haplotypes on the outcome of metastatic colorectal cancer patients treated with fluorouracil, leucovorin and irinotecan. J Clin Oncol. 2009;27:2457–65.

    Article  PubMed  CAS  Google Scholar 

  59. Akiyama Y, Fujita K, Nagashima F, et al. Genetic testing for UGT1A1*28 and *6 in Japanese patients who receive irinotecan chemotherapy. Ann Oncol. 2008;19:2089–94.

    Article  PubMed  CAS  Google Scholar 

  60. Nakamura Y, Soda H, Oka M, et al. Randomized phase II trial of irinotecan with Paclitaxel or Gemcitabine for non-small cell lung cancer. J Thorac Oncol. 2011;6:121–7.

    Article  PubMed  Google Scholar 

  61. Takane H, Kawamoto K, Sasaki T, et al. Life-threatening toxicities in a patient iwth UGT1A1*6/*28 and SLCO1B1*15/*15 genotypes after irinotecan-based chemotherapy. Cancer Chemother Pharmacol. 2009;63:1165–9.

    Article  PubMed  Google Scholar 

  62. Saito Y, Sai K, Maekawa K, et al. Close association of UGT1A9 IVS1+399C>T with UGT1A1*28, *6, or *60 haplotype and its apparent influence on 7-ethyl-10-hydroxycamptothecin (SN-38) glucuronidation in Japanese. Drug Metab Dispos. 2009;37:272–6.

    Article  PubMed  CAS  Google Scholar 

  63. Ikediobi O, Shin J, Nussbaum R, et al. Addressing the challenges of the clinical application of pharmacogenetic testing. Clin Pharmacol Ther. 2009;86:28–31.

    Article  PubMed  CAS  Google Scholar 

  64. Palomaki G, Bradley L, Douglas M, Kolor K, Dotson W. Can UGT1A1 genotyping reduce morbidity and mortality in patietns with metastatic colorectal cancer treated with irinotecan? An evidence-based review. Genet Med. 2009;11:21–34.

    Article  PubMed  CAS  Google Scholar 

  65. Gong Q-H, Cho J, Huang T, et al. Thirteen UDP-glucuronosyltransferase genes are encoded at the human UGT1 gene complex locus. Pharmacogenomics. 2001;11:357–68.

    Article  CAS  Google Scholar 

  66. Beutler E, Gelbart T, Demina A. Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism? Proc Natl Acad Sci USA. 1998;95:8170–4.

    Article  PubMed  CAS  Google Scholar 

  67. Onoue M, Terada T, Kobayashi M, et al. UGT1A1*6 polymorphism is most predictive of severe neutropenia induced by irinotecan in Japanese cancer patients. Int J Clin Oncol. 2009;14:136–42.

    Article  PubMed  CAS  Google Scholar 

  68. Innocenti F, Grimsley C, Das S, et al. Haplotype structure of the UDP-glucuronosyltransferase 1A1 promoter in different ethnic groups. Pharmacogenetics. 2002;12:725–33.

    Article  PubMed  CAS  Google Scholar 

  69. Klein T, Chang J, Cho M, et al. Integrating genotype and phenotype information: an overview of the PharmGKB project. Pharmacogenomics J. 2001;1:167–70.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Logan Black III M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Black, J.L. (2014). Tamoxifen and Irinotecan Pharmacogenomics. In: Highsmith, Jr., W. (eds) Molecular Diagnostics. Molecular and Translational Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-8127-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8127-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-8126-3

  • Online ISBN: 978-1-4614-8127-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics