Lab on a Wire: Application of Silicon Nanowires for Nanoscience and Biotechnology

  • Larysa Baraban
  • Felix Zörgiebel
  • Claudia Pahlke
  • Eunhye Baek
  • Lotta Römhildt
  • Gianaurelio Cuniberti


Synergy between biochemistry, medicine, and material science during last decade has led to a tremendous scientific progress in the fields of biodetection and nanomedicine. This tight interaction led to the emergence of a new class of bioinspired systems. These systems are based upon utilizing nanomaterials such as nanoparticles, carbon nanotubes, or nanowires as transducers for producing novel sensor devices, or sophisticated drug delivery agents. This chapter focuses on the developments made in the area of silicon nanowire-based devices and their applications in the diverse areas of nano- and biotechnologies. Firstly, the incorporation of silicon nanowires into the electrical circuits is discussed, together with the sensing mechanism of the devices. In particular, the discussion is directed toward the most important aspects of the fabrication and functioning of the sensors, as well as the issues regarding the organic molecules interfacing with the silicon surface. Moreover, the complex interactions of organic species with nanoscale matter are addressed to as well as the need for sophisticated integration and packaging of the subsystems on a single chip. Finally, the perspectives of the potential applications of the silicon nanowires for biodetection and drug delivery are presented. Thus, the concept of “lab on a wire” is introduced as a set of approaches to engineer the nanowires and to enrich their functionality and potential applications in nanoscience and biotechnology.


High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Gate Voltage Peptide Nucleic Acid Sensor Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Silicon nanowires


Field-effect transistors




Schottky barrier


Vacuum level


Highest occupied molecular orbital


Lowest unoccupied molecular orbital


X-ray photoelectron spectroscopy


Attenuated total reflectance-Infrared


Self-assembled monolayer


Staphylococcus aureus enterotoxin B


Single-stranded DNA


Deoxyribonucleic acids


Peptide nucleic acids


Systematic evolution of ligands by exponential enrichment


Vascular endothelial growth factor


  1. 1.
    Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56–58.CrossRefGoogle Scholar
  2. 2.
    Wu, Y., Xiang, J., Chen, Y., Wei, L., & Lieber, C. M. (2004). Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature, 430(6995), 61–65.CrossRefGoogle Scholar
  3. 3.
    Nerowski, A., Poetschke, M., Bobeth, M., Opitz, J., & Cuniberti, G. (2012). Dielectrophoretic growth of platinum nanowires: Concentration and temperature dependence of the growth velocity. Langmuir, 28(19), 7498–7504.CrossRefGoogle Scholar
  4. 4.
    Cui, Y., Wei, Q., Park, H., & Lieber, C. M. (2001). Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 293, 1289–1292.CrossRefGoogle Scholar
  5. 5.
    Patolsky, F., Zheng, G., Hayden, O., Lakadamyali, M., Zhuang, X., & Lieber, C. M. (2004). Electrical detection of single viruses. Proceedings of the National Academy of Sciences of the United States of America, 101(39), 14017–14022.CrossRefGoogle Scholar
  6. 6.
    Zheng, G., Patolsky, F., Cui, Y., Wang, W. U., & Lieber, C. M. (2005). Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnology, 23(10), 1294–1301.CrossRefGoogle Scholar
  7. 7.
    Li, Z., Chen, Y., Li, X., Kamins, T. I., Nauka, K., & Williams, R. S. (2004). Sequence specific label-free DNA sensor on silicon nanowires. Nano Letters, 4, 245–247.CrossRefGoogle Scholar
  8. 8.
    Park, I., Li, Z., Pisano, A. P., & Williams, R. S. (2010). Top-down fabricated silicon nanowire sensors for real-time chemical detection. Nanotechnology, 21(1), 9. 015501.CrossRefGoogle Scholar
  9. 9.
    Pregl, S., Weber, W.M., Nozaki, D., Kunstmann, J., Baraban, L., Opitz, J., Mikolajick, T., Cuniberti, G. (2013). Parallel arrays of Schottky barrier nanowire field effect transistors: Nanoscopic effects for macroscopic current output. Nano Research, DOI:  10.1007/s12274-013-0315-9.
  10. 10.
    Gao, X. P. A., Zheng, G., & Lieber, C. M. (2010). Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. Nano Letters, 10(2), 547–552.CrossRefGoogle Scholar
  11. 11.
    Knopfmacher, O., Tarasov, A., Fu, W., Wipf, M., Niesen, B., Calame, M., et al. (2010). Nernst Limit in Dual-Gated Si-Nanowire FET Sensors. Nano Letters, 10(6), 2268–2274.CrossRefGoogle Scholar
  12. 12.
    Spijkman, M., Smits, E. P. C., Cillessen, J. F. M., Biscarini, F., Blom, P. W. M., & de Leeuw, D. M. (2011). Beyond the Nernst-limit with dual-gate ZnO ion-sensitive field-effect transistors. Applied Physics Letters, 98(4), 043502.CrossRefGoogle Scholar
  13. 13.
    Weber, W., Graham, A.P., Duesberg, G.S., Liebau, M., Cheze, C., Geelhaar, L., Unger, E., Pamler, W., Hoenlein, W., Riechert, H., Kreupl, F., & Lugli, P. (2008) Tuning the Polarity of Si-Nanowire Transistors Without the Use of Doping. In Nanotechnology, 2008. NANO’08. 8th IEEE Conference on (pp. 580–581). IEEE Xplore.Google Scholar
  14. 14.
    Heinzig, A., Slesazeck, S., Kreupl, F., Mikolajick, T., & Weber, W. M. (2012). Reconfigurable silicon nanowire transistors. Nano Letters, 12(1), 119–124.CrossRefGoogle Scholar
  15. 15.
    Martin, D., Heinzig, A., Grube, M., Geelhaar, L., Mikolajick, T., Riechert, H., et al. (2011). Direct Probing of Schottky Barriers in Si Nanowire Schottky Barrier Field Effect Transistors. Physical Review Letters, 107(21), 216807.CrossRefGoogle Scholar
  16. 16.
    Cherns, D., Anstis, G. R., Hutchison, L., & Spence, J. C. H. (1982). Atomic structure of the NiSi 2/(111) Si interface. Philosophical Magazine A, 46(5), 849–862.CrossRefGoogle Scholar
  17. 17.
    Mi, S. B., Jia, C. L., Urban, K., Zhao, Q. T., & Mantl, S. (2009). NiSi2/Si interface chemistry and epitaxial growth mode. Acta Materialia, 57(1), 232–236.CrossRefGoogle Scholar
  18. 18.
    Elnathan, R., et al. (2012). Biorecognition layer engineering: Overcoming screening limitations of nanowire-based FET devices. Nano Letters, 12(10), 5245–5254.CrossRefGoogle Scholar
  19. 19.
    Patolsky et al. (2006). Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science, 313, 1100–1104. 5790.CrossRefGoogle Scholar
  20. 20.
    Tian, H., & Feng, Y. (2008). Next step of photochromic switches? Journal of Materials Chemistry, 18, 1617–1622.CrossRefGoogle Scholar
  21. 21.
    Russew, M., & Hecht, S. (2010). Photoswitches: from molecules to materials. Advanced Materials, 22, 3348–3360.CrossRefGoogle Scholar
  22. 22.
    Browne, W. R., & Feringa, B. L. (2009). Light switching of molecules on surfaces. Annual Review of Physical Chemistry, 60, 407–428.CrossRefGoogle Scholar
  23. 23.
    Kadish, K. M., Smith, K. M., & Guilar, R. (2003). The porphyrin handbook: Inorganic, organometallic and coordination chemistry (Vol. 3). New York: Academic Press.Google Scholar
  24. 24.
    Lshii, H., Sugiyama, K., Ito, E., & Seki, K. (1999). Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Advanced Materials, 11(8), 505–625.Google Scholar
  25. 25.
    Dietrich, P., Michalik, F., Schmidt, R., Gahl, C., Mao, G., Breusing, M., et al. (2008). An anchoring strategy for photoswitchable biosensor technology: azobenzene-modified SAMs on Si(111). Applied Physics A, 93, 285–292.CrossRefGoogle Scholar
  26. 26.
    Pei, X., Fernandes, A., Mathy, B., Laloyaux, X., Nysten, B., Riant, O., et al. (2011). Correlation between the structure and wettability of photoswitchable hydrophilic azobenzene monolayers on silicon. Langmuir, 27, 9403–9412.CrossRefGoogle Scholar
  27. 27.
    Lv, Xiaojun, Changc, Haixin, & Zhang, Hao. (2011). Photoelectrochemical switch based on cis-Azobenzene chromophore modified TiO2 nanowires. Optics Communications, 284(20), 4991–4995.CrossRefGoogle Scholar
  28. 28.
    Li, C., Ly, J., Lei, B., Fan, W., Zhang, D., Han, J., et al. (2004). Data storage studies on nanowire transistors with self-assembled porphyrin molecules. The Journal of Physical Chemistry B, 108, 9646–9649.CrossRefGoogle Scholar
  29. 29.
    Li, Q., Surthi, S., Mathur, G., Gowda, S., Zhao, Q., Sorenson, T. A., et al. (2004). Multiple-bit storage properties of porphyrin monolayers on SiO2. Applied Physics Letters, 85(10), 1829–1831.CrossRefGoogle Scholar
  30. 30.
    Khaderbad, M. A., Roy, U., Yedukondalu, M., Rajesh, M., Ravikanth, M., & Ramgopal Rao, V. (2010). Variable interface dipoles of metallated porphyrin self-assembled monolayers for metal-gate work function tuning in advanced CMOS technologies. IEEE Transactions on Nanotechnology, 9(3), 335–337.CrossRefGoogle Scholar
  31. 31.
    Choi, S.-J., Lee, Y.-C., Seol, M.-L., Ahn, J.-H., Kim, S., Moon, D.-I., et al. (2011). Bio-inspired complementary photoconductor by porphyrin-coated silicon nanowires. Advanced Materials, 23, 3979–3983.CrossRefGoogle Scholar
  32. 32.
    Seol, M.-L., Choi, S.-J., Kim, C.-H., Moon, D.-I., & Choi, Y.-K. (2012). Porphyrin silicon hybrid field-effect transistor with individually addressable top-gate structure. ACS Nano, 6(1), 183–189.CrossRefGoogle Scholar
  33. 33.
    Zidon, Y., Shapira, Y., & Dittrich, Th. (2007). Illumination induced charge separation at tetraphenyl-porphyrin/metal oxide interfaces. Journal of Applied Physic, 102, 053705.CrossRefGoogle Scholar
  34. 34.
    Winkelmann, C. B., Ionica, I., Chevalier, X., Royal, G., Bucher, C., & Bouchiat, V. (2007). Optical switching of porphyrin-coated silicon nanowire field effect transistors. Nano Letters, 7(6), 1454–1458.CrossRefGoogle Scholar
  35. 35.
    Bi, X., Agarwal, A., & Yang, K. L. (2009). Oligopeptide-modified silicon nanowire arrays as multichannel metal ion sensors. Biosensors & Bioelectronics, 24(11), 3248–3251.CrossRefGoogle Scholar
  36. 36.
    Chambers, J. P., Arulanandam, B. P., Matta, L. L., & Valdes, J. J. (2008). Biosensor recognition elements. Curr Issues Mol Biol, 10(12), 1–12.Google Scholar
  37. 37.
    Stern, E., Wagner, R., Sigworth, F. J., Breaker, R., Fahmy, T. M., & Reed, M. A. (2007). Importance of the debye screening length on nanowire field effect transistor sensors. Nano Letters, 7, 3405–3409.CrossRefGoogle Scholar
  38. 38.
    Bunimovich, Y., Shin, Y., Yeo, W., & Amori, M. (2006). Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. Journal of the American Chemical Society, 128(50), 16323–16331.CrossRefGoogle Scholar
  39. 39.
    Bocking, T., James, M., Coster, H., Chilcott, T., & Barrow, K. (2004). Structural characterization of organic multilayers on silicon (111) formed by immobilization of molecular films on functionalized Si-C linked monolayers. Langmuir, 20, 9227–9235.CrossRefGoogle Scholar
  40. 40.
    Dugas, V., Elaissari, A., & Chevalier, Y. (2010). Surface sensitization techniques and recognition receptors immobilization on biosensors and microarrays. In Recognition Receptors in Biosensors (pp. 47–134), Zourob, M., Ed., Springer, New York.Google Scholar
  41. 41.
    Chu, C.-J., Yeh, C.-S., Liao, C.-K., Tsai, L.-C., Huang, C.-M., Lin, H.-Y., et al. (2013). Improving nanowire sensing capability by electrical field alignment of surface probing molecules. Nano Letters,. doi: 10.1021/nl400645j.Google Scholar
  42. 42.
    Hermanson, G. T. (2008). Bioconjugated Techniques. Academic Press pp. 1–1233 .Google Scholar
  43. 43.
    Lee, H., Kim, K., Kim, C., Hahn, S., & Jo, M. (2009). Electrical detection of VEGFs for cancer diagnoses using anti-vascular endothelial growth factor aptamer-modified Si nanowire FETs. Biosensors & Bioelectronics, 24, 1801–1805.CrossRefGoogle Scholar
  44. 44.
    Misra, N., Martinez, J., Huang, S., Wang, Y., Stroeve, P., Grigoropoulos, C., et al. (2009). Bioelectronic silicon nanowire devices using functional membrane proteins. Proceedings of the National Academy of Sciences of the United States of America, 106, 13780.CrossRefGoogle Scholar
  45. 45.
    Gao, R., Strehle, S., Tian, B., Cohen-Karni, T., Xie, P., Duan, X., et al. (2012). Outside looking in: Nanotube transistor intracellular sensors. Nano Letters, 12, 3329–3333.CrossRefGoogle Scholar
  46. 46.
    O’Sullivan, C. K. (2002). Aptasensors–the future of biosensing? Anal Bioanal Chem, 372, 44–48.CrossRefGoogle Scholar
  47. 47.
    Mishra, N. N., Maki, W. C., Cameron, E., Nelson, R., Winterrowd, P., Rastogi, S. K., et al. (2008). Ultra-sensitive detection of bacterial toxin with silicon nanowire transistor. Lab on a Chip, 8, 868–871.CrossRefGoogle Scholar
  48. 48.
    Pauling, L., Corey, R. B., & Branson, H. R. (1951). The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain. Proceedings of the National Academy of Sciences of the United States of America, 37(4), 205–211.CrossRefGoogle Scholar
  49. 49.
    Bi, X., Agarwal, A., & Yang, K. L. (2009). Oligopeptide-modified silicon nanowire arrays as multichannel metal ion sensors. Biosensors & Bioelectronics, 24(11), 3248–3251.CrossRefGoogle Scholar
  50. 50.
    Smith, G. P. (1985). Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science, 228, 1315–1317.CrossRefGoogle Scholar
  51. 51.
    Pande, J., Szewczyk, M. M., & Grover, A. K. (2010). Phage display: Concept, innovations, applications and future. Biotechnology Advances, 28(6), 849–858.CrossRefGoogle Scholar
  52. 52.
    Paschke, M. (2006). Phage display systems and their applications. Appl Microbiol Biotechnol, 70(1), 2–11.CrossRefGoogle Scholar
  53. 53.
    Kehoe, J. V., & Kay, B. K. (2005). Filamentous phage display in the new millennium. Chemical Reviews, 105(11), 4056–4072.CrossRefGoogle Scholar
  54. 54.
    Mao, C., Liu, A., & Cao, B. (2009). Virus-based chemical and biological sensing. Angewandte Chemie International Edition, 48(37), 6790–6810.CrossRefGoogle Scholar
  55. 55.
    Sassolas, A., Leca-Bouvier, B. D., & Blum, L. J. (2008). DNA biosensors and microarrays. Chemical Reviews, 108(1), 109–139.CrossRefGoogle Scholar
  56. 56.
    Hahm, J., & Lieber, C. M. (2004). Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Letters, 1904(1), 51–54.CrossRefGoogle Scholar
  57. 57.
    Ellington, A. D., & Szostak, J. W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature, 346, 818–822.CrossRefGoogle Scholar
  58. 58.
    Menger, M., Glökler, J., & Rimmele, M. (2006). Application of aptamers in therapeutics and for small-molecule detection. Handbook of Experimental Neuropharmacology 894(173), 359–373.Google Scholar
  59. 59.
    Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E. H., & Toole, J. J. (1992). Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature, 355, 564–566.CrossRefGoogle Scholar
  60. 60.
    Russo Krauss, I., Merlino, A., Randazzo, A., Novellino, E., Mazzarella, L., & Sica, F. (2012). High-resolution structures of two complexes between thrombin and thrombin-binding aptamer shed light on the role of cations in the aptamer inhibitory activity. Nucleic Acids Research, 40, 8119–8128.CrossRefGoogle Scholar
  61. 61.
    Stoltenburg, R., Nikolaus, N., & Strehlitz, B. (2012) Capture-SELEX: Selection of DNA Aptamers for Aminoglycoside Antibiotics. Journal of Analytical Methods in Chemistry,902 415697.Google Scholar
  62. 62.
    Chiu, T. (2009). Aptamer-functionalized nano-biosensors. Sensors, 9, 10356–10388.Google Scholar
  63. 63.
    Kim, K., Lee, H., Yang, J., Jo, M., & Hahn, S. (2009). The fabrication, characterization and application of aptamer-functionalized Si-nanowire FET biosensors. Nanotechnology, 20, 235501.CrossRefGoogle Scholar
  64. 64.
    Chen, H.-H., Chien, C.-C., Petibois, C., Wang, C.-L., Chu, Y. S., Lai, S.-F., et al. (2011). Quantitative analysis of nanoparticle internalization in mammalian cells by high resolution X-ray microscopy. Journal of Nanobiotechnology, 9, 14.CrossRefGoogle Scholar
  65. 65.
    Rim, H. P., Min, K. H., Lee, H. J., Jeong, S. Y., & Lee, S. C. (2011). pH-Tunable calcium phosphate covered mesoporous silica nanocontainers for intracellular controlled release of guest drugs. Angewandte Chemie International Edition, 123(38), 9015–9019.CrossRefGoogle Scholar
  66. 66.
    Peng, F., Su, Y., Wei, X., Lu, Y., Zhou, Y., Zhong, Y., et al. (2013). Silicon-nanowire-based nanocarriers with ultrahigh drug-loading capacity for in-vitro and in-vivo cancer therapy. Angewandte Chemie International Edition, 52(5), 1457–1461.CrossRefGoogle Scholar
  67. 67.
    Kim, W., Ng, J. K., Kunitake, M. E., Conklin, B. R., & Yang, P. (2007). Interfacing silicon nanowires with mammalian cells. Journal of the American Chemical Society, 129, 7228–7229.CrossRefGoogle Scholar
  68. 68.
    Salata, O. (2004). Applications of nanoparticles in biology and medicine. Journal of Nanobiotechnology, 2, 3.CrossRefGoogle Scholar
  69. 69.
    Taton, T. A. (2002). Nanostructures as tailored biological probes. Trends Biotechnol, 20, 277–279.CrossRefGoogle Scholar
  70. 70.
    Whitesides, G. M. (2003). The “right” size in nanotechnology. Nature Biotechnology, 21, 1161–1165.CrossRefGoogle Scholar
  71. 71.
    Mazzola, L. (2003). Commercializing nanotechnology. Nature Biotechnology, 21, 1137–1143.CrossRefGoogle Scholar
  72. 72.
    Bruchez, M., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A. P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science, 281, 2013–2016.CrossRefGoogle Scholar
  73. 73.
    Panatarotto, D., Prtidos, C. D., Hoebeke, J., Brown, F., Kramer, E., Briand, J. P., et al. (2003). Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody response. Chemistry & Biology, 10, 961–966.CrossRefGoogle Scholar
  74. 74.
    Sinani, V. A., Koktysh, D. S., Yun, B. G., Matts, R. L., Pappas, T. C., Motamedi, M., et al. (2003). Collagen coating promotes biocompatibility of semiconductor nanoparticles in stratified LBL films. Nano Letters, 3, 1177–1182.CrossRefGoogle Scholar
  75. 75.
    Zhang, Y., Kohler, N., & Zhang, M. (2002). Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials, 23, 1553–1561.CrossRefGoogle Scholar
  76. 76.
    Jiang, Z., Qing, Q., Xie, P., Gao, R., & Lieber, C. M. (2012). Kinked p–n Junction Nanowire Probes for High Spatial Resolution Sensing and Intracellular Recording. Nano Letters, 12, 1711–1716.CrossRefGoogle Scholar
  77. 77.
    Zhang, W., Tong, L., & Yang, C. (2012). Cellular Binding and Internalization of Functionalized Silicon Nanowires. Nano Letters, 12, 1002–1006.CrossRefGoogle Scholar
  78. 78.
    Marsh, M., & McMahon, H. T. (1999). The Structural Era of Endocytosis. Science, 285(5425), 215–220.CrossRefGoogle Scholar
  79. 79.
    Shalek, A. K., Robinson, J. T., Karp, E. S., Lee, J. S., Ahn, D. R., Yoon, M. H., et al. (2010). Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proceedings of the National Academy of Sciences of the United States of America, 107(5), 1870–1875.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Larysa Baraban
    • 1
  • Felix Zörgiebel
    • 1
    • 2
  • Claudia Pahlke
    • 1
  • Eunhye Baek
    • 1
  • Lotta Römhildt
    • 1
  • Gianaurelio Cuniberti
    • 1
    • 2
  1. 1.Institute for Materials Science and Max Bergmann Center of BiomaterialsTechnische Universität DresdenDresdenGermany
  2. 2.Center for Advancing Electronics DresdenTechnische Universität DresdenDresdenGermany

Personalised recommendations