Skip to main content

Morphological Reduction of Dendritic Neurons

  • Chapter
  • First Online:

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 11))

Abstract

Computational models are important tools for determining dendritic properties and for understanding their functional roles. However, these models are limited by simulation time and storage requirements, particularly when modeling neuronal networks. We review reduced models of the neuron that accurately report the transmembrane potential at a few specified locations while retaining dendritic properties, including the spatial distribution of synaptic inputs throughout the dendritic tree. These models are rooted in two classes of methods from linear algebra: methods based on the singular value decomposition and moment-matching methods. The reduced models can be used to further elucidate dendritic function as they greatly reduce the computational cost associated with simulating networks of morphologically accurate neurons. We demonstrate this capability by simulating a network of hippocampal pyramidal cells and interneurons coupled through chemical synapses and electrical gap junctions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Antoulas A (2005) An overview of approximation methods for large-scale dynamical systems. Annu Rev Contr 29:181–190

    Article  Google Scholar 

  • Antoulas A, Sorensen D, Gugercin S (2001) A survey of model reduction methods for large-scale systems, vol 280. American Mathematical Society, Providence, pp 193–219

    Google Scholar 

  • Ascoli G, Brown K, Calixto E, Card J, Galván E, Perez-Rosello T, Barrionuevo G (2009) Quantitative morphometry of electrophysiologically identified CA3b interneurons reveals robust local geometry and distinct cell classes. J Comp Neurol 515:677–695

    Article  PubMed  Google Scholar 

  • Barrault M, Maday Y, Nguyen N, Patera A (2004) An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. C R Math Acad Sci Paris 339:667–672

    Article  Google Scholar 

  • Chaturantabut S, Sorensen D (2010) Nonlinear model reduction via discrete empirical interpolation. SIAM M J Sci Comput 32:2737–2764

    Article  Google Scholar 

  • Chitwood R, Hubbard A, Jaffe D (1999) Passive electrotonic properties of rat hippocampal CA3 interneurons. J Physiol 15:743–756

    Article  Google Scholar 

  • Dullerud G, Paganini F (2000) A course in robust control theory. Springer, New York

    Book  Google Scholar 

  • Gabbiani F, Cox S (2010) Mathematics for neuroscientists. Elsevier, Boston

    Google Scholar 

  • Grimme E (1997) Krylov projection methods for model reduction. Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana

    Google Scholar 

  • Gu C (2011) QLMOR: a projection-based nonlinear model order reduction approach using quadratic-linear representation of nonlinear systems. IEEE Trans Comput Aided Des Integr Circ Syst 30:1307–1320

    Article  Google Scholar 

  • Gugercin S, Antoulas A, Beattie C (2008) 2 model reduction for large-scale linear dynamical systems. SIAM J Matrix Anal Appl 30:609–638

    Article  Google Scholar 

  • Hedrick K (2012) The neural computations in spatial memory from single cells to networks. Ph.D. thesis, Rice University, Houston

    Google Scholar 

  • Hedrick K, Cox S (2013) Structure-preserving model reduction of passive and quasi-active neurons. J Comput Neurosci 34:1–26

    Article  PubMed  Google Scholar 

  • Hendrickson E, Edgerton J, Jaeger D (2011) The capabilities and limitations of conductance-based compartmental neuron models with reduced branched or unbranched morphologies and active dendrites. J Comput Neurosci 30:301–321

    Article  PubMed  Google Scholar 

  • Hines M (1984) Efficient computation of branched nerve equations. Int J Biomed Comput 15:69–76

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    PubMed  CAS  Google Scholar 

  • Johnston D, Amaral D (1998) Hippocampus. In: Shepherd G (ed) The synaptic organization of the brain, chap 10. Oxford University Press, New York, pp 417–458

    Google Scholar 

  • Kellems A, Roos D, Xiao N, Cox S (2009) Low-dimensional, morphologically accurate models of subthreshold membrane potential. J Comput Neurosci 27:161–176

    Article  PubMed  Google Scholar 

  • Kellems A, Chaturantabut S, Sorensen D, Cox S (2010) Morphologically accurate reduced order modeling of spiking neurons. J Comput Neurosci 28:477–494

    Article  PubMed  Google Scholar 

  • Kistler W, Gerstner W, van Hemmen J (1997) Reduction of the Hodgkin-Huxley equations to a single-variable threshold model. Neural Comput 9:1015–1045

    Article  Google Scholar 

  • Koch C (1999) Biophysics of computation: information processing in single neurons. Oxford University Press, New York

    Google Scholar 

  • Kunisch K, Volkwein S (2002) Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J Numer Anal 40:492–515

    Article  Google Scholar 

  • Li R, Bai Z (2005) Structure-preserving model reduction using a Krylov subspace projection formulation. Comm Math Sci 3:179–199

    Google Scholar 

  • Liang Y, Lee H, Lim S, Lin W, Lee K, Wu C (2000) Proper orthogonal decomposition and its applications–part 1: theory. J Sound Vib 252:527–544

    Article  Google Scholar 

  • Migliore M, Cook E, Jaffe D, Turner D, Johnston D (1995) Computer simulations of morphologically reconstructed CA3 hippocampal neurons. J Neurophysiol 73:1157–1168

    PubMed  CAS  Google Scholar 

  • Odabasioglu A, Celik M, Pileggi L (1998) PRIMA: Passive reduced-order interconnect macromodeling algorithm. IEEE Trans Comput Aided Des Integr Circ Syst 17:645–654

    Article  Google Scholar 

  • Pinsky P, Rinzel J (1994) Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J Comput Neurosci 1:39–60

    Article  PubMed  CAS  Google Scholar 

  • Poznanski R (1991) A generalized tapering equivalent cable model for dendritic neurons. Bull Math Biol 53:457–467

    PubMed  CAS  Google Scholar 

  • Rahn B (2001) A balanced truncation primer. arXiv quant-ph/0112066

    Google Scholar 

  • Rall W (1959) Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol 1:491–527

    Article  PubMed  CAS  Google Scholar 

  • Saad Y (2003) Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  • Saraga F, Skinner F (2004) Location, location, location (and density) of gap junctions in multi-compartment models. Neurocomputing 58:713–719

    Article  Google Scholar 

  • Saraga F, Ng L, Skinner F (2006) Distal gap junctions and active dendrites can tune network dynamics. J Neurophysiol 95:1669–1682

    Article  PubMed  Google Scholar 

  • Schierwagen A (1989) A non-uniform equivalent cable model of membrane voltage changes in a passive dendritic tree. J Theor Biol 141(2):159–179

    Google Scholar 

  • Skinner F, Saraga F (2010) Single neuron models: interneurons. In: Cutsuridis V, Graham B, Cobb S, Vida I (eds) Hippocampal microcircuits, Chap 16. Springer, New York, pp 399–422

    Chapter  Google Scholar 

  • Traub R, Miles R (1991) Neuronal networks of the hippocampus. Cambridge University Press, New York

    Book  Google Scholar 

  • Traub R, Miles R (1995) Pyramidal cell-to-inhibitory cell spike transduction explicable by active dendritic conductances in inhibitory cell. J Comput Neurosci 2:291–298

    Article  PubMed  CAS  Google Scholar 

  • Traub R, Wong K, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 66:635–650

    PubMed  CAS  Google Scholar 

  • Trefethen L, Bau D (1997) Numerical linear algebra. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  • Turner D, Li X, Pyapali G, Ylinen A, Buzsáki G (1995) Morphometric and electrical properties of reconstructed hippocampal CA3 neurons recorded in vivo. J Comput Neurosci 356:580–594

    Article  CAS  Google Scholar 

  • Villemagne C, Skelton R (1987) Model reduction using a projection formulation. Int J Contr 46:2141–2169

    Article  Google Scholar 

  • Wang X, Buzsáki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci 16:6402–6413

    PubMed  CAS  Google Scholar 

  • Witter M, Moser E (2006) Spatial representation and the architecture of the entorhinal cortex. Trends Neurosci 29:671–678

    Article  PubMed  CAS  Google Scholar 

  • Yan B, Li P (2011) Reduced order modeling of passive and quasi-active dendrites for nervous system simulation. J Comput Neurosci 31:247–271

    Article  PubMed  Google Scholar 

  • Zahid T, Skinner F (2009) Predicting synchronous and asynchronous network groupings of hippocampal interneurons coupled with dendritic gap junctions. Brain Res 1262:115–129

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by NSF grant DMS-1122455 and by a training fellowship from the Keck Center for Interdisciplinary Bioscience Training of the Gulf Coast Consortia (NIBIB Grant No. 1T32EB006350-01A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Cox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hedrick, K.R., Cox, S.J. (2014). Morphological Reduction of Dendritic Neurons. In: Cuntz, H., Remme, M., Torben-Nielsen, B. (eds) The Computing Dendrite. Springer Series in Computational Neuroscience, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8094-5_29

Download citation

Publish with us

Policies and ethics