Syntheses and Properties of Some Bi-Containing Compounds with Noncentrosymmetric Structure

  • Wen-Dan Cheng
  • Chen-Sheng Lin
  • Lei Geng
  • Zhong-Zhen Luo
  • Wei-Long Zhang
  • Hao Zhang
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 186)


A genetic engineering method is employed to design the second harmonic generation (SHG) materials with infrared transparency. The compounds of Ba2BiInA5 (A = S, Se, Te) are constructed in views of “genome” BiA5 pyramid and InA4 tetrahedron. Then, the crystal structures of these compounds are predicted or reproduced to show their non-centrosymmetry based on global optimization evolutionary methodology. Thirdly, the ab initio computations of band structures and simulations of optical properties are carried, and the nonlinear optical figure of merit in views of optical transparent range and the SHG parameters are surveyed for these crystals. Finally, we provide the substance evidences by the experimental synthesis, crystal structural determinations, and optical measurements for Ba2BiInA5 (A = S, Se) compounds.


Second Harmonic Generation Second Harmonic Generation Signal Second Harmonic Generation Intensity Effective Nonlinear Coefficient Second Harmonic Generation Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Anharmonic oscillator






Bi2Sr2Ca n−1CunO2n+4+x


Cambridge Structural Database


Density Functional Theory


Density of state


Fundamental building block


Figure of merit


Green’s function


Lowest conduction band


Maximum of the valance band




Optical parametric oscillator


Partial electron density


Second harmonic generation


Universal Structure Prediction: Evolutionary Xtallography


Vienna Ab-initio Simulation Package



This investigation was based on work supported by the National Natural Science Foundation of China under project 20773131 and 21101156, the National Basic Research Program of China (No. 2007CB815307), and foundation of Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry.


  1. 1.
    Hammond, C.R.: The Elements, in Handbook of Chemistry and Physics, 81st edn, pp. 4–1. CRC press, Boca Raton (2004). ISBN 0-8493-0485-7Google Scholar
  2. 2.
    USA 1540117, Gustav Giemsa: Manufacture of Bismuth TartratesGoogle Scholar
  3. 3.
    Parnell, R.T.G., Surgeon-Commander, Royal Navy: Bismuth in the treatment of syphillis. J. R. Soc. Med. 17(War sect), 19–26 (1924). PMC2201253Google Scholar
  4. 4.
    Maile, F.J., Pfaff, G., Reynders, P.: Effect pigments—past, present and future. Prog. Org. Coat. 54, 150–163 (2005)CrossRefGoogle Scholar
  5. 5.
    Pfaff, G.: Special Effect Pigments: Technical Basics and Applications. Vincentz Network GmbH, Hannover (2008)Google Scholar
  6. 6.
    Tücks, A., Beck, H.P.: The photochromic effect of bismuth vanadate pigments: investigations on the photochromic mechanism. Dyes. Pigm. 72, 163–177 (2007)CrossRefGoogle Scholar
  7. 7.
    Müller, A.: Yellow Pigments, Coloring of Plastics: Fundamentals, Colorants, Preparations, pp. 91–93. Hanser, Munich (2003)CrossRefGoogle Scholar
  8. 8.
    Maeda, H., Tanaka, Y., Fukutumi, M., Asano, T.: A new high-Tc oxide superconductor without a rare earth element. Jpn. J. Appl. Phys. 27, L209–L210 (1998)CrossRefGoogle Scholar
  9. 9.
    Subramanian, M.A., et al.: A new high-temperature superconductor: Bi2Sr3-xCaxCu2O8+y. Science 239, 1015–1017 (1998)CrossRefGoogle Scholar
  10. 10.
    Satterthwaite, C.B., Ure, R.: Electrical and thermal properties of Bi2Te3. Phys. Rev. 108, 1164–1170 (1957)CrossRefGoogle Scholar
  11. 11.
    Venkatasubramanian, R.: Recent Device Developments with Advanced Bulk Thermoelectric Materials. 3rd DOE Thermoelectric Application Workshop, Mar 2012Google Scholar
  12. 12.
    Catalan, G., Scott, J.F.: Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)CrossRefGoogle Scholar
  13. 13.
    Choi, T., Lee, S., Choi, Y.J., Kiryukhin, V., Cheong, S.-W.: Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63–66 (2009)CrossRefGoogle Scholar
  14. 14.
    Spaldin, N.A., Cheong, S.-W., Ramesh, R.: Multiferroics: past, present, and future. Phys. Today. 63, 38 (2010)CrossRefGoogle Scholar
  15. 15.
    Lebeugle, D., Colson, D., Forget, A., Viret, M., Bonville, P., Marucco, J.F., Fusil, S.: Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals. Phys. Rev. B. 76, 024116–024118 (2007)CrossRefGoogle Scholar
  16. 16.
    Son, J.Y., Kim, B.G., Kim, C.H., Cho, J.H.: Writing polarization bits on the multiferroic BiMnO3 thin film using kelvin probe force microscope. Appl. Phys. Lett. 84, 4971–4973 (2004)CrossRefGoogle Scholar
  17. 17.
    Cheong, S.-W., Mostovoy, M.: Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007)CrossRefGoogle Scholar
  18. 18.
    Fröhlich, R., Bohatý, L., Liebertz, J.: Die Kristallstruktur von Wismutborat, BiB3O6. Acta. Crystallogr. C. 40, 343–344 (1984)CrossRefGoogle Scholar
  19. 19.
    Hellwig, H., Liebertz, J., Bohaty, L.: Exceptional large nonlinear optical coefficients in the monoclinic bismuth borate BiB3O6 (BIBO). Solid. State. Commun. 109, 249–251 (1998)CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Zhang, W.-L., Cheng, W.-D., Zhang, H., Geng, L., Lin, C.-S., He, Z.-Z.: A strong second-harmonic generation material Cd4BiO(BO3)3 originating from 3-chromophore asymmetric structures. J. Am. Chem. Soc. 132, 1508–1509 (2010)CrossRefGoogle Scholar
  22. 22.
    Setter, N., et al.: Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys. 100, 051606–051646 (2006)CrossRefGoogle Scholar
  23. 23.
    Halasyamani, P.S., Poeppelmeier, K.R.: Noncentrosymmetric oxides. Chem. Mater. 10, 2753–2769 (1998)CrossRefGoogle Scholar
  24. 24.
    Glazer, A.M., Stadnicka, K.: On the use of the term ‘absolute’ in crystallography. Acta. Crystallogr. A45, 234–238 (1989)Google Scholar
  25. 25.
    Hahn, T.: International Tables for Crystallography. D. Reidel, Dordrecht (1983)Google Scholar
  26. 26.
    Carriles, R., et al.: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy. Rev. Sci. Instrum. 80, 081101–081123 (2009)CrossRefGoogle Scholar
  27. 27.
    Campagnola, P.J., Clark, H.A., Mohler, W.A., Lewis, A., Loew, L.M.: Second-harmonic imaging microscopy of living cell. J. Biomed. Opt. 6, 277–286 (2001)CrossRefGoogle Scholar
  28. 28.
    Agullo-Lopez, F., Cabrera, J.M., Agullo-Rueda, F.: Electrooptics: Phenomena, Materials and Applications. Academic, New York (1994)Google Scholar
  29. 29.
  30. 30.
    Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: (t49)7247_808_666; e-mail: Scholar
  31. 31.
    Geng, L., Cheng, W.-D., Lin, C.-S., Zhang, W.-L., Zhang, H., He, Z.-Z.: Syntheses and characterization of new mid-infrared transparency compounds: centric Ba2BiGaS5 and acentric Ba2BiInS5. Inorg. Chem. 50, 5679–5686 (2011)CrossRefGoogle Scholar
  32. 32.
    Lin, C.-L., Luo, Z.-Z., Cheng, W.-D., Zhang, H., Zhang, W.-L.: Designs of SHG materials with mid-infrared transparency based on genetic engineering for Ba2BiInA5 (A = Se, Te). J. Mater. Chem. 22, 21713–21719 (2012)CrossRefGoogle Scholar
  33. 33.
    Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)CrossRefGoogle Scholar
  34. 34.
    Oganov, A.R., Glass, C.W.: Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J. Chem. Phys. 124, 244704–244715 (2006)CrossRefGoogle Scholar
  35. 35.
    Oganov, A.R., Lyakhov, A.O., Valle, M.: How evolutionary crystal structure prediction works—and why. Acc. Chem. Res. 44, 227–237 (2011)CrossRefGoogle Scholar
  36. 36.
    Shishkin, M., Kresse, G.: Implementation and performance of the frequency-dependent GW method within the PAW framework. Phys. Rev. B 74, 035101–035113 (2006)CrossRefGoogle Scholar
  37. 37.
    Segal, M.D., Lindan, P.J.D., Probert, M.J., Pickard, J., Hasnip, P.J., Clark, S.J.: First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter. 14, 2717–2744 (2002)CrossRefGoogle Scholar
  38. 38.
    Boyd, R.W.: Nonlinear Optics, pp. 21–32. Academic, New York (1992)Google Scholar
  39. 39.
    Nie, W.: Optical nonlinearity: phenomena, applications, and materials. Adv. Mater. 5, 520–545 (1993)CrossRefGoogle Scholar
  40. 40.
    Sheldrick, G.M.: SHELXL-97. University of Göttingen, Göttingen (1997)Google Scholar
  41. 41.
    Spek, A.L.: Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36, 7–13 (2003)CrossRefGoogle Scholar
  42. 42.
    Wendlandt, W.W., Hecht, H.G.: Reflectance Spectroscopy. Interscience, New York (1966)Google Scholar
  43. 43.
    Kurtz, S.K., Perry, T.T.: A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 39, 3798–3813 (1968)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Wen-Dan Cheng
    • 1
  • Chen-Sheng Lin
    • 1
  • Lei Geng
    • 2
  • Zhong-Zhen Luo
    • 1
  • Wei-Long Zhang
    • 1
  • Hao Zhang
    • 1
  1. 1.State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of Matter, Chinese Academy of SciencesFuzhouChina
  2. 2.School of Physics and Electronic InformationHuaibei Normal UniversityHuaibeiChina

Personalised recommendations