Stochastic Ion Channel Gating and Probabilistic Computation in Dendritic Neurons

Part of the Springer Series in Computational Neuroscience book series (NEUROSCI, volume 11)


The electrical signals underlying neural computations are mediated by membrane ion channels. Although these ion channels are well known to operate stochastically, most computational models of dendritic neurons instead make the approximation that ionic conductances are deterministic. We review the basic mathematical considerations underlying this approximation and new efficient simulation tools that allow it to be evaluated systematically. We show how this approximation breaks down for dendritic neurons, with the relative functional influence of stochastic ion channel gating likely to depend strongly on neuron type. An important consequence of stochastic gating of ion channels may be that it causes dendritic neurons to integrate synaptic inputs probabilistically, rather than in the all or nothing fashion predicted by deterministic models.


Synaptic Input Channel Gating Single Channel Conductance Voltage Fluctuation Current Fluctuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bhalla US (2004a) Signaling in small subcellular volumes. I. Stochastic and diffusion effects on individual pathways. Biophys J 87(2):733–744PubMedCrossRefGoogle Scholar
  2. Bhalla US (2004b) Signaling in small subcellular volumes. II. Stochastic and diffusion effects on synaptic network properties. Biophys J 87(2):745–753PubMedCrossRefGoogle Scholar
  3. Bittner KC, Andrasfalvy BK, Magee JC (2012) Ion channel gradients in the apical tuft region of CA1 pyramidal neurons. PLoS One 7(10):e46652PubMedCrossRefGoogle Scholar
  4. Bruce IC (2009) Evaluation of stochastic differential equation approximation of ion channel gating models. Ann Biomed Eng 37(4):824–838PubMedCrossRefGoogle Scholar
  5. Buesing L, Bill J, Nessler B, Maass W (2011) Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons. PLoS Comput Biol 7(11):e1002211PubMedCrossRefGoogle Scholar
  6. Cannon RC, O’Donnell C, Nolan MF (2010) Stochastic ion channel gating in dendritic neurons: morphology dependence and probabilistic synaptic activation of dendritic spikes. PLoS Comput Biol 6(8)Google Scholar
  7. Cao Y, Gillespie DT, Petzold LR (2006) Efficient step size selection for the tau-leaping simulation method. J Chem Phys 124(4):044109PubMedCrossRefGoogle Scholar
  8. Chen X, Johnston D (2004) Properties of single voltage-dependent K+ channels in dendrites of CA1 pyramidal neurones of rat hippocampus. J Physiol 559(Pt 1):187–203PubMedCrossRefGoogle Scholar
  9. Chow CC, White JA (1996) Spontaneous action potentials due to channel fluctuations. Biophys J 71(6):3013–3021PubMedCrossRefGoogle Scholar
  10. DeFelice LJ (1981) Introduction to membrane noise. Plenum, New YorkCrossRefGoogle Scholar
  11. Diba K, Lester HA, Koch C (2004) Intrinsic noise in cultured hippocampal neurons: experiment and modeling. J Neurosci 24(43):9723–9733PubMedCrossRefGoogle Scholar
  12. Diba K, Koch C, Segev I (2006) Spike propagation in dendrites with stochastic ion channels. J Comput Neurosci 20(1):77–84PubMedCrossRefGoogle Scholar
  13. Dorval AD Jr, White JA (2005) Channel noise is essential for perithreshold oscillations in entorhinal stellate neurons. J Neurosci 25(43):10025–10028PubMedCrossRefGoogle Scholar
  14. Dudman JT, Nolan MF (2009) Stochastically gating ion channels enable patterned spike firing through activity-dependent modulation of spike probability. PLoS Comput Biol 5(2):e1000290PubMedCrossRefGoogle Scholar
  15. Engel D, Jonas P (2005) Presynaptic action potential amplification by voltage-gated Na+ channels in hippocampal mossy fiber boutons. Neuron 45(3):405–417PubMedCrossRefGoogle Scholar
  16. Faisal AA, White JA, Laughlin SB (2005) Ion-channel noise places limits on the miniaturization of the brain’s wiring. Curr Biol 15(12):1143–1149PubMedCrossRefGoogle Scholar
  17. Faisal AA, Selen LP, Wolpert DM (2008) Noise in the nervous system. Nat Rev Neurosci 9(4):292–303PubMedCrossRefGoogle Scholar
  18. Fiser J, Berkes P, Orban G, Lengyel M (2010) Statistically optimal perception and learning: from behavior to neural representations. Trends Cogn Sci 14(3):119–130PubMedCrossRefGoogle Scholar
  19. Fox RF (1997) Stochastic versions of the Hodgkin–Huxley equations. Biophys J 72(5):2068–2074PubMedCrossRefGoogle Scholar
  20. Fox RF, Lu Y (1994) Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 49(4):3421–3431PubMedCrossRefGoogle Scholar
  21. Franks KM, Stevens CF, Sejnowski TJ (2003) Independent sources of quantal variability at single glutamatergic synapses. J Neurosci 23(8):3186–3195PubMedGoogle Scholar
  22. Gillespie DT (1977) Exact stochastic simulation of coupled chemical-reactions. Abstr Paper Am Chem Soc 173:128Google Scholar
  23. Gillespie DT (2001) Approximate accelerated stochastic simulation of chemically reacting systems. J Chem Phys 115(4):1716–1733CrossRefGoogle Scholar
  24. Golding NL, Mickus TJ, Katz Y, Kath WL, Spruston N (2005) Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. J Physiol 568(Pt 1):69–82PubMedCrossRefGoogle Scholar
  25. Goldwyn JH, Shea-Brown E (2011) The what and where of adding channel noise to the Hodgkin–Huxley equations. PLoS Comput Biol 7(11):e1002247PubMedCrossRefGoogle Scholar
  26. Goldwyn JH, Imennov NS, Famulare M, Shea-Brown E (2011) Stochastic differential equation models for ion channel noise in Hodgkin-Huxley neurons. Phys Rev E Stat Nonlin Soft Matter Phys 83:041908PubMedCrossRefGoogle Scholar
  27. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer, Sunderland, MAGoogle Scholar
  28. Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9(6):1179–1209PubMedCrossRefGoogle Scholar
  29. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544PubMedGoogle Scholar
  30. Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387(6636):869–875PubMedCrossRefGoogle Scholar
  31. Jacobson GA, Diba K, Yaron-Jakoubovitch A, Oz Y, Koch C, Segev I, Yarom Y (2005) Subthreshold voltage noise of rat neocortical pyramidal neurones. J Physiol 564:145–160PubMedCrossRefGoogle Scholar
  32. Jarsky T, Roxin A, Kath WL, Spruston N (2005) Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nat Neurosci 8:1667–1676PubMedCrossRefGoogle Scholar
  33. Johansson S, Arhem P (1994) Single-channel currents trigger action potentials in small cultured hippocampal neurons. Proc Natl Acad Sci USA 91(5):1761–1765PubMedCrossRefGoogle Scholar
  34. Johnston D, Narayanan R (2008) Active dendrites: colorful wings of the mysterious butterflies. Trends Neurosci 31(6):309–316PubMedCrossRefGoogle Scholar
  35. Johnston D, Christie BR, Frick A, Gray R, Hoffman DA, Schexnayder LK, Watanabe S, Yuan LL (2003) Active dendrites, potassium channels and synaptic plasticity. Philos Trans R Soc Lond B Biol Sci 358(1432):667–674PubMedCrossRefGoogle Scholar
  36. Koch C (1999) Biophysics of computation: information processing in single neurons. Computational neuroscience. Oxford University Press, New YorkGoogle Scholar
  37. Kole MH, Hallermann S, Stuart GJ (2006) Single Ih channels in pyramidal neuron dendrites: properties, distribution, and impact on action potential output. J Neurosci 26:1677–1687PubMedCrossRefGoogle Scholar
  38. Lecar H, Nossal R (1971) Theory of threshold fluctuations in nerves. II. Analysis of various sources of membrane noise. Biophys J 11(12):1068–1084PubMedCrossRefGoogle Scholar
  39. Linaro D, Storace M, Giugliano M (2011) Accurate and fast simulation of channel noise in conductance-based model neurons by diffusion approximation. PLoS Comput Biol 7(3):e1001102PubMedCrossRefGoogle Scholar
  40. Lindner B, Garcia-Ojalvo J, Neiman A, Schimansky-Geier L (2004) Effects of noise in excitable systems. Phys Rep 392(6):321–424CrossRefGoogle Scholar
  41. Lisman JE, Raghavachari S, Tsien RW (2007) The sequence of events that underlie quantal transmission at central glutamatergic synapses. Nat Rev Neurosci 8(8):597–609PubMedCrossRefGoogle Scholar
  42. Lorincz A, Notomi T, Tamas G, Shigemoto R, Nusser Z (2002) Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites. Nat Neurosci 5:1185–1193PubMedCrossRefGoogle Scholar
  43. Magee JC (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci 18:7613–7624PubMedGoogle Scholar
  44. Magee JC (2000) Dendritic integration of excitatory synaptic input. Nat Rev Neurosci 1(3):181–190PubMedCrossRefGoogle Scholar
  45. Magee JC, Johnston D (1995) Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J Physiol 487:67–90PubMedGoogle Scholar
  46. Magistretti J, Ragsdale DS, Alonso A (1999) Direct demonstration of persistent Na+ channel activity in dendritic processes of mammalian cortical neurones. J Physiol 521:629–636PubMedCrossRefGoogle Scholar
  47. Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382(6589):363–366PubMedCrossRefGoogle Scholar
  48. Manwani A, Koch C (1999) Detecting and estimating signals in noisy cable structure, I: neuronal noise sources. Neural Comput 11:1797–1829PubMedCrossRefGoogle Scholar
  49. Mino H, Rubinstein JT, White JA (2002) Comparison of algorithms for the simulation of action potentials with stochastic sodium channels. Ann Biomed Eng 30:578–587PubMedCrossRefGoogle Scholar
  50. Neher E (1998) Usefulness and limitations of linear approximations to the understanding of Ca++ signals. Cell Calcium 24:345–357PubMedCrossRefGoogle Scholar
  51. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260(5554):799–802PubMedCrossRefGoogle Scholar
  52. Nolan MF, Malleret G, Dudman JT, Buhl DL, Santoro B, Gibbs E, Vronskaya S, Buzsaki G, Siegelbaum SA, Kandel ER, Morozov A (2004) A behavioral role for dendritic integration: HCN1 channels constrain spatial memory and plasticity at inputs to distal dendrites of CA1 pyramidal neurons. Cell 119(5):719–732PubMedGoogle Scholar
  53. Nusser Z (2009) Variability in the subcellular distribution of ion channels increases neuronal diversity. Trends Neurosci 32(5):267–274PubMedCrossRefGoogle Scholar
  54. Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135(2):216–226PubMedCrossRefGoogle Scholar
  55. Rall W (1959) Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol 1:491–527PubMedCrossRefGoogle Scholar
  56. Rall W (1962) Theory of physiological properties of dendrites. Ann N Y Acad Sci 96:1071–1092PubMedCrossRefGoogle Scholar
  57. Reyes A (2001) Influence of dendritic conductances on the input–output properties of neurons. Annu Rev Neurosci 24:653–675PubMedCrossRefGoogle Scholar
  58. Robinson RB, Siegelbaum SA (2003) Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 65:453–480PubMedCrossRefGoogle Scholar
  59. Schneidman E, Freedman B, Segev I (1998) Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Comput 10:1679–1703PubMedCrossRefGoogle Scholar
  60. Skaugen E, Walloe L (1979) Firing behaviour in a stochastic nerve membrane model based upon the Hodgkin–Huxley equations. Acta Physiol Scand 107(4):343–363PubMedCrossRefGoogle Scholar
  61. Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206–221PubMedCrossRefGoogle Scholar
  62. van Rossum MC, O’Brien BJ, Smith RG (2003) Effects of noise on the spike timing precision of retinal ganglion cells. J Neurophysiol 89:2406–2419PubMedCrossRefGoogle Scholar
  63. Wahl-Schott C, Biel M (2009) HCN channels: structure, cellular regulation and physiological function. Cell Mol Life Sci 66:470–494PubMedCrossRefGoogle Scholar
  64. White JA, Budde T, Kay AR (1995) A bifurcation analysis of neuronal subthreshold oscillations. Biophys J 69:1203–1217PubMedCrossRefGoogle Scholar
  65. White JA, Klink R, Alonso A, Kay AR (1998) Noise from voltage-gated ion channels may influence neuronal dynamics in the entorhinal cortex. J Neurophysiol 80:262–269PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Centre for Integrative PhysiologyUniversity of EdinburghEdinburghUK

Personalised recommendations