Skip to main content

Electronic and Optical Properties of Domain Walls and Phase Boundaries in Bismuth Ferrite

  • Chapter
  • First Online:
Bismuth-Containing Compounds

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 186))

  • 2141 Accesses

Abstract

Physical phenomena involving domain walls in BiFeO3 as nanoscale functional elements have recently received considerable attention. Their nanoscopic size and flexible arrangement using thin film growth engineering solutions and applied external electric fields offer unique possibilities for novel concepts in complex oxide nanoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Imada, M., Fujimori, A., Tokura, Y.: Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998)

    Article  CAS  Google Scholar 

  2. Ogale, S.B.: Thin Films and Heterostructures for Oxide Electronics. Springer, New York (2005)

    Google Scholar 

  3. Ohtomo, A., Muller, D.A., Grazul, J.L., Wang, H.Y.: Artificial charge-modulationin atomic-scale perovskite titanate superlattices. Nature 419, 378–380 (2002)

    CAS  Google Scholar 

  4. Dagotto, E.: When oxides meet face to face. Science 318, 1076–1077 (2007)

    Article  CAS  Google Scholar 

  5. Mannhart, J., Schlom, D.G.: Oxide interfaces—an opportunity for electronics. Science 327, 1607–1611 (2010)

    Article  CAS  Google Scholar 

  6. Yamada, H., et al.: Engineered interface of magnetic oxides. Science 395, 646–648 (2004)

    Article  Google Scholar 

  7. Zubko, P., Gariglio, S., Gabay, M., Ghosez, P., Triscone, J.-M.: Interface physics in complex oxide heterostructures. Annu. Rev. Condens. Matter Phys. 2, 141–165 (2011)

    Article  CAS  Google Scholar 

  8. Heber, J.: Enter the oxides. Nature 459, 28–30 (2009)

    Article  CAS  Google Scholar 

  9. Seidel et al.: (submitted)

    Google Scholar 

  10. Zhang, J.X., Xiang, B., He, Q.: Large field-induced strains in a lead-free piezoelectric material. Nat. Nanotechnol. 6, 98 (2011)

    Article  CAS  Google Scholar 

  11. Eng, L.M.: Nanoscale domain engineering and characterization of ferroelectric domains. Nanotechnology 10, 405 (1999)

    Article  CAS  Google Scholar 

  12. Kalinin, S.V., et al.: Local polarization dynamics in ferroelectric materials. Rep. Prog. Phys. 73, 056502 (2010)

    Article  Google Scholar 

  13. Gruverman, A., Rodriguez, B.J., Dehoff, C., Waldrep, J.D., Kingon, A.I., Nemanich, R.J., Cross, J.S.: Direct studies of domain switching dynamics in thin film ferroelectric capacitors. Appl. Phys. Lett. 87, 082902 (2005)

    Article  Google Scholar 

  14. Rodriguez, B.J., Jesse, S., Baddorf, A.P., Zhao, T., Chu, Y.H., Ramesh, R., Eliseev, E.A., Morozovska, A.N., Kalinin, S.V.: Spatially resolved mapping of polarization switching behavior in nanoscale ferroelectrics. Nanotechnology 18, 405701 (2007)

    Article  Google Scholar 

  15. Jungk, T., Hoffmann, A., Soergel, E.: Impact of elasticity on the piezoresponse of adjacent ferroelectric domains investigated by scanning force microscopy. J. Appl. Phys. 102, 084102 (2007)

    Article  Google Scholar 

  16. Choudhury, S., et al.: The influence of 180° ferroelectric domain wall width on the threshold field for wall motion. J. Appl. Phys. 10(4), 084107 (2008)

    Article  Google Scholar 

  17. Yang, C.-H., Seidel, J., Kim, S.Y., Rossen, P.B., Yu, P., Gajek, M., Chu, Y.-H., Martin, L.W., Holcomb, M.B., He, Q., Maksymovych, P., Balke, N., Kalinin, S.V., Baddorf, A.P., Basu, S.R., Scullin, M.L., Ramesh, R.: Electric modulation of conduction in multiferroic Ca-doped BifeO3 films. Nat. Mater. 8, 485 (2009)

    Article  CAS  Google Scholar 

  18. Seidel, J., et al.: Prominent electrochromism through vacancy-order melting. Nat. Commun. 3, 799 (2011)

    Article  Google Scholar 

  19. Balke, N., Jesse, S., Morozovska, A., Eliseev, E., Chung, D., Kim, Y., Adamczyk, L., Garcia, R.: Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nat. Nanotechnol. 5, 749–754 (2010)

    Article  CAS  Google Scholar 

  20. Kumar, A., Ciucci, F., Morozovska, A.N., Kalinin, S.V., Jesse, S.: Nanoscale electrochemistry: Feeling the strain. Nat. Chem. 3, 707–713 (2011)

    Article  CAS  Google Scholar 

  21. Rodriguez, B.J., Chu, Y.H., Ramesh, R., Kalinin, S.V.: Ferroelectric domain wall pinning at a bicrystal grain boundary in bismuth ferrite. Appl. Phys. Lett. 93, 142901 (2008)

    Article  Google Scholar 

  22. Watanabe, Y.: Review of Resistance Switching of Ferroelectrics and Oxides in Quest for Unconventional Electronic Mechanisms. Ferroelectrics 349, 190 (2007)

    Article  CAS  Google Scholar 

  23. Seidel, J., Martin, L.W., He, Q., Zhan, Q., Chu, Y.-H., Rother, A., Hawkridge, M.E., Maksymovych, P., Yu, P., Gajek, M., Balke, N., Kalinin, S.V., Gemming, S., Wang, F., Catalan, G., Scott, J.F., Spaldin, N.A., Orenstein, J., Ramesh, R.: Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229 (2009)

    Article  CAS  Google Scholar 

  24. Seidel, J., Maksymovych, P., Katan, A.J., Batra, Y., He, Q., Baddorf, A.P., Kalinin, S.V., Yang, C.-H., Yang, J.-C., Chu, Y.-H., Salje, E.K.H., Wormeester, H., Salmeron, M., Ramesh, R.: Domain wall conductivity in La-doped BiFeO3. Phys. Rev. Lett. 105, 197603 (2010)

    Article  CAS  Google Scholar 

  25. Fan, W., Cao, J., Seidel, J., Gu, Y., Yim, J.W., Barrett, C., Yu, K.M., Ji, J., Ramesh, R., Chen, L.Q., Wu, J.: Large kinetic asymmetry in the metal-insulator transition nucleated at localized and extended defects. Phys. Rev. B 83, 235102 (2011)

    Article  Google Scholar 

  26. Maggio-Aprile, I., Rennet, C., Erb, A., Walker, E., Fischer, O.: Critical currents approaching the depairing limit at a twin boundary in YBa2Cu3O(7-δ). Nature 390, 487–490 (1997)

    Article  CAS  Google Scholar 

  27. Wiessner, A., Kirschner, J., Schafer, G., Berghaus, T.H.: Design considerations and performance of a combined scanning tunneling and scanning electron microscope. Rev. Sci. Instrum. 68, 3790 (1997)

    Article  CAS  Google Scholar 

  28. Yang, B., Park, N.J., Seo, B.I., Oh, Y.H., Kim, S.J., Hong, S.K., Lee, S.S., Park, Y.J.: Nanoscale imaging of grain orientations and ferroelectric domains in (Bi1−xLax)4Ti3O12 films for ferroelectric memories. Appl. Phys. Lett. 87, 062902 (2005)

    Article  Google Scholar 

  29. Garcia, R.E., Huey, B.D., Blendell, J.E.: Virtual piezoforce microscopy of polycrystalline ferroelectric films. J. Appl. Phys. 100, 064105 (2006)

    Article  Google Scholar 

  30. Chiu, Y.-P., Chen, Y.-T., Huang, B.-C., Shih, M.-C., Yang, J.-C., He, Q., Liang, C.-W., Seidel, J., Chen, Y.-C., Ramesh, R., Chu, Y.-H.: The evolution of local electronic structure across multiferroic domain walls. Adv. Mater. 23, 1530 (2011)

    Article  CAS  Google Scholar 

  31. Lubk, A., et al.: Evidence of sharp and diffuse domain walls in BiFeO3 by means of unit-cell-wise strain and polarization maps obtained with high resolution scanning transmission electron microscopy. Phys. Rev. Lett. 109, 047601 (2012)

    Article  CAS  Google Scholar 

  32. Farokhipoor, S., Noheda, B.: Conduction through 71° domain walls in BiFeO3 thin films. Phys. Rev. Lett. 107, 127601 (2011)

    Article  CAS  Google Scholar 

  33. Seidel, J., Singh-Bhalla, G., He, Q., Yang, S.-Y., Chu, Y.-H., Ramesh, R.: Domain wall functionality in BiFeO3. Phase Transit. 86, 53–66 (2013). doi:10.1080/01411594.2012.695371

    Article  CAS  Google Scholar 

  34. Choi, T., et al.: Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3. Nat. Mater. 9, 253–258 (2010)

    Article  CAS  Google Scholar 

  35. Meier, D., Seidel, J., Cano, A., Delaney, K., Kumagai, Y., Mostovoy, M., Spaldin, N.A., Ramesh, R., Fiebig, M.: Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 11, 284 (2012)

    Article  CAS  Google Scholar 

  36. Palai, R., Katiyar, R.S., Schmid, H., Tissot, P., Clark, S.J., Robertson, J., Redfern, S.A.T., Catalan, G., Scott, J.F.: β Phase and γ-β metal-insulator transition in multiferroic BiFeO3. Phys. Rev. B 77, 014110 (2008)

    Article  Google Scholar 

  37. Lubk, A., Gemming, S., Spaldin, N.A.: First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite. Phys. Rev. B 80, 104110 (2009)

    Article  Google Scholar 

  38. Meyer, B., Vanderbilt, D.: Ab initio study of ferroelectric domain walls in PbTiO3. Phys. Rev. B 65, 104111 (2002)

    Article  Google Scholar 

  39. Hong, L., Soh, A.K., Du, Q.G., Li, J.Y.: Interaction of O vacancies and domain structures in single crystal BaTiO3: two-dimensional ferroelectric model. Phys. Rev. B 7(7), 094104 (2008)

    Article  Google Scholar 

  40. Borisevich, A.Y., et al.: Mapping octahedral tilts and polarization across a domain wall in BiFeO3 from Z-contrast scanning transmission electron microscopy image atomic column shape analysis. ACS Nano 4, 6071 (2010)

    Article  CAS  Google Scholar 

  41. Guyonnet, J., Gaponenko, I., Gariglio, S., Paruch, P.: Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films. Adv. Mater. 23, 5377 (2011)

    Article  CAS  Google Scholar 

  42. Schröder, M.: Conducting domain walls in lithium niobate single crystals. Adv. Funct. Mater. 22, 3936 (2012)

    Article  Google Scholar 

  43. Zhao, T., Scholl, A., Zavaliche, F., Lee, K., Barry, M., Doran, A., Cruz, M.P., Chu, Y.H., Ederer, C., Spaldin, N.A., Das, R.R., Kim, D.M., Baek, S.H., Eom, C.B., Ramesh, R.: Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5, 823 (2006)

    Article  CAS  Google Scholar 

  44. Lebeugle, D., Colson, D., Forget, A., Viret, M., Bataille, A.M., Gukasov, A.: Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. Phys. Rev. Lett. 100, 227602 (2008)

    Article  CAS  Google Scholar 

  45. Idlis, B.G., Usmanov, M.S.: Effect of domain structure on the energy spectrum of narrow-gap ferroelectric semiconductors. Pis’ma Zh. Eksp. Teor. Fiz. 56(5), 268–271 (1992)

    Google Scholar 

  46. Xiao, Y., Shenoy, V.B., Bhattacharya, K.: Depletion layers and domain walls in semiconducting ferroelectric thin films. Phys. Rev. Lett. 9(5), 247603 (2005)

    Article  Google Scholar 

  47. Gureev, T.M.Y., Tagantsev, A.K., Setter, N.: Structure and energy of charged domain walls in ferroelectrics. 18th IEEE ISAF Proceedings, Xian (2009)

    Google Scholar 

  48. Aird, A., Salje, E.K.H.: Sheet superconductivity in twin walls: experimental evidence of WO3-x. J. Phys. Condens. Matter 10, L377 (1998)

    Article  CAS  Google Scholar 

  49. Scullin, M.L., et al.: Acta Mater. 58, 457 (2010)

    Article  CAS  Google Scholar 

  50. Gopalan, V., Dierolf, V., Scrymgeour, D.A.: Defect–domain wall interactions in trigonal ferroelectrics. Annu. Rev. Mater. Res. 37, 449–489 (2007)

    Article  CAS  Google Scholar 

  51. Shilo, D., Ravichandran, G., Bhattacharya, K.: Investigation of twin-wall structure at the nanometre scale using atomic force microscopy. Nat. Mater. 3, 453–457 (2004)

    Article  CAS  Google Scholar 

  52. Lee, W.T., Salje, E.K.H., Bismayer, U.: Influence of point defects on the distribution of twin wall widths. Phys. Rev. B 7(2), 104116 (2005)

    Article  Google Scholar 

  53. Salje, E.K.H., Zhang, H.: Domain boundary engineering. Phase Transit. 82, 6 (2009)

    Article  Google Scholar 

  54. Zeng, H.R., et al.: Domain wall thickness variations of ferroelectric BaMgF4 single crystals in the tip fields of an atomic force microscope. Phys. Status Solidi (RRL) 2, 3 (2008)

    Article  Google Scholar 

  55. He, L., Vanderbilt, D.: First-principles study of oxygen-vacancy pinning of domain walls in PbTiO3. Phys. Rev. B 6(8), 134103 (2003)

    Article  Google Scholar 

  56. Lee, Y.-H., Wu, J.-M., Lai, C.-H.: Influence of La doping in multiferroic properties of BiFeO3 thin films. Appl. Phys. Lett. 88, 042903 (2006)

    Article  Google Scholar 

  57. Yang, C.-H., Kan, D., Takeuchi, I., Nagarajan, V., Seidel, J.: Doping BiFeO3: approaches and enhanced functionality. Phys. Chem. Chem. Phys. 14, 15953–15962 (2012). doi:10.1039/C2CP43082G

    Article  CAS  Google Scholar 

  58. Qi, X., Dho, J., Tomov, R., Blamire, M.G., MacManus-Driscoll, J.L.: Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett. 86, 062903 (2005)

    Article  Google Scholar 

  59. Kim, J.K., Kim, S.S., Kim, W.-J., Bhalla, A.S., Guo, R.: Enhanced ferroelectric properties of Cr-doped BiFeO3 thin films grown by chemical solution deposition. Appl. Phys. Lett. 88, 132901 (2006)

    Article  Google Scholar 

  60. Ko, K.T., Jung, M.H., Lee, J.H., Woo, C.S., Chu, K., Seidel, J., Chu, Y.H., Jeong, Y.H., Ramesh, R., Park, J.H., Yang, C.-H.: Concurrent transition of ferroelectric and magnetic ordering around room temperature. Nat. Commun. 2, 567 (2011)

    Article  Google Scholar 

  61. Ramirez, M., et al.: Spin-charge-lattice coupling through resonant multimagnon excitations in multiferroic BiFeO3. Appl. Phys. Lett. 94, 161905 (2009)

    Article  Google Scholar 

  62. Ramirez, M.O., et al.: Two-phonon coupling to the antiferromagnetic phase transition in multiferroic BiFeO3. Appl. Phys. Lett. 92, 022511 (2008)

    Article  Google Scholar 

  63. Zhou, J., Trassin, M., He, Q., Tamura, N., Kunz, N., Cheng, C., Zhang, J., Liang, W.-I., Seidel, J., Hsin, C., Chu, Y.-H., Wu, J.: Directed assembly of nanoscale phase variants in highly strained BiFeO3 thin films. J. Appl. Phys. 112, 064102 (2012)

    Article  Google Scholar 

  64. Yang, S.-Y., Seidel, J., Byrnes, S.J., Shafer, P., Yang, C.-H., Rossell, M.D., Yu, P., Chu, Y.-H., Scott, J.F., Ager III, J.W., Martin, L.W., Ramesh, R.: Above bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5, 143 (2010)

    Article  CAS  Google Scholar 

  65. Seidel, J., Fu, D., Yang, S.-Y., Alarcòn-Lladò, E., Wu, J., Ramesh, R., Ager, J.W.: Efficient photovoltaic current generation at ferroelectric domain walls. Phys. Rev. Lett. 107, 126805 (2011)

    Article  Google Scholar 

  66. Seidel, J., Yang, S.-Y., Alarcòn-Lladò, E., Ager, J.W., Ramesh, R.: Nanoscale probing of high photovoltages at 109° domain walls. Ferroelectrics 433, 123 (2012)

    Article  CAS  Google Scholar 

  67. Kudo, A., Miseki, Y.: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253 (2009)

    Article  CAS  Google Scholar 

  68. Reyren, N., Thiel, S., Caviglia, A.D., Fitting Kourkoutis, L., Hammerl, G., Richter, C., Schneider, C.W., Kopp, T., Rüetschi, A.-S., Jaccard, D., Gaboy, M., Muller, D.A., Triscone, J.-M., Mannhart, J.: Superconducting Interfaces Between Insulating Oxides. Science 317, 1196–1199 (2007)

    Article  CAS  Google Scholar 

  69. Logvenov, G., Gozar, A., Bozovic, I.: High-Temperature Superconductivity in a Single Copper-Oxygen Plane. Science 326, 699–702 (2009)

    Article  CAS  Google Scholar 

  70. Ye, J.T., Inoue, S., Kobayashi, K., Kasahara, Y., Yuan, H.T., Shimotani, H., Iwasa, Y.: Liquid-gated interface superconductivity on an atomically flat film. Nat. Mater. 9, 125–128 (2010)

    Article  CAS  Google Scholar 

  71. Takahashi, K.S., Kawasaki, M., Tokura, Y.: Interface ferromagnetism in oxide superlattices of CaMnO3/CaRuO3. Appl. Phys. Lett. 79, 1324–1326 (2001)

    Article  CAS  Google Scholar 

  72. Koida, T., Lippmaa, M., Fukumura, T., Itaka, K., Matsumoto, Y., Kawasaki, M., Koinuma, H.: Effect of A-site cation ordering on the magnetoelectric properties in [(LaMnO3)m/(SrMnO3)m]n artificial superlattices. Phys. Rev. B 66, 144418 (2002)

    Article  Google Scholar 

  73. Chakhalian, J., Freeland, J.W., Habermeier, H.U., Cristiani, G., Khaliullin, G., Veenendaalvan, M., Keimer, B.: Orbital reconstruction and covalent bonding at an oxide interface. Science 318, 1114–1117 (2007)

    Article  CAS  Google Scholar 

  74. Lyuksyutov, I., Pokrovsky, V.: Ferromagnet-superconductor hybrids. Adv. Phys. 54, 67–136 (2005)

    Article  Google Scholar 

  75. Tsymbal, E.Y., Kohlstedt, H.: Tunneling across a ferroelectric. Science 313, 181 (2006)

    Article  CAS  Google Scholar 

  76. Zhuravlev, M.Y., Sabirianov, R., Jaswal, S.S., Tsymbal, E.Y.: Giant electroresistance in ferroelectric tunnel junctions. Phys. Rev. Lett. 94, 246802 (2005)

    Article  Google Scholar 

  77. Dagotto, E.: Nanoscale Phase Separation and Colossal Magnetoresistance. Springer, New York (2003)

    Book  Google Scholar 

  78. Salafranca, J., Yu, R., Dagotto, E.: Conducting Jahn-Teller domain walls in undoped manganites. Phys. Rev. B 8, 245122 (2010)

    Article  Google Scholar 

  79. Goltsev, A.V., Pisarev, R.V., Lottermoser, T., Fiebig, M.: Structure and interaction of antiferromagnetic domain walls in hexagonal YMnO3. Phys. Rev. Lett. 90, 177204 (2003)

    Article  CAS  Google Scholar 

  80. Gareeva, Z.V., Zvezdin, A.K.: Private communication (2011)

    Google Scholar 

  81. Daraktchiev, M., Catalan, G., Scott, J.F.: Landau theory of domain wall magnetoelectricity. Phys. Rev. B 81, 224118 (2010)

    Article  Google Scholar 

  82. Maksymovych, P., Seidel, J., Chu, Y.-H., Baddorf, A., Wu, P., Chen, L.-Q., Kalinin, S.V., Ramesh, R.: Dynamic conductivity of ferroelectric domain walls. Nano Lett. 11, 1906 (2011)

    Article  CAS  Google Scholar 

  83. He et al.: Magnetotransport at domain walls in BiFeO3. Phys. Rev. Lett. 108, 067203 (2012)

    Google Scholar 

  84. Hong, J., Catalan, G., Fang, D.N., Artacho, E., Scott, J.F.: Topology of the polarization field in ferroelectric nanowires from first principles. Phys. Rev. B 81, 172101 (2010)

    Article  Google Scholar 

  85. Balke et al.: Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3. Nat. Phys. 8, 81 (2012)

    Google Scholar 

  86. Seidel, J.: Domain walls as nanoscale functional elements. J. Phys. Chem. Lett. 3, 2905 (2012)

    Article  CAS  Google Scholar 

  87. Bea, H., Paruch, P.: Multiferroics: a way forward along domain walls. Nat. Mater. 8, 168–169 (2009)

    Article  CAS  Google Scholar 

  88. Skumryev, V., Laukhin, V., Fina, I., Marti, X., Sanchez, F., Gospodinov, M., Fontcuberta, J.: Magnetization reversal by electric-field decoupling of magnetic and ferroelectric domain walls in multiferroic-based heterostructures. Phys. Rev. Lett. 106, 057206 (2011)

    Article  CAS  Google Scholar 

  89. Catalan, G., et al.: Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Seidel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Seidel, J. (2013). Electronic and Optical Properties of Domain Walls and Phase Boundaries in Bismuth Ferrite. In: Li, H., Wang, Z. (eds) Bismuth-Containing Compounds. Springer Series in Materials Science, vol 186. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8121-8_13

Download citation

Publish with us

Policies and ethics