Skip to main content

Ball-Polyhedra and Spindle Convex Bodies

  • Chapter
  • First Online:
Lectures on Sphere Arrangements – the Discrete Geometric Side

Part of the book series: Fields Institute Monographs ((FIM,volume 32))

  • 832 Accesses

Abstract

In this chapter, we introduce an extension of the theory of convex polyhedral sets (resp., convex bodies) to the family of intersections of finitely many congruent balls, called ball-polyhedra (resp., to the family of intersections of not necessarily finitely many congruent balls, called spindle convex bodies). The basic properties of ball-polyhedra (resp., spindle convex bodies) that are discussed here include separation and support properties for spindle convex bodies, a Carathéodory-type theorem for spindle convex hulls, and an Euler–Poincaré-type formula for ball-polyhedra in d-dimensional Euclidean space. In addition, we discuss (generalized) billiard trajectories in disk-polygons and an analogue of Blaschke–Lebesgue theorem for disk-polygons. Furthermore, we investigate the problem of characterizing the edge-graphs of ball-polyhedra in Euclidean 3-space. Another topic, discussed in more details, is on global and local rigidity of ball-polyhedra in Euclidean 3-space. Finally, we investigate the status of the long-standing illumination conjecture of V. G. Boltyanski and H. Hadwiger from 1960 for ball-polyhedra (resp., spindle convex bodies) in Euclidean d-space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Aigner, G.M. Ziegler, Proofs from the Book, 4th edn. (Springer, Berlin, 2010)

    Book  Google Scholar 

  2. A.D. Alexandrov, Convex Polyhedra (translation of the 1950 Russian original) (Springer, Berlin, 2005)

    Google Scholar 

  3. A. Barvinok, A Course in Convexity. Graduate Studies in Mathematics, vol. 54 (American Mathematical Society, Providence, 2002)

    Google Scholar 

  4. T. Bayen, T. Lachand-Robert, É. Oudet, Analytic parametrization of three-dimensional bodies of constant width. Arch. Ration. Mech. Anal. 186/2, 225–249 (2007)

    Google Scholar 

  5. V. Benci, F. Giannoni, Periodic bounce trajectories with a low number of bounce points. Ann. Inst. H. Poincare Anal. Non Linaire 6/1, 73–93 (1989)

    Google Scholar 

  6. K. Bezdek, Analogues of Alexandrov’s and Stoker’s theorems for ball-polyhedra. arXiv:1201.3656v2 [math.MG], 1–12 (2011)

    Google Scholar 

  7. M. Bezdek, On a generalization of the Blaschke–Lebesgue theorem for disk-polygons. Contrib. Discret. Math. 6/1, 77–85 (2011)

    Google Scholar 

  8. K. Bezdek, Illuminating spindle convex bodies and minimizing the volume of spherical sets of constant width. Discret. Comput. Geom. 47/2, 275–287 (2012)

    Google Scholar 

  9. D. Bezdek, K. Bezdek, Shortest billiard trajectories. Geom. Dedic. 141, 197–206 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Bezdek, R. Connelly, Covering curves by translates of a convex set. Am. Math. Mon. 96/9, 789–806 (1989)

    Google Scholar 

  11. K. Bezdek, M. Naszódi, Rigidity of ball-polyhedra in Euclidean 3-space. Eur. J. Comb. 27, 255–268 (2006)

    Article  MATH  Google Scholar 

  12. K. Bezdek, M. Naszódi, Rigid ball-polyhedra in Euclidean 3-space. Discret. Comput. Geom. 49/2, 189–199 (2013)

    Google Scholar 

  13. K. Bezdek, Zs. Lángi, M. Naszódi, P. Papez, Ball-polyhedra. Discret. Comput. Geom. 38/2, 201–230 (2007)

    Google Scholar 

  14. W. Blaschke, Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts. Math. Ann. 76, 504–513 (1915)

    Article  MathSciNet  MATH  Google Scholar 

  15. W. Blaschke, Einige Bemerkungen über Kurven und Flächen konstanter Breite. Leipz. Ber. 57, 290–297 (1915)

    Google Scholar 

  16. V. Boltyanski, The problem of illuminating the boundary of a convex body. Izv. Mold. Fil. Akad. Nauk. SSSR 76, 77–84 (1960)

    Google Scholar 

  17. V.G. Boltyanskii, M. Yaglom, Convex Figures (Holt-Rinehart-Winston, New York, 1961)

    MATH  Google Scholar 

  18. A.L. Cauchy, Sur les polygones et polyèdres, Second mémoire. J. de l’Ecole Polythéchnique 9, 87–98 (1813)

    Google Scholar 

  19. B.V. Dekster, Completeness and constant width in spherical and hyperbolic spaces. Acta Math. Hung. 67/4, 289–300 (1995)

    Google Scholar 

  20. M. Farber, S. Tabachnikov, Topology of cyclic configuration spaces and periodic trajectories of multi-dimensional billiards. Topology 41/3, 553–589 (2002)

    Google Scholar 

  21. P.W. Fowler, T. Tarnai, Transition from spherical circle packing to covering: geometrical analogues of chemical isomerization. Proc. R. Soc. Lond. 452, 2043–2064 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Ghomi, Shortest periodic billiard trajectories in convex bodies. Geom. Funct. Anal. 14, 295–302 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. B. Grünbaum, in Convex Polytopes. Graduate Texts in Mathematics vol. 221, 2nd edn. (Springer, New York, 2003)

    Google Scholar 

  24. H. Hadwiger, Ungelöste Probleme, Nr. 38. Elem. Math. 15, 130–131 (1960)

    Google Scholar 

  25. E.M. Harrell, A direct proof of a theorem of Blaschke and Lebesgue. J. Geom. Anal. 12/1, 81–88 (2002)

    Google Scholar 

  26. J. Kahn, G. Kalai, A counterexample to Borsuk’s conjecture. Bull. Am. Math. Soc. (N.S.) 29/1, 60–62 (1993)

    Google Scholar 

  27. Y.S. Kupitz, H. Martini, M.A. Perles, Ball polytopes and the Vázsonyi problem. Acta Math. Hung. 126/1–2, 99–163 (2010)

    Google Scholar 

  28. H. Lebesgue, Sur le problemedes isoperimetres at sur les domaines de larguer constante. Bull. Soc. Math. Fr. C. R. 7, 72–76 (1914)

    Google Scholar 

  29. R. Mazzeo, G. Montcouquiol, Infinitesimal rigidity of cone-manifolds and the Stoker problem for hyperbolic and Euclidean polyhedra. J. Differ. Geom. 87/3, 525–576 (2011)

    Google Scholar 

  30. I. Pak, Lectures on Discrete and Polyhedral Geometry (2010), pp. 1–440. (book in preparation). http://www.math.ucla.edu/pak/book.htm

  31. I.J. Schoenberg, Mathematical Time Exposures (Mathematical Association of America, Washington, DC, 1982)

    MATH  Google Scholar 

  32. O. Schramm, Illuminating sets of constant width. Mathematika 35, 180–189 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. J.J. Stoker, Geometric problems concerning polyhedra in the large. Commun. Pure Appl. Math. 21, 119–168 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  34. S. Tabachnikov, Geometry and Billiards (American Mathematical Society, Providence, 2005)

    MATH  Google Scholar 

  35. S. Zelditch, Spectral determination of analytic bi-axisymmetric plane domains. Geom. Funct. Anal. 10/3, 628–677 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bezdek, K. (2013). Ball-Polyhedra and Spindle Convex Bodies. In: Lectures on Sphere Arrangements – the Discrete Geometric Side. Fields Institute Monographs, vol 32. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8118-8_5

Download citation

Publish with us

Policies and ethics