Dilute Bismuthides on an InP Platform

  • Yujun Zhong
  • Pernell Dongmo
  • Joshua Zide
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 186)


Incorporating a small amount of bismuth into conventional III–V compounds (GaAs, InGaAs) creates materials known as dilute bismuthides. They have attracted increasing attention over recent years due to their unique optical and electrical properties. They are potential candidates for mid-infrared (mid-IR) devices because of the reduced band gap resulting from valence band anticrossing (VBAC). Meanwhile, they serve as good thermoelectric materials due to the combination of high thermoelectric power factor inherited from InGaAs and the reduced thermal conductivity caused by the incorporation of bismuth. One advantage of InGaBiAs on an InP platform over GaBiAs on GaAs is its possibility to grow a film lattice-matched to the substrate, which is more desirable in optoelectronics. The growth conditions of InGaBiAs on an InP platform by molecular beam epitaxy (MBE) are discussed in details. Similar to GaBiAs growths, low growth temperature and moderate Bi/As ratio are beneficial for bismuth to incorporate. The compositions of InGaBiAs samples are studied by high resolution X-ray diffraction (HRXRD) and Rutherford backscattering spectrometry (RBS). The results from reciprocal space mapping (RSM) indicate that most of the samples are nearly 100 % strained. The band gaps of InGaBiAs are measured by spectrophotometry and modeled by VBAC theory. The good agreement between the experimental and simulation shows an effective band gap reduction due to the incorporation of bismuth. Photo reflectance (PR) and contactless electroreflectance (CER) studies confirm the results from spectrophotometry and indicate the band gap between conduction band and spin orbit is not affected by the variation of bismuth concentration. Unintentionally doped InGaBiAs samples exhibit promising electrical properties comparable to InGaAs and expected lower thermal conductivity. N-type InGaBiAs:Si films with different doping levels show potential application in thermoelectrics and highly conductive materials are promising as contact materials for heterojunction bipolar transistor (HBT) and in other applications.


Carrier Concentration Seebeck Coefficient Thermoelectric Material Rutherford Backscattering Spectrometry Reciprocal Space Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to acknowledge our collaborators: Prof. Robert Kudrawiec and his group from Wroclaw University of Technology and Prof. Eoin O’Reilly and his group from Tyndall National Institute for the help of Sect. We also thank our collaborator: Prof. Patrick Hopkins and his group from University of Virginia with the helpful measurements of thermal conductivity. In addition, we thank Prof. James LeBeau and his group from North Carolina State University for the HAADF-STEM picture. Finally, we acknowledge the US Office of Naval Research for financial support, primarily through the Young Investigator Program.


  1. 1.
    Osamu Wada, H.H.: InP-Based Materials and Devices: Physics and Technology, p. 1. Wiley, New York (1999)Google Scholar
  2. 2.
    Lee, J.-H., Wu, J., Grossman, J.C.: Enhancing the thermoelectric power factor with highly mismatched isoelectronic doping. Phys. Rev. Lett. 104, 016602 (2010)Google Scholar
  3. 3.
    Alberi, K., Blacksberg, J., Bell, L.D., Nikzad, S., Yu, K.M., Dubon, O.D., Walukiewicz, W.: Band anticrossing in highly mismatched SnxGe1–x semiconducting alloys, Phys. Rev. B. 77, 073202 (2008)CrossRefGoogle Scholar
  4. 4.
    Vurgaftman, I., Meyer, J.R.: Band parameters for nitrogen-containing semiconductors, J. Appl. Phys. 94, 3675 (2003)CrossRefGoogle Scholar
  5. 5.
    Wu, J., Walukiewicz, W., Yu, K.M., Denlinger, J.D., Shan, W., Ager III, J.W., Kimura, A., Tang, H.F., Kuech, T.F.: Valence band hybridization in N-rich GaN1–xAsx alloys. Phys. Rev. B. 70, 115214 (2004)CrossRefGoogle Scholar
  6. 6.
    Walukiewicz, W., Shan, W., Yu, K., Ager, J., Haller, E., Miotkowski, I., Seong, M., Alawadhi, H., Ramdas, A.: Interaction of localized electronic states with the conduction band: band anticrossing in II-VI semiconductor ternaries. Phys. Rev. Lett. 85, 1552 (2000)CrossRefGoogle Scholar
  7. 7.
    Lu, X., Beaton, D.A., Lewis, R.B., Tiedje, T., Whitwick, M.B.: Effect of molecular beam epitaxy growth conditions on the Bi content of GaAs1–xBix.pdf. Appl. Phys. Lett. 92, 192110 (2008)CrossRefGoogle Scholar
  8. 8.
    Feng, G., Yoshimoto, M., Oe, K., Chayahara, A., Horino, Y.: New III-V Semiconductor InGaAsBi Alloy Grown by Molecular Beam Epitaxy. Jpn. J. Appl. Phys. 44, L1161 (2005)CrossRefGoogle Scholar
  9. 9.
    Norman, A.G., France, R., Ptak, A.J.: Atomic ordering and phase separation in MBE GaAs1–xBix. J. Vac. Sci. Technol. B. Microelectron. Nanometer. Struct. 29, 3 (2011)CrossRefGoogle Scholar
  10. 10.
    Kini, R.N., Bhusal, L., Ptak, A.J., France, R., Mascarenhas, A.: Electron Hall mobility in GaAsBi. J. Appl. Phys. 106, 043705 (2009)CrossRefGoogle Scholar
  11. 11.
    Feng, G., Oe, K., Yoshimoto, M.: Temperature dependence of Bi behavior in MBE growth of InGaAs/InP. J. Cryst. Growth. 301–302, 121 (2007)CrossRefGoogle Scholar
  12. 12.
    Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., Snyder, G.J.: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554 (2008)CrossRefGoogle Scholar
  13. 13.
    Oe, K.: Characteristics of Semiconductor Alloy GaAs1–xBix. Jpn. J. Appl. Phys. 41, 2801 (2002)CrossRefGoogle Scholar
  14. 14.
    Petropoulos, J.P., Zhong, Y., Zide, J.M.O.: Optical and electrical characterization of InGaBiAs for use as a mid-infrared optoelectronic material. Appl. Phys. Lett. 99, 031110 (2011)CrossRefGoogle Scholar
  15. 15.
    Tixier, S., Adamcyk, M., Tiedje, T., Francoeur, S., Mascarenhas, A., Wei, P., Schiettekatte, F.: Molecular beam epitaxy growth of GaAs1–xBix. Appl. Phys. Lett. 82, 2245 (2003)CrossRefGoogle Scholar
  16. 16.
    Zhong, Y., Dongmo, P.B., Petropoulos, J.P., Zide, J.M.O.: Effects of molecular beam epitaxy growth conditions on composition and optical properties of InxGa1–xBiyAs1–y. Appl. Phys. Lett. 100, 112110 (2012)CrossRefGoogle Scholar
  17. 17.
    Laukkanen, P., Pakarien, J., Ahola-Tuomi, M., Kuzmin, M., Perala, R.E., Vayrynen, I.J.: Structural and electronic properties of Bi-adsorbate-stabilized reconstructions on the InP(100) and GaAsxN1–x(100) surfaces. Phys. Rev. B. 74, 155302 (2006)CrossRefGoogle Scholar
  18. 18.
    Janotti, A., Wei, S.-H., Zhang, S.B.: Theoretical study of the effects of isovalent coalloying of Bi and N in GaAs. Phys. Rev. B. 65, 115203 (2002)CrossRefGoogle Scholar
  19. 19.
    Moram, M.A., Vickers, M.E.: X-ray diffraction of III-nitrides. Rep. Prog. Phys. 72, 036502 (2009)CrossRefGoogle Scholar
  20. 20.
    Hauenstein, R.J., Clemens, B.M., Miles, R.H., Marsh, O.J.: Strain relaxation kinetics in Si1–xGex/Si heterostructures. J. Vac. Sci. Technol. B. Microelectron. Nanometer. Struct. 7, 767 (1989)CrossRefGoogle Scholar
  21. 21.
    Matthews, J.W., Blaskeslee, A.E.: Defects in epitaxial multilayers. J. Cryst. Growth. 27, 118 (1974)Google Scholar
  22. 22.
    Tsao, J., Dodson, B., Picraux, S., Cornelison, D.: Critical stresses for SixGe1–x Strained-Layer Plasticity. Phys. Rev. Lett. 59, 2455 (1987)CrossRefGoogle Scholar
  23. 23.
    Vardar, G., Warren, M.V., Kang, M., Jeon, S., Goldman, R.S.: Mechanisms of droplet formation during ga(in)asbi molecular beam epitaxy growth, presented at the 28th North American Molecular Beam Epitaxy Conference, San Diego, CA, 2011. North American molecular beam epitaxy (2012)Google Scholar
  24. 24.
    Yoshimoto, M., Murata, S., Chayahara, A., Horino, Y., Saraie, J., Oe, K.: Metastable GaAsBi alloy grown by molecular beam epitaxy. Jpn. J. Appl. Phys. 42, L1235 (2003)Google Scholar
  25. 25.
    Swaminathan, V., Macrander, A.T.: Materials Aspects of GaAs and InP Based Structures, p. 27. Prentice Hall, Englewood Cliffs, NJ (1991)Google Scholar
  26. 26.
    Alberi, K., Dubon, O.D., Walukiewicz, W., Yu, K.M., Bertulis, K., Krotkus, A.: Valence band anticrossing in GaBixAs1–x. Appl. Phys. Lett. 91, 051909 (2007)CrossRefGoogle Scholar
  27. 27.
    Francoeur, S., Seong, M.-J., Mascarenhas, A., Tixier, S., Adamcyk, M., Tiedje, T.: Band gap of GaAs1–xBix, 0<x<3.6%. Appl. Phys. Lett. 82, 3874 (2003)Google Scholar
  28. 28.
    Nahory, R.E., Pollack, M.A., Johnston Jr., W.D., Barns, R.L.: Band gap versus composition and demonstration of Vegard’s law for In1–xGaxAsyP1–y lattice matched to InP. Appl. Phys. Lett. 33, 659 (1978)CrossRefGoogle Scholar
  29. 29.
    Ciatto, G., Young, E.C., Glas, F., Chen, J., Mori, R.A., Tiedje, T.: Spatial correlation between Bi atoms in dilute GaAs1–x Bix: From random distribution to Bi pairing and clustering. Phys. Rev. B. 78, 035325 (2008)Google Scholar
  30. 30.
    Ciatto, G., Thomasset, M., Glas, F., Lu, X., Tiedje, T.: Formation and vanishing of short range ordering in GaAs1–xBix thin films. Phys. Rev. B. 82, 201304(R) (2010)CrossRefGoogle Scholar
  31. 31.
    Kudrawiec, R., Kopaczek, J., Misiewicz, J., Petropoulos, J.P., Zhong, Y., Zide, J.M.O.: Contactless electroreflectance study of E0 and E0 + ΔSO transitions in In0.53Ga0.47BixAs1–x alloys. Appl. Phys. Lett. 99, 251906 (2011)CrossRefGoogle Scholar
  32. 32.
    Misiewicz, J., Kudrawiec, R.: Contactless electroreflectance spectroscopy of optical transitions in low dimensional semiconductor structures. Opto-Electron. Rev. 20, 101 (2012)CrossRefGoogle Scholar
  33. 33.
    Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815 (2001)CrossRefGoogle Scholar
  34. 34.
    Shan, W., Walukiewicz, W., Ager III, J.W., Haller, E.E., Geisz, J.F., Friedman, D.J., Olson, J.M., Kurtz, S.R.: Band anticrossing in GaInNAs alloys. Phys. Rev. Lett. 82, 1221 (1999)Google Scholar
  35. 35.
    Broderick, C.A., Usman, M., Reilly, E.P.O.: 12-band k . p model for dilute bismide alloys of (In)GaAs derived from supercell calculations. Phys. Status Solidi B 1 (2012)Google Scholar
  36. 36.
    Kini, R., Ptak, A., Fluegel, B., France, R., Reedy, R., Mascarenhas, A.: Effect of Bi alloying on the hole transport in the dilute bismide alloy GaAs1–x Bix. Phys. Rev. B. 83, 075307 (2011)CrossRefGoogle Scholar
  37. 37.
    Dongmo, P.B., Zhong, Y., Attia, P., Bomberger, C., Cheaito, R., Ihlefeld, J.F., Hopkins, P.E., Zide, J.M.O.: Enhanced Room Temperature Electronic and Thermoelectric Properties of Dilute Bismuthides. J. Appl. Phys. 112, 093710 (2012)CrossRefGoogle Scholar
  38. 38.
    Duzik, A., Thomas, J.C., Millunchick, J.M., Lång, J., Punkkinen, M.P.J., Laukkanen, P.: Surface structure of bismuth terminated GaAs surfaces grown with molecular beam epitaxy, Surf. Sci. (2012). doi: 10:1016/j.susc.2012.03.021
  39. 39.
    Warren, A.C., Woodall, J.M., Freeouf, J.L., Grischkowsky, D., Mclnturff, D.T., Melloch, M.R., Otsuka, N.: Arsenic precipitates and the semi-insulating properties of GaAs buffer layers grown by low temperature molecular beam epitaxy. Appl. Phys. Lett. 57, 1331 (1990)CrossRefGoogle Scholar
  40. 40.
    Pettinari, G., Polimeni, A., Capizzi, M., Blokland, J.H., Christianen, P.C.M., Maan, J.C., Young, E.C., Tiedje, T.: Influence of bismuth incorporation on the valence and conduction band edges of GaAs1–x Bix. Appl. Phys. Lett. 92, 262105 (2008)Google Scholar
  41. 41.
    Cahill, D.G., Goodson, K., Majumdar, A.: Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat. Transfer. 124, 223 (2002)Google Scholar
  42. 42.
    Schmidt, A.J., Chen, X., Chen, G.: Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance. Rev. Sci. Instrum. 79, 114902 (2008)CrossRefGoogle Scholar
  43. 43.
    Cahill, D.G.: Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119 (2004)CrossRefGoogle Scholar
  44. 44.
    Hopkins, P.E.: Influence of inter- and intraband transitions to electron temperature decay in noble metals after short-pulsed laser heating. J. Heat. Transfer. 132, 122402 (2010)Google Scholar
  45. 45.
    Touloukian, Y.S.: Thermophysical Properties of matter-Thermal Conductivity: Nonmetallic Solids, vol. 2. Plenum, New York (1970)Google Scholar
  46. 46.
    Touloukian, Y.S.: Thermophysical Properties of Matter-Specific Heat: Nonmetallic Solids, vol. 5. Plenum, New York (1970)Google Scholar
  47. 47.
    Touloukian, Y.S., Buyco, E.H.: Thermaophysical Properties of Matter-Specific Heat: Metallic Elements and Alloys, vol. 4. Plenum, New York (1970)Google Scholar
  48. 48.
    Adachi, S.: Physical Properties of III-V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs and InGaAsP. Wiley, Weinheim (2004)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of DelawareNewarkUSA

Personalised recommendations