Skip to main content

Dilute Bismides for Mid-IR Applications

  • Chapter
  • First Online:
Bismuth-Containing Compounds

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 186))

Abstract

Dilute bismides are a group of emerging materials with unique properties. Incorporation of a small amount of Bi in common III–V host materials results in large band-gap reduction and strong spin-orbit splitting, leading to potential applications in mid-infrared (Mid-IR) optoelectronics. In this chapter, we review recent progresses on epitaxy and characterizations of novel bismides, i.e., GaSb1 − x Bi x , InSb1 − x Bi x , InAs1 − x Bi x , and InAsSbBi. Although these dilute bismides have been successfully grown, to obtain high Bi incorporations and retain high crystal quality is still very challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barnett, S.A.: Direct E0 energy gaps of bismuth-containing III-V alloys predicted using quantum dielectric theory. J. Vac. Sci. Technol. A 5, 2845–2848 (1987)

    Article  CAS  Google Scholar 

  2. Francoeur, S., Seong, M.-J., Mascarenhas, A., Tixier, S., Adamcyk, M., Tiedje, T.: Band gap of GaAs1−xBix, 0<x<3.6%. Appl. Phys. Lett. 82, 3874 (2003)

    Article  CAS  Google Scholar 

  3. Alberi, K., Wu, J., Walukiewicz, W., Yu, K., Dubon, O., Watkins, S., Wang, C., Liu, X., Cho, Y.-J., Furdyna, J.: Valence-band anticrossing in mismatched III-V semiconductor alloys. Phys. Rev. B 75, 045203 (2007)

    Article  Google Scholar 

  4. Cooke, D.G., Hegmann, F.A., Young, E.C., Tiedje, T.: Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy. Appl. Phys. Lett. 89, 122103 (2006)

    Article  Google Scholar 

  5. Oe, K., Okamoto, H.: New semiconductor alloy GaAs1-xBix grown by metal organic vapor phase epitaxy. Jpn. J. Appl. Phys. 37, L1283–L1285 (1998)

    Article  Google Scholar 

  6. Tixier, S., Adamcyk, M., Tiedje, T., Francoeur, S., Mascarenhas, A., Wei, P., Schiettekatte, F.: Molecular beam epitaxy growth of GaAs1-xBix. Appl. Phys. Lett. 82, 2245 (2003)

    Article  CAS  Google Scholar 

  7. Fluegel, B., Francoeur, S., Mascarenhas, A., Tixier, S., Young, E.C., Tiedje, T.: Giant spin-orbit bowing in GaAs1-xBix. Phys. Rev. Lett. 97, 67205 (2006)

    Article  CAS  Google Scholar 

  8. Sweeney, S.J., Batool, Z., Hosea, T.J.C., Jin, S.R.: The potential of III-bismides for near- and mid-IR photonic devices. In: First International Workshop on Bismuth-Containing Semiconductors: Theory, Simulation, and Experiment, Michigan, USA (2010)

    Google Scholar 

  9. Germogenov, V.P., Otman, Y.I., Chaldyshev, V.V., Shmartsev, Y.V.: Width of the band gap in GaSb1−xBix solid solutions. Sov. Phys. Semicond. 23, 942–943 (1989)

    Google Scholar 

  10. Das, S.K., Das, T.D., Dhar, S., de la Mare, M., Krier, A.: Infrared photoluminescence of dilute GaSb:Bi alloys grown by liquid phase epitaxy. Infrared Phys. Technol. 55, 156–160 (2012)

    Article  CAS  Google Scholar 

  11. Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815 (2001)

    Article  CAS  Google Scholar 

  12. Kondow, M., Uomi, K., Hosomi, K., Mozume, T.: Gas-source molecular beam epitaxy of GaNxAs1-x using a N radical as the N source. Jpn. J. Appl. Phys. 33, L1056–L1058 (1994)

    Article  CAS  Google Scholar 

  13. Dutta, P., Bhat, H., Kumar, V.: The physics and technology of gallium antimonide: an emerging optoelectronic material. J. Appl. Phys. 81, 5821–5870 (1997)

    Article  CAS  Google Scholar 

  14. Hosoda, T., Kipshidze, G., Tsvid, G., Shterengas, L., Belenky, G.: Type-I GaSb-based laser diodes operating in 3.1- to 3.3 μm wavelength range. IEEE Photon. Technol. Lett. 22, 718–720 (2010)

    Article  CAS  Google Scholar 

  15. Zilko, J.L., Greene, J.E.: Growth of metastable InSb1-xBix thin films by multitarget sputtering. Appl. Phys. Lett. 33, 254 (1978)

    Article  CAS  Google Scholar 

  16. Oe, K., Ando, S., Sugiyama, K.: InSb1-xBix films grown by molecular beam epitaxy. Jpn. J. Appl. Phys. 20, L303–L306 (1981)

    Article  CAS  Google Scholar 

  17. Noreika, A.J., Takei, W.J., Francombe, M.H., Wood, C.E.C.: Indium antimonide-bismuth compositions grown by molecular beam epitaxy. J. Appl. Phys. 53, 4932 (1982)

    Article  CAS  Google Scholar 

  18. Fang, Z., Ma, K., Cohen, R., Stringfellow, G.: Photoluminescence of InAsBi and InAsSbBi grown by organometallic vapor phase epitaxy. J. Appl. Phys. 68, 1187–1191 (1990)

    Article  CAS  Google Scholar 

  19. Gladkov, P., Monova, E., Weber, J.: Liquid phase epitaxy and photoluminescence characterization of p-type GaSb layers grown from Bi based melts. J. Cryst. Growth 146, 319–325 (1995)

    Article  CAS  Google Scholar 

  20. Song, Y., Wang, S., Roy, I.S., Shi, P., Hallen, A.: Growth of GaSb1-xBix by molecular beam epitaxy. J. Vac. Sci. Technol. B 30, 02B114–02B117 (2012)

    Article  Google Scholar 

  21. Danilewsky, A., Lauer, S., Meinhardt, J., Benz, K., Kaufmann, B., Hofmann, R., Dornen, A.: Growth and characterization of GaSb bulk crystals with low acceptor concentration. J. Electron. Mater. 25, 1082–1087 (1996)

    Article  CAS  Google Scholar 

  22. Janotti, A., Wei, S.-H., Zhang, S.B.: Theoretical study of the effects of isovalent coalloying of Bi and N in GaAs. Phys. Rev. B 65, 115203 (2002)

    Article  Google Scholar 

  23. Mohmad, A.R., Bastiman, F., Hunter, C.J., Ng, J.S., Sweeney, S.J., David, J.: The effect of Bi composition to the optical quality of GaAs1-xBix. Appl. Phys. Lett. 99, 42107 (2011)

    Article  Google Scholar 

  24. Moison, J.M., Guille, C., Houzay, F., Barthe, F., Van Rompay, M.: Surface segregation of third-column atoms in group III-V arsenide compounds: ternary alloys and heterostructures. Phys. Rev. B 40, 6149 (1989)

    Article  CAS  Google Scholar 

  25. Joukoff, B., Jean-Louis, A.M.: Growth of InSb1-xBix single crystals by Czochralski method. J. Cryst. Growth 12, 169–172 (1972)

    Article  CAS  Google Scholar 

  26. Zilko, J., Greene, J.: Growth and phase stability of epitaxial metastable InSb1-xBix films on GaAs. I. Crystal growth. J. Appl. Phys. 51, 1549 (1980)

    Article  CAS  Google Scholar 

  27. Zilko, J.L., Greene, J.E.: Growth and phase stability of epitaxial metastable InSb1-xBix films on GaAs. II. Phase stability. J. Appl. Phys. 51, 1560–1564 (1980)

    Article  CAS  Google Scholar 

  28. Lee, J.J., Razeghi, M.: Investigation of novel InTlSb and InSbBi alloys for uncooled photodetector applications. In: Brown, G.J. (ed.) Photodetectors: Materials and Devices III, pp. 256–269. SPIE-INT Soc Optical Engineering, Bellinghan, USA (1998)

    Chapter  Google Scholar 

  29. Lee, J.J., Razeghi, M.: Exploration of InSbBi for un cooled long-wavelength infrared photodetectors. Opto-Electr. Rev. 6, 25–36 (1998)

    CAS  Google Scholar 

  30. Lee, J.J., Kim, J.D., Razeghi, M.: Room temperature operation of 8–12 μm InSbBi infrared photodetectors on GaAs substrates. Appl. Phys. Lett. 73, 602–604 (1998)

    Article  CAS  Google Scholar 

  31. Lee, J.J., Kim, J.D., Razeghi, M.: Exploration of novel InSbBi alloy for uncooled infrared photodetector applications. J. Korean Phys. Soc. 35, S275–S278 (1999)

    CAS  Google Scholar 

  32. Wang, S., Song, Y., Roy, I.S.: Bismuth incorporation and lattice contraction in GaSbBi and InSbBi. In: Jaworski, M, Marciniak, M. (eds.) 2011 13th International Conference on Transparent Optical Networks (ICTON), IEEE, New York, USA (2011)

    Google Scholar 

  33. Das, S.C., Das, T.D., Dhar, S.: Infrared absorption and Raman spectroscopy studies of InSbBi layers grown by liquid phase epitaxy. Infrared Phys. Technol. 55, 306–308 (2012)

    Article  CAS  Google Scholar 

  34. Du, Q., Alperin, J., Wang, W.I.: Molecular beam epitaxial growth of GaInSbBi for infrared detector applications. J. Cryst. Growth 175–176, 849–852 (1997)

    Article  Google Scholar 

  35. Noreika, A.J., Greggi, J., Takei, W.J., Francombe, M.H.: Properties of MBE grown InSb and InSb1-xBix. J. Vac. Sci. Technol. A 1, 558–561 (1983)

    Article  CAS  Google Scholar 

  36. Humphreys, T., Chiang, P., Bedair, S., Parikh, N.: Metalorganic chemical vapor deposition and characterization of the In-As-Sb-Bi material system for infrared detection. Appl. Phys. Lett. 53, 142 (1988)

    Article  CAS  Google Scholar 

  37. Ma, K.Y., Fang, Z.M., Cohen, R.M., Stringfellow, G.B.: OMVPE growth and characterization of Bi-containing III–V alloys. J. Cryst. Growth 107, 416–421 (1991)

    Article  CAS  Google Scholar 

  38. Wagener, M.C.C., Botha, J.R., Leitch, A.W.R.: Characterization of secondary phases formed during MOVPE growth of InSbBi mixed crystals. J. Cryst. Growth 213, 51–56 (2000)

    Article  CAS  Google Scholar 

  39. Dixit, V.K., Keerthi, K.S., Bera, P., Bhat, H.L.: Growth of InBixSb1−x films on GaAs(0 0 1) substrates using liquid phase epitaxy and their characterization. J. Cryst. Growth 241, 171–176 (2002)

    Article  CAS  Google Scholar 

  40. Ma, K., Fang, Z., Jaw, D., Cohen, R., Stringfellow, G., Kosar, W., Brown, D.: Organometallic vapor phase epitaxial growth and characterization of InAsBi and InAsSbBi. Appl. Phys. Lett. 55, 2420 (1989)

    Article  CAS  Google Scholar 

  41. Okamoto, H., Oe, K.: Growth of metastable alloy InAsBi by low-pressure MOVPE. Jpn. J. Appl. Phys. 37, 1608–1613 (1998)

    Article  CAS  Google Scholar 

  42. Huang, K.T., Chiu, C.T., Cohen, R.M., Stringfellow, G.B.: InAsBi alloys grown by organometallic vapor phase epitaxy. J. Cryst. Growth 134, 29–34 (1993)

    Article  CAS  Google Scholar 

  43. Ma, K.Y., Fang, Z.M., Cohen, R.M., Stringfellow, G.B.: Investigation of organometallic vapor phase epitaxy of InAs and InAsBi at temperatures as low as 275 °C. J. Appl. Phys. 70, 3940 (1991)

    Article  CAS  Google Scholar 

  44. Ma, K.Y., Fang, Z.M., Cohen, R.M., Stringfellow, G.B.: Ultra-low temperature OMVPE of InAs and InAsBi. J. Electron. Mater. 21, 143–148 (1992)

    Article  CAS  Google Scholar 

  45. Okamoto, H., Oe, K.: Structural and energy-gap characterization of metalorganic-vapor-phase-epitaxy-grown InAsBi. Jpn. J. Appl. Phys. 38, 1022–1025 (1999)

    Article  CAS  Google Scholar 

  46. Svensson, S.P., Hier, H., Sarney, W.L., Donetsky, D., Wang, D., Belenky, G.: Molecular beam epitaxy control and photoluminescence properties of InAsBi. J. Vac. Sci. Technol. A 30, 02B109 (2012)

    Article  Google Scholar 

  47. Verma, P., Oe, K., Yamada, M., Harima, H., Herms, M., Irmer, G.: Raman studies on GaAs1-x Bix and InAs1-x Bix. J. Appl. Phys. 89, 1657 (2001)

    Google Scholar 

  48. Huang, K., Chiu, C., Cohen, R., Stringfellow, G.: InAsSbBi alloys grown by organometallic vapor-phase epitaxy. J. Appl. Phys. 75, 2857 (1994)

    Article  Google Scholar 

  49. Oszwaldowski, M., Berus, T., Szade, J., Józwiak, K., Olejniczak, I., Konarski, P., Jozwiak, K.: Structural properties of InSbBi and InSbAsBi thin films prepared by the flash-evaporation method. Cryst. Res. Technol. 36, 1155–1171 (2001)

    Article  CAS  Google Scholar 

  50. Dixit, V.K., Keerthi, K.S., Bhat, H.L., Bera, P., Hegde, M.S.: Structural and compositional analysis of InBixAsySb(1−x−y) films grown on GaAs(0 0 1) substrates by liquid phase epitaxy. Appl. Surf. Sci. 220, 321–326 (2003)

    Article  CAS  Google Scholar 

  51. Shao, J., Lu, W., Lu, X., Yue, F., Li, Z., Guo, S., Chu, J.: Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer. Rev. Sci. Instrum. 77, 63104–63106 (2006)

    Article  Google Scholar 

  52. Zhu, L., Shao, J., Lu, X., Guo, S., Chu, J.: Competition of compressive strain with substrate misorientation in CuPt-type ordered GaInP/AlGaInP quantum wells. J. Appl. Phys. 109, 13506–13509 (2011)

    Article  Google Scholar 

  53. Zhang, X., Shao, J., Chen, L., Lu, X., Guo, S., He, L., Chu, J.: Infrared photoluminescence of arsenic-doped HgCdTe in a wide temperature range of up to 290 K. J. Appl. Phys. 110, 43503–43507 (2011)

    Article  Google Scholar 

  54. Shao, J., Lu, X., Yue, F., Huang, W., Guo, S., Chu, J.: Magnetophotoluminescence study of GaxIn1-xP quantum wells with CuPt-type long-range ordering. J. Appl. Phys. 100, 53522–53526 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Peixiong Shi from DANCHIP, Technical University of Denmark for SIMS measurements; Prof. Anders Hallen from ICT, Royal Institute of Technology for RBS measurements; Dr. Zonghe Lai and Ms. Ivy S. Roy from Chalmers University of Technology for TEM and AFM measurements; and Xiren Chen from Shanghai Institute of Technical Physics for PL measurements. The Swedish Research Council (VR) is acknowledged for financial support for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shumin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Song, Y., Gu, Y., Shao, J., Wang, S. (2013). Dilute Bismides for Mid-IR Applications. In: Li, H., Wang, Z. (eds) Bismuth-Containing Compounds. Springer Series in Materials Science, vol 186. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8121-8_1

Download citation

Publish with us

Policies and ethics