Skip to main content

Bismide-Based Photonic Devices for Near- and Mid-Infrared Applications

  • Chapter
  • First Online:
Bismuth-Containing Compounds

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 186))

Abstract

Bismides are a new class of III–V semiconductor alloys which are gaining interest due to their many potential applications. In this chapter we show how the addition of bismuth atoms to III–V alloys gives rise to useful band structure properties, such as a large band gap bowing, making it possible to produce narrow gap (near- and mid-infrared) materials and devices on conventionally used III–V substrates such as GaAs and InP. In addition, bismuth-containing alloys can provide a large spin-orbit splitting energy which offers the potential to reduce or eliminate the important non-radiative Auger recombination and inter-valence band absorption processes which dominate the performance of near- and mid-infrared lasers and LEDs. Furthermore, we show that by adding nitrogen to the alloys, lattice-matched narrow band gap semiconductor heterostructures may be produced with the possibility of wide control of the conduction and valence offsets. Finally, we provide a discussion of the physics of devices based upon bismide alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberi, K., Wu, J., Walukiewicz, W., Yu, K.M., Dubon, O.D., Watkins, S.P., Wang, C.X., Liu, X., Cho, Y.-J., Furdyna, J.: Valence-band anticrossing in mismatched III–V semiconductor alloys. Phys. Rev. B 75, 045203 (2007)

    Article  Google Scholar 

  2. Batool, Z., Hild, K., Hosea, T.J.C., Lu, X.F., Tiedje, T., Sweeney, S.J.: The electronic band structure of GaBiAs/GaAs layers: Influence of strain and band anti-crossing. J. Appl. Phys. 111, 113108 (2012)

    Article  Google Scholar 

  3. Petropoulos, J.P., Zhong, Y., Zide, J.M.O.: Optical and electrical characterization of InGaBiAs for use as a mid-infrared optoelectronic material. Appl. Phys. Lett. 99, 031110 (2011)

    Article  Google Scholar 

  4. Alberi, K., Dubon, O.D., Walukiewicz, W., Yu, K.M., Bertulis, K., Krotkus, A.: Valence band anticrossing in GaBi x As1−x . Appl. Phys. Lett. 91, 051909 (2007)

    Article  Google Scholar 

  5. Zhang, Y., Mascarenhas, A., Wang, L.W.: Similar and dissimilar aspects of III–V semiconductors containing Bi versus N. Phys. Rev. B 71, 155201 (2005)

    Article  Google Scholar 

  6. Fluegel, B., Francoeur, S., Mascarenhas, A., Tixier, S., Young, E.C., Tiedje, T.: Giant spin-orbit bowing in GaAs1−x Bi x . Phys. Rev. Lett. 97, 067205 (2006)

    Article  CAS  Google Scholar 

  7. Sweeney, S.J.: Bismide-alloys for higher efficiency infrared semiconductor lasers. In: Conference Digest—IEEE International Semiconductor Laser Conference, Kyoto, 111 (2010)

    Google Scholar 

  8. Phillips, A.F., Sweeney, S.J., Adams, A.R., Thijs, P.J.A.: The temperature dependence 1.3- and 1.5-μm compressively strained InGaAs(P) MQW semiconductor lasers. IEEE J. Sel. Top. Quant. Electron. 5(3), 401–412 (1999)

    Article  CAS  Google Scholar 

  9. Higashi, T., Sweeney, S.J., Phillips, A.F., Adams, A.R., O’Reilly, E.P., Uchida, T., Fujii, T.: Experimental analysis of temperature dependence in 1.3-m AlGaInAs–InP strained MQW lasers. IEEE J. Sel. Top. Quant. Electron. 5(3), 413–419 (1999)

    Article  CAS  Google Scholar 

  10. Sweeney, S.J., Jin, S.R.: Bismide-nitride alloys for mid-infrared photonics. In: 10th International Conference on Mid-Infrared Optoelectronics: Materials and Devices (MIOMD-X), Shanghai, China (2010)

    Google Scholar 

  11. Sweeney, S.J., Batool, Z., Hild, K., Jin, S.R., Hosea, T.J.C.: The potential role of bismide alloys in future photonic devices. In: 13th International Conference on Transparent Optical Networks, Mo.C6.3, Stockholm, Sweden, 26–30 June 2011

    Google Scholar 

  12. Loehr, J.P., Singh, J.: Effect of strain on CHSH Auger recombination in strained In0.53+x Ga0.47−x As on InP. IEEE J. Quant. Electron. 29, 2583 (1993)

    Article  CAS  Google Scholar 

  13. Fehse, R., Jin, S., Sweeney, S.J., Adams, A.R., O’Reilly, E.P., Riechert, H., Illek, S., Egorov, A.Y.: Evidence for large monomolecular recombination contribution to threshold current in 1.3μm GaInNAs semiconductor lasers. Electron. Lett. 37, 1518 (2001)

    Article  CAS  Google Scholar 

  14. Marko, I.P., Adams, A.R., Sweeney, S.J., Mowbray, D.J., Skolnick, M.S., Liu, H.Y., Groom, K.M.: Recombination and loss mechanisms in low-threshold InAs-GaAs 1.3-μm quantum-dot lasers. IEEE J. Sel. Top. Quant. Electron. 11, 1041 (2005)

    Article  CAS  Google Scholar 

  15. Sayid, S.A., Marko, I.P., Sweeney, S.J., Barrios, P., Poole, P.J.: Efficiency limiting processes in 1.55μm InAs/InP-based quantum dots lasers. Appl. Phys. Lett. 97, 161104 (2010)

    Article  Google Scholar 

  16. Masse, N.F., Sweeney, S.J., Marko, I.P., Adams, A.R., Hatori, N., Sugawara, M.: Temperature dependence of the gain in p-doped and intrinsic 1.3μm InAs/GaAs quantum dot lasers. Appl. Phys. Lett. 89, 191118 (2006)

    Article  Google Scholar 

  17. O’Brien, K., Sweeney, S.J., Adams, A.R., Murdin, B.N., Salhi, A., Rouillard, Y., Joullie, A.: Recombination processes in midinfrared InGaAsSb diode lasers emitting at 2.37mm. Appl. Phys. Lett. 89, 051104 (2006)

    Article  Google Scholar 

  18. Sweeney, S.J.: Light-emitting semiconductor device. Patent WO 2010/149978 (2010)

    Google Scholar 

  19. Sweeney, S.J.: The potential of bismide alloys for efficient near- and mid-infrared semiconductor lasers. SPIE Photonics West 2010, paper [7616-11] (2010)

    Google Scholar 

  20. Cheetham, K.J., Krier, A. Marko, I.P., Aldukhayel, A., Sweeney, S.J.: Direct evidence for suppression of Auger recombination in GaInAsSbP/InAs mid-infrared light-emitting diodes. Appl. Phys. Lett. 99, 141110 (2011)

    Article  Google Scholar 

  21. Tixier, S., Adamcyk, M., Tiedje, T., Franceour, S., Mascarenhas, A., Wei, P., Schiettekatte, F.: Molecular beam epitaxy growth of GaAs1−x Bi x . Appl. Phys. Lett. 82, 2245 (2003)

    Article  CAS  Google Scholar 

  22. Yoshida, J., Kita, T., Wada, O., Oe, K.: Temperature dependence of GaAs1−x Bi x band gap studied by photoreflectance spectroscopy. Jpn. J. Appl. Phys. 42, 371 (2003)

    Article  CAS  Google Scholar 

  23. Pettinari, G., Polimeni, A., Capizzi, M., Blokland, J.H., Christianen, P.C.M., Maan, J.C., Young, E.C., Tiedje, T.: Influence of bismuth incorporation on the valence and conduction band edges of GaAs1−x Bi x . Appl. Phys. Lett. 92, 262105 (2008)

    Article  Google Scholar 

  24. Cooke, D.G., Hegmann, F.A., Young, E.C., Tiedje, T.: Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy. Appl. Phys. Lett. 89, 122103 (2006)

    Article  Google Scholar 

  25. Oe, K., Asai, H.: Proposal on a temperature-insensitive wavelength semiconductor laser. IEICE Trans. Electron. E79-C, 1751 (1996)

    Google Scholar 

  26. Francoeur, S., Seong, M.-J., Mascarenhas, A., Tixier, S., Adamcyk, M., Tiedje, T.: Band gap of GaAs1−x Bi x , 0<x<3.6%. Appl. Phys. Lett. 82, 3874 (2003)

    Article  CAS  Google Scholar 

  27. Hossain, N., Marko, I.P., Jin, S.R., Hild, K., Sweeney, S.J., Lewis, R.B., Beaton, D.A., Tiedje, T.: Recombination mechanisms and band alignment of GaAs1−x Bi x /GaAs light emitting diodes. Appl. Phys. Lett. 100, 051105 (2012)

    Article  Google Scholar 

  28. Devenson, J., Pačebutas, V., Butkutė, R., Baranov, A., Krotkus, A.: Structure and optical properties of InGaAsBi with up to 7% bismuth. Appl. Phys. Express 5, 015503 (2012)

    Article  Google Scholar 

  29. Marko, I.P., Batool, Z., Hild, K., Jin, S.R., Hossain, N., Hosea, T.J.C., Petropoulos, J.P., Zhong, Y., Dongmo, P.B., Zide, J.M.O., Sweeney, S.J.: Temperature and Bi-concentration dependence of the bandgap and spin-orbit splitting in InGaBiAs/InP semiconductors for mid-infrared applications. Appl. Phys. Lett. 101, 221108 (2012)

    Article  Google Scholar 

  30. Shan, W., WaluKiewiez, W., Ager, J.W., Haller, E.E., Geisz, J.F., Friedman, D.J., Olson, J.M., Kurtz, S.R.: Band anticrossing in GaInNAs alloys. Phys. Rev. Lett. 82, 1221 (1999)

    Article  CAS  Google Scholar 

  31. Tixier, S., Webster, S.E., Young, E.C., Tiedje, T., Francoeur, S., Mascarenhas, A., Wei, P., Schiettekatte, F.: Band gaps of the dilute quaternary alloys GaN x As1−xy Bi y and Ga1−y In y N x As1−x . Appl. Phys. Lett. 86, 112113 (2005)

    Article  Google Scholar 

  32. Nacer, S., Aissat, A., Ferdjani, K.: Band gap and band offsets of GaNAsBi lattice matched to GaAs substrate. Opt. Quant. Electron. 40, 677 (2008)

    Article  CAS  Google Scholar 

  33. Vurgaftman, I., Meyer, J.R.: Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815 (2001)

    Article  CAS  Google Scholar 

  34. Vurgaftman, I., Meyer, J.R.: Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 94, 3675 (2003)

    Article  CAS  Google Scholar 

  35. Lin, G., Lee, C.P.: Comparison of 1300nm quantum well lasers using different material systems. Opt. Quant. Electron. 34, 1191 (2002)

    Article  CAS  Google Scholar 

  36. Van de Walle, C.G.: Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 39, 1871 (1989)

    Article  Google Scholar 

  37. Usman, M., Broderick, C.A., Lindsay, A., O’Reilly, E.P.: Tight-binding analysis of the electronic structure of dilute bismide alloys of GaP and GaAs. Phys. Rev. B 84, 245202 (2011)

    Article  Google Scholar 

  38. Adams, A.R.: Strained-layer quantum-well lasers. IEEE J. Quant. Electron. 17, 1364 (2011)

    Article  CAS  Google Scholar 

  39. Carrier, P., Wei, S.H.: Calculated spin-orbit splitting of all diamondlike and zincblende semiconductors: Effects of p1/2 local orbitals and chemical trends. Phys. Rev. B 70, 035212 (2004)

    Article  Google Scholar 

  40. Shterengas, L., Belenky, G.L., Kim, J.G., Martinelli, R.U.: Design of high-power room-temperature continuous-wave GaSb-based type-I quantum-well lasers with l>2.5mm. Semicond. Sci. Technol. 19, 655 (2004)

    Article  CAS  Google Scholar 

  41. Lu, X., Beaton, D.A., Lewis, R.B., Tiedje, T., Zhang, Y.: Composition dependence of photoluminescence of GaAs1−x Bi x alloys. Appl. Phys. Lett. 95, 041903 (2009)

    Article  Google Scholar 

  42. Lu, X., Beaton, D.A., Lewis, R.B., Tiedje, T., Whitwick, M.B.: Effect of molecular beam epitaxy growth conditions on the Bi content of GaAs1−x Bi x . Appl. Phys. Lett. 92, 192110 (2008)

    Article  Google Scholar 

  43. Jin, S.R., Sweeney, S.J.: Unpublished

    Google Scholar 

  44. Sweeney, S.J., Jin, S.R.: Bismide-nitride alloys: Promising for efficient light emitting devices in the near- and mid-infrared. J. Appl. Phys. 113, 043110 (2013)

    Google Scholar 

  45. Wei, S.H., Zunger, A.: Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals. Appl. Phys. Lett. 72, 2011 (1998)

    Article  CAS  Google Scholar 

  46. Sweeney, S.J., Adams, A.R., Silver, M., O’Reilly, E., Watling, J., Walker, A., Thijs, P.: Transport phenomena-dependence of threshold current on QW position and on pressure in 1.5mm InGaAs(P) lasers. Phys. Status Solidi B. 211, 525 (1999)

    Article  CAS  Google Scholar 

  47. Johnson, S.R., Guo, C.Z., Chaparro, S., Sadofyev, Y.G., Wang, J., Cao, Y., Samal, N., Xu, J., Yu, S.Q., Ding, D., Zhang, Y.-H.: GaAsSb/GaAs band alignment evaluation for long-wave photonic applications. J. Cryst. Growth 251, 521–525 (2003)

    Article  CAS  Google Scholar 

  48. Lewis, R.B., Beaton, D.A., Lu, X., Tiedje, T.: GaAs1−x Bi x light emitting diodes. J. Cryst. Growth 311, 1872–1875 (2009)

    Article  CAS  Google Scholar 

  49. Eliseev, P.G., Perlin, P., Lee, J., Osinski, M.: “Blue” temperature-induced shift and band-tail emission in InGaN-based light sources. Appl. Phys. Lett. 71, 569 (1997)

    Article  CAS  Google Scholar 

  50. Mohmad, A.R., Bastiman, F., Ng, J.S., Sweeney, S.J., David, J.P.R.: Photoluminescence investigation of high quality GaAS1−x Bi x on GaAs. Appl. Phys. Lett. 98, 122107 (2011)

    Article  Google Scholar 

  51. Chamings, J., Adams, A.R., Sweeney, S.J., Kunert, B., Volz, K., Stolz, W.: Temperature dependence and physical properties of Ga(NAsP)/GaP semiconductor lasers. Appl. Phys. Lett. 93, 101108 (2008)

    Article  Google Scholar 

  52. Huang, W., Oe, K., Feng, G., Yoshimoto, M.: Molecular-beam epitaxy and characteristics of GaN y As1−x−y Bi x . J. Appl. Phys. 98, 053505 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to all of the collaborative partners that we have worked with on bismide alloys, and, in particular, the groups of Prof. Tom Tiedje at the University of Victoria, Canada, and Prof. Joshua Zide at the University of Delaware, USA, for the supply of samples. We are very pleased to acknowledge financial support for this activity as follows: Engineering and Physical Sciences Research Council (EPSRC) grants EP/H005587/1 and EP/G064725/1, European Union Seventh Framework Programme (BIANCHO; FP7-257974), the Technology Strategy Board “ETOE2” project, the Islamic University of Bahawalpur FDP and the Kwan Trust for funding a studentship for Z.B.; UTM and MOHE GUP grant 01H55 for T.J.C.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Sweeney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sweeney, S.J. et al. (2013). Bismide-Based Photonic Devices for Near- and Mid-Infrared Applications. In: Li, H., Wang, Z. (eds) Bismuth-Containing Compounds. Springer Series in Materials Science, vol 186. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8121-8_2

Download citation

Publish with us

Policies and ethics