Skip to main content

Bismuth(V)-Containing Semiconductor Compounds and Applications in Heterogeneous Photocatalysis

  • Chapter
  • First Online:
Book cover Bismuth-Containing Compounds

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 186))

Abstract

Heterogeneous photocatalysis technology has become a promising approach to solve energy and environmental problems since 1972. The exploration and search for active semiconductor photocatalysts specially for solar energy applications is one of the most challenging tasks. The bismuth(V)-containing photocatalysts have gained great significance due to their unique electronic/energy band structures. The preparation techniques, physical–chemical properties, photocatalytic activities, and photostabilities of the bismuth(V)-containing photocatalysts (as represented by ilmenite-type NaBiO3) are reviewed in this chapter. Some of these photocatalysts have excellent catalytic performance in water purification, disinfection of water as well as splitting of water for H2 production. But nevertheless, their instabilities under light exposure during photocatalysis process have been gradually realized and further studied. The trend of bismuth(V)-containing photocatalyst research is also prospected in the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  CAS  Google Scholar 

  2. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y.: Visible light photocatalysis in nitrogen doped titanium oxides. Science 293, 269–271 (2001)

    Article  CAS  Google Scholar 

  3. Zou, Z.G., Ye, J.H., Sayama, K., Arakawa, H.: Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414, 625–627 (2001)

    Article  CAS  Google Scholar 

  4. Chen, X.B., Liu, L., Yu, P.Y., Mao, S.S.: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011)

    Article  CAS  Google Scholar 

  5. Fu, Q.: Solar radiation. In: Holton, M, Pyle, J. (eds.) Encyclopedia of Atmospheric Sciences, Acadamic Press, 1859–1863

    Google Scholar 

  6. Hoffmann, R.M., Martin, T.S., Choi, W., Bahnemannt, W.D.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Article  CAS  Google Scholar 

  7. Mills, A., Lee, S.K.: A web-based overview of semiconductor photochemistry-based current commercial applications. J. Photochem. Photobiol. A 152, 233–247 (2002)

    Article  CAS  Google Scholar 

  8. Kudo, A., Miseki, Y.: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009)

    Article  CAS  Google Scholar 

  9. Roy, C.S., Varghese, K.O., Paulose, M., Grimes, A.C.: Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4, 1259–1278 (2010)

    Article  CAS  Google Scholar 

  10. Takei, T., Haramoto, R., Dong, Q., Kumada, N., Yonesaki, Y., Kinomura, N., Mano, T., Nishimoto, S., Kameshima, Y., Miyake, M.: Photocatalytic activities of various pentavalent bismuthates under visible light irradiation. J. Solid State Chem. 184, 2017–2022 (2011)

    Article  CAS  Google Scholar 

  11. Lakshminarasimhan, N., Park, Y., Choi, W.: Role of valency ordering on the visible light photocatalytic activity of BaBi3+0.5Bi5+0.5O3. Chem. Phys. Lett. 452, 264–268 (2008)

    Article  CAS  Google Scholar 

  12. Kudo, A., Omori, K., Kato, H.: A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 121, 11459–11467 (1999)

    Article  CAS  Google Scholar 

  13. Tang, J., Zou, Z., Ye, J.: Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation. Catal. Lett. 92, 53–56 (2004)

    Article  CAS  Google Scholar 

  14. Zhang, C., Zhu, Y.F.: Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Chem. Mater. 17, 3537–3545 (2005)

    Article  CAS  Google Scholar 

  15. Tang, J.W., Zou, Z.G., Ye, J.H.: Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew. Chem. Int. Ed. 43, 4463–4466 (2004)

    Article  CAS  Google Scholar 

  16. Kumada, N., Kinomura, N., Sleight, A.W.: Neutron powder diffraction refinement of ilmenite-type bismuth oxides: ABiO3 (A=Na, Ag). Mater. Res. Bull 35, 2397–2402 (2000)

    Article  CAS  Google Scholar 

  17. Kako, T., Zou, Z.G., Katagiri, M., Ye, J.H.: Decomposition of organic compounds over NaBiO3 under visible light irradiation. Chem. Mater. 19, 198–202 (2007)

    Article  CAS  Google Scholar 

  18. Kumada, N., Kinomura, N.: Preparation of ilmenite type oxides via ion-exchange reaction. Mater. Res. Bull. 28, 849–854 (1993)

    Article  CAS  Google Scholar 

  19. Kou, J.H., Zhang, H.T., Li, Z.S., Ouyang, S.X., Ye, J.H., Zou, Z.G.: Photooxidation of polycyclic aromatic hydrocarbons over NaBiO3 under visible light irradiation. Catal. Lett. 122, 131–137 (2008)

    Article  CAS  Google Scholar 

  20. Dias, A., Moreira, R.L.: Crystal structure and phonon modes of ilmenite-type NaBiO3 investigated by Raman and infrared spectroscopies. J. Raman Spectrosc. 41, 698–701 (2010)

    Article  CAS  Google Scholar 

  21. Liu, X.J., Wu, Z.J., Hao, X.F., Xiang, H.P., Meng, J.: First-principles comparative study of the pressure-induced phase transition of NaSbO3 and NaBiO3. Chem. Phys. Lett. 416, 7–13 (2005)

    Article  CAS  Google Scholar 

  22. http://en.wikipedia.org/wiki/Perovskite_(structure)

  23. Tang, J.W., Zou, Z.G., Ye, J.H.: Efficient photocatalysis on BaBiO3 driven by visible light. J. Phys. Chem. C 111, 12779–12785 (2007)

    Article  CAS  Google Scholar 

  24. David, R.L.: Handbook of Chemistry and Physics. CRC Press, Boca Raton (2006–2007)

    Google Scholar 

  25. Sunarso, J., Liu, S., Lin, Y.S., da Costa, J.C.D.: Oxygen permeation performance of BaBiO3-δ ceramic membranes. J. Memb. Sci. 344, 281–287 (2009)

    Article  CAS  Google Scholar 

  26. Kostikova, G.P., Korol’kov, D.V., Kostikov, Y.P.: Valence states of lead and bismuth atoms in the high-temperature superconductor BaPb1-x BixO3. Russ. J. Gen. Chem. 71, 1010–1012 (2001)

    Article  CAS  Google Scholar 

  27. de Hair, T.W., Blasse, G.: Determination of the valency state of bismuth in BaBiO3 by infrared spectroscopy. Solid State Commun. 12, 727–729 (1973)

    Article  Google Scholar 

  28. Yaremchenko, A.A., Kharton, V.V., Kovalevsky, A.V., Lapchuk, N.M., Naumovich, E.N.: EPR spectra and electrical conductivity of perovskite-like BaBi1-xLnxO3-δ (Ln=La, Pr). Mater. Chem. Phys. 63, 240–250 (2000)

    Article  CAS  Google Scholar 

  29. Nguyen, T.N., Giaquinta, D.M., Davis, W.M., zur Loye, H.C.: Electrosynthesis of KBiO3: a potassium ion conductor with the KSbO3 tunnel structure. Chem. Mater. 5, 1273–1276 (1993)

    Article  CAS  Google Scholar 

  30. Ramachandran, R., Sathiya, M., Ramesha, K., Prakash, A.S., Madras, G., Shukla, A.K.: Photocatalytic properties of KBiO3 and LiBiO3 with tunnel structures. J. Chem. Sci. 123, 517–524 (2011)

    Article  CAS  Google Scholar 

  31. Kumada, N., Takahashi, N., Kinomura, N.: Preparation and crystal structure of a new lithium bismuth oxide: LiBiO3. J. Solid State Chem. 126, 121–126 (1996)

    Article  CAS  Google Scholar 

  32. Blasse, G.: On the structure of some compounds Li3Me5+O4, and some other mixed metal oxides containing lithium. Z. Anorg. Allgem. Chem. 331, 44–50 (1964)

    Article  CAS  Google Scholar 

  33. Nomura, E., Greenblatt, M.: Ionic conductivity of Li7BiO6. J. Solid State Chem. 52, 91–93 (1984)

    Article  CAS  Google Scholar 

  34. Greaves, C., Katib, S.M.A.: The structures of Li5BiO5 and Li5SbO5 from powder neutron diffraction. Mater. Res. Bull 24, 973–980 (1989)

    Article  CAS  Google Scholar 

  35. Mizoguchi, H., Woodward, P.M.: Electronic structure studies of main group oxides possessing edge-sharing octahedra: implications for the design of transparent conducting oxides. Chem. Mater. 16, 5233–5248 (2004)

    Article  CAS  Google Scholar 

  36. Vensky, S., Kienle, L., Dinnebier, R.E., Masadeh, A.S., Billinge, S.J.L., Jansen, M.: The real structure of Na3BiO4 by electron microscopy, HR-XRD and PDF analysis. Z. Kristallogr. 220, 231–244 (2005)

    Article  CAS  Google Scholar 

  37. Li, Z.H., Wang, Y.X., Liu, J.W., Chen, G., Li, Y.X., Zhou, C.: Photocatalytic hydrogen production from aqueous methanol solutions under visible light over Na(BixTa1-x)O3 solid-solution. Int. J. Hydrogen Energy 34, 147–152 (2009)

    Article  Google Scholar 

  38. Kumada, N., Kinomura, N., Sleight, A.W.: Ion-exchange reaction of Na+ in NaBiO3•nH2O with Sr2+ and Ba2+. Solid State Ionics 122, 183–189 (1999)

    Article  CAS  Google Scholar 

  39. Mizoguchi, H.N., Bhuvanesh, S.P., Woodward, P.M.: Optical and electrical properties of the wide gap, n-type semiconductors:ZnBi2O6 and MgBi2O6. Chem. Commun. 39, 1084–1085 (2003)

    Google Scholar 

  40. Butler, M.A.: Photoelectrolysis and physical properties of the semiconducting electrode WO3. J. Appl. Phys. 48, 1914–1920 (1977)

    Article  CAS  Google Scholar 

  41. Kikugawa, N., Yang, L.Q., Matsumoto, T., Ye, J.H.: Photoinduced degradation of organic dye over LiBiO3 under illumination of white fluorescent light. J. Mater. Res. 25, 177–181 (2010)

    Article  CAS  Google Scholar 

  42. Sheets, W.C., Stampler, E.S., Kabbour, H., Bertoni, M.I., Cario, L., Mason, T.O., Marks, T.J., Poeppelmeier, K.R.: Facile synthesis of BiCuOS by hydrothermal methods. Inorg. Chem. 46, 10741–10748 (2007)

    Article  CAS  Google Scholar 

  43. Eberl, J.: Visible light photo-oxidations in the presence of bismuth oxides. Dissertation, Friedrich-Alexander-Universität Erlangen-Nürnberg (2008)

    Google Scholar 

  44. Yu, X.J., Zhou, J.Y., Wang, Z.P., Cai, W.M.: Preparation of visible light-responsive AgBiO3 bactericide and its control effect on the Microcystis aeruginosa. J. Photochem. Photobiol. B 101, 265–270 (2010)

    Article  CAS  Google Scholar 

  45. Yu, K., Yang, S.G., Boyd, S.A., Chen, H.Z., Sun, C.: Efficient degradation of organic dyes by BiAgxOy. J. Hazard. Mater. 197, 88–96 (2011)

    Article  CAS  Google Scholar 

  46. Pan, J.Q., Sun, Y.Z., Wan, P.Y., Wang, Z.H., Liu, X.G.: Preparation of NaBiO3 and the electrochemical characteristic of manganese dioxide doped with NaBiO3. Electrochim. Acta 51, 3118–3124 (2006)

    Article  CAS  Google Scholar 

  47. Jansen, M.: Preparation of anhydrous KBiO3. Z. Naturforsch. B 32, 1340–1341 (1977)

    Google Scholar 

  48. Scholder, R., Stobbe, H.: Über bismutate. Z. Anorg. Allgem. Chem. 247, 392–414 (1941)

    Article  CAS  Google Scholar 

  49. Trehoux, J., Abraham, F., Thomas, D.: Synthese et caracterisation de nouvelles phases du diagramme (K ou Na)-Bi-O. Mater. Res. Bull 17, 1235–1243 (1982)

    Article  CAS  Google Scholar 

  50. Chen, D.R., Meng, X.J., Li, J.X., Sun, S.X., Xu, R.R.: Synthesis of anhydrous NaBiO3 polycrystal powders by solvothermal method. Chin. J. Inorg. Chem. 13, 109–111 (1997)

    CAS  Google Scholar 

  51. Sun, Y.Q.: Analytical Chemistry. Science Press, Beijing (2003)

    Google Scholar 

  52. Klinkova, L.A., Nikolaichik, V.I., Barkovskii, N.V., Fedotov, V.K.: Thermal stability of the perovskite BaBiO3. J. Solid State Chem. 146, 439–447 (1999)

    Article  CAS  Google Scholar 

  53. Mattheiss, L.F., Gyorgy, E.M., Johnson Jr., D.W.: Superconductivity above 20 K in the Ba-K-Bi-O system. Phys. Rev. B 37, 3745–3746 (1998)

    Article  Google Scholar 

  54. Kumada, N., Takahashi, N., Kinomura, N., Sleight, A.W.: Preparation of ABi2O6 (A=Mg, Zn) with the trirutile-type structure. Mater. Res. Bull 32, 1003–1008 (1997)

    Article  CAS  Google Scholar 

  55. Cox, D.E., Sleight, A.W.: Crystal structure of Ba2Bi3+Bi5+O6. Solid State Commun. 19, 969–973 (1976)

    Article  CAS  Google Scholar 

  56. Zou, Z.G., Chen, Y.F., Ye, J.H.: China Patent, Application No.: ZL03158264.8 (2005)

    Google Scholar 

  57. Rigby, W.: Oxidations with sodium bismuthate: glycol fission and related reactions. J. Chem. Soc. 1950, 1907–1913 (1950)

    Google Scholar 

  58. Postel, M., Dunach, E.: Bismuth derivatives for the oxidation of organic compounds. Coord. Chem. Rev. 155, 127–144 (1996)

    Article  CAS  Google Scholar 

  59. Floresca, R., Kurihara, M., Watt, D.S., Demir, A.: Cleavage of unsaturated .alpha.-ketols to .omega.-oxo-.alpha.,.beta.-unsaturated acids. J. Org. Chem. 58, 2196–2200 (1993)

    Google Scholar 

  60. Lena, J.I.C., Fernandez, E.M.S., Ramani, A., Birlirakis, N., Barrero, A.F., Arseniyadis, S.: Mild Protocols for generating molecular complexity: a comparative study of hetero-domino reactions based on the oxidant and the substitution pattern. Eur. J. Org. Chem. 2005, 683–700 (2005)

    Article  Google Scholar 

  61. Muathen, H.A.: Oxidative halogenation of aromatic compounds with metal halides and sodium bismuthate. Helv. Chim. Acta 86, 164–168 (2003)

    Article  CAS  Google Scholar 

  62. Mukhopadhyay, C., Tapaswi, P.K., Sarkar, S., Drew, M.G.B.: N-Methylthiomethylation of benzimidazoles with DMSO and their chemoselective oxidation to sulfoxides with NaBiO3. ARKIVOC 9, 393–406 (2011)

    Article  Google Scholar 

  63. Yu, K., Yang, S.G., He, H., Sun, C., Gu, C.G., Ju, Y.M.: Visible light-driven photocatalytic degradation of rhodamine B over NaBiO3: pathways and mechanism. J. Phys. Chem. A 113, 10024–10032 (2009)

    Article  CAS  Google Scholar 

  64. Chang, X.F., Ji, G.B., Sui, Q., Huang, J., Yu, G.: Rapid photocatalytic degradation of PCP-Na over NaBiO3 driven by visible light irradiation. J. Hazard. Mater. 166, 728–733 (2009)

    Article  CAS  Google Scholar 

  65. Mizoguchi, H., Kawazoe, H., Hosono, H., Fujitsu, S.: Charge transfer band observed in bismuth mixed-valence oxides. Bi1−xYxO1.5+δ (x = 0.3). Solid State Commun. 104, 705–708(1997)

    Google Scholar 

  66. Xu, B., Zhang, W.F., Liu, X.Y., Ye, J.H., Zhang, W.H., Shi, L., Wan, X.G., Yin, J., Liu, Z.G.: Photophysical properties and electronic structures of the perovskite photocatalysts Ba3NiM2O9 (M=Nb, Ta). Phys. Rev. B 76, 125109 (2007)

    Article  Google Scholar 

  67. Matsumoto, Y., Omae, M., Watanabe, I., Sato, E.: Photoelectrochemical properties of the Zn-Ti-Fe spinel oxides. J. Electrochem. Soc. 133, 711–716 (1986)

    Article  CAS  Google Scholar 

  68. Matsumoto, Y.: Energy positions of oxide semiconductors and photocatalysis with iron complex oxides. J. Solid State Chem. 126, 227–234 (1996)

    Article  CAS  Google Scholar 

  69. Brahimi, R., Bessekhouad, Y., Bouguelia, A., Trari, M.: CuAlO2/TiO2 heterojunction applied to visible light H2 production. J. Photochem. Photobiol. A 186, 242–247 (2007)

    Article  CAS  Google Scholar 

  70. Yao, W., Ye, J.: A new efficient visible-light-driven photocatalyst Na0.5Bi1.5VMoO8 for oxygen evolution. Chem. Phys. Lett. 450, 370–374 (2008)

    Google Scholar 

  71. Long, M., Cai, W., Cai, J., Zhou, B., Chai, X., Wu, Y.: Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J. Phys. Chem. B 110, 20211–20216 (2006)

    Article  CAS  Google Scholar 

  72. Lin, X., Xing, J., Wang, W., Shan, Z., Xu, F., Huang, F.: Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3: a strategy for the design of efficient combined photocatalysts. J. Phys. Chem. C 111, 18288–18293 (2007)

    Article  CAS  Google Scholar 

  73. Butler, M.A., Ginley, D.S.: Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativities. J. Electrochem. Soc. 125, 228–232 (1978)

    Article  CAS  Google Scholar 

  74. Chang, X.F., Huang, J., Cheng, C., Sha, W., Li, X., Ji, G.B., Deng, S.B., Yu, G.: Photocatalytic decomposition of 4-t-octylphenol over NaBiO3 driven by visible light: Catalytic kinetics and corrosion products characterization. J. Hazard. Mater. 173, 765–772 (2010)

    Article  CAS  Google Scholar 

  75. Sepulveda-Guzman, S., Elizondo-Villarreal, N., Torres-Castro, D.F.A., Gao, X., Zhou, J.P., Jose-Yacaman, M.: In situ formation of bismuth nanoparticles through electron-beam irradiation in a transmission electron microscope. Nanotechnology 18, 335604 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The support by King Fahd University of Petroleum and Minerals is gratefully acknowledged. Xiaofeng Chang likes to extend his thanks to undergraduate students Mr. Qi Su and Ms. Yaling Chen (from College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics) for their help in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofeng Chang or Mohammed Ashraf Gondal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chang, X., Gondal, M.A., Yamani, Z.H.A., Ji, G. (2013). Bismuth(V)-Containing Semiconductor Compounds and Applications in Heterogeneous Photocatalysis. In: Li, H., Wang, Z. (eds) Bismuth-Containing Compounds. Springer Series in Materials Science, vol 186. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8121-8_15

Download citation

Publish with us

Policies and ethics