Skip to main content

Dendritic Size and Topology Influence Burst Firing in Pyramidal Cells

  • Chapter
  • First Online:
The Computing Dendrite

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 11))

Abstract

Neurons have highly branched dendrites that form characteristic tree-like structures. The morphology of these dendritic arborizations is not fixed and can undergo significant alterations in many pathological conditions. However, little is known about the impact of morphological changes on neuronal activity. Using computational models of pyramidal cells, we study the influence of dendritic tree size and branching structure on burst firing. Burst firing is the generation of two or more action potentials in close succession, a form of neuronal activity that is critically involved in neuronal signaling and synaptic plasticity. We show that there is only a range of dendritic tree sizes that supports burst firing, and that this range is modulated by the branching structure of the tree. Shortening as well as lengthening the dendritic tree, or even just modifying the pattern in which the branches in the tree are connected, can shift the cell’s firing pattern from bursting to tonic firing. The influence of dendritic morphology on burst firing is attributable to the effect that dendritic size and branching pattern have on the average spatial extent of the dendritic tree and the spatiotemporal dynamics of the dendritic membrane potential. Our results suggest that alterations in pyramidal cell morphology, such as those observed in Alzheimer’s disease, mental retardation, epilepsy, and chronic stress, can change neuronal burst firing and thus ultimately affect information processing and cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arendt T, Schindler C, Brückner MK, Eschrich K, Bigl V, Zedlick D, Marcova L (1997) Plastic neuronal remodeling is impaired in patients with Alzheimer’s disease carrying apolipoprotein epsilon 4 allele. J Neurosci 17:516–529

    PubMed  CAS  Google Scholar 

  • Bains JS, Longacher JM, Staley KJ (1999) Reciprocal interaction between CA3 network activity and strength of recurrent collateral synapses. Nat Neurosci 2:720–726

    Article  PubMed  CAS  Google Scholar 

  • Bastian J, Nguyenkim J (2001) Dendritic modulation of burst-like firing in sensory neurons. J Neurophysiol 85:10–22

    PubMed  CAS  Google Scholar 

  • Bekkers JM, Häusser M (2007) Targeted dendrotomy reveals active and passive contributions of the dendritic tree to synaptic integration and neuronal output. Proc Natl Acad Sci USA 104:11447–11452

    Article  PubMed  CAS  Google Scholar 

  • Belichenko PV, Oldfors A, Hagberg B, Dahlström A (1994) Rett syndrome: 3-D confocal microcospy of cortical pyramidal dendrites and afferents. Neuroreport 5:1509–1513

    Article  PubMed  CAS  Google Scholar 

  • Bilkey D, Schwartzkroin P (1990) Variation in electrophysiology and morphology of hippocampal CA3 pyramidal cells. Brain Res 514:77–83

    Article  PubMed  CAS  Google Scholar 

  • Birtoli B, Ulrich D (2004) Firing mode-dependent synaptic plasticity in rat neocortical pyramidal neurons. J Neurosci 24:4935–4940

    Article  PubMed  CAS  Google Scholar 

  • Brown SM, Henning S, Wellman CL (2005) Mild, short-term stress alters dendritic morphology in rat medial prefrontal cortex. Cereb Cortex 15:1714–1722

    Article  PubMed  Google Scholar 

  • Chagnac-Amitai Y, Luhmann HJ, Prince DA (1990) Burst generating and regular spiking layer 5 pyramidal neurons of rat neocortex have different morphological features. J Comp Neurol 296:598–613

    Article  PubMed  CAS  Google Scholar 

  • Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 13:99–104

    Article  PubMed  CAS  Google Scholar 

  • Contreras D (2004) Electrophysiological classes of neocortical neurons. Neural Netw 17:633–646

    Article  PubMed  Google Scholar 

  • Cook SC, Wellman CL (2004) Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J Neurobiol 60:236–248

    Article  PubMed  Google Scholar 

  • Dégenètais E, Thierry AM, Glowinski J, Gioanni Y (2002) Electrophysiological properties of pyramidal neurons in the rat prefrontal cortex: an in vivo intracellular recording study. Cereb Cortex 12:1–16

    Article  PubMed  Google Scholar 

  • Eggermont JJ, Smith GM (1996) Burst-firing sharpens frequency-tuning in primary auditory cortex. Neuroreport 7:753–757

    Article  PubMed  CAS  Google Scholar 

  • Franceschetti S, Sancini G, Panzica F, Radici C, Avanzini G (1998) Postnatal differentiation of firing properties and morphological characteristics in layer V pyramidal neurons of the sensorimotor cortex. Neuroscience 83:1013–1024

    Article  PubMed  CAS  Google Scholar 

  • Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179–1209

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann WE, Moser HW (2000) Dendritic anomalies in disorders associated with mental retardation. Cereb Cortex 10:981–991

    Article  PubMed  CAS  Google Scholar 

  • Koch C (1999) Biophysics of computation. Oxford University Press, New York; Oxford

    Google Scholar 

  • Krahe R, Gabbiani F (2004) Burst firing in sensory systems. Nat Rev Neurosci 5:13–23

    Article  PubMed  CAS  Google Scholar 

  • Krichmar JL, Nasuto SJ, Scorcioni R, Washington SD, Ascoli GA (2002) Effects of dendritic morphology on CA3 pyramidal cell electrophysiology: a simulation study. Brain Res 941:11–28

    Article  PubMed  CAS  Google Scholar 

  • Larkman AU (1991) Dendritic morphology of pyramidal neurones of the visual cortex of the rat: I. Branching patterns. J Comp Neurol 306:307–319

    Article  PubMed  CAS  Google Scholar 

  • Magariños AM, McEwen BS, Flügge G, Fuchs E (1996) Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shews. J Neurosci 16:3534–3540

    PubMed  Google Scholar 

  • Mainen Z, Sejnowski T (1996) Influence of dendritic structure on firing patterns in model neocortical neurons. Nature 382:363–366

    Article  PubMed  CAS  Google Scholar 

  • Mason A, Larkman A (1990) Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology. J Neurosci 10:1415–1428

    PubMed  CAS  Google Scholar 

  • McCormick DA, Huguenard JR (1992) A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol 68:1384–1400

    PubMed  CAS  Google Scholar 

  • Moolman DL, Vitolo OV, Vonsattel J-P G, Shelanski ML (2004) Dendrite and dendritic spine alterations in Alzheimer models. J Neurocytol 33:377–387

    Article  PubMed  CAS  Google Scholar 

  • Okuhara DY, Beck SG (1998) Corticosteroids influence the action potential firing pattern of hippocampal subfield CA3 pyramidal cells. Neuroendocrinology 67:58–66

    Article  PubMed  CAS  Google Scholar 

  • Pavlides C, Nivon LG, McEwen BS (2002) Effects of chronic stress on hippocampal long-term potentiation. Hippocampus 12:245–257

    Article  PubMed  Google Scholar 

  • Radley JJ, Sisti HM, Hao J, Rocher AB, McCall T, Hof PR, McEwen BS, Morrison JH (2004) Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience 125:1–6

    Article  PubMed  CAS  Google Scholar 

  • Rall W (1959) Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol 1:491–527

    Article  PubMed  CAS  Google Scholar 

  • Ruan Y-W, Zou B, Fan Y, Li Y, Lin N, Zeng Y-S, Gao T-M, Yao Z, Xu ZC (2006) Dendritic plasticity of CA1 pyramidal neurons after transient global ischemia. Neuroscience 140:191–201

    Article  PubMed  CAS  Google Scholar 

  • Samsonovich AV, Ascoli GA (2006) Morphological homeostasis in cortical dendrites. Proc Natl Acad Sci USA 103:1569–1574

    Article  PubMed  CAS  Google Scholar 

  • Sheasby BW, Fohlmeister JF (1999) Impulse encoding across the dendritic morphologies of retinal ganglion cells. J Neurophysiol 81:1685–1698

    PubMed  CAS  Google Scholar 

  • Sousa N, Lukoyanov NV, Madeira MD, Almeida OFX, Paula-Barbosa NM (2000) Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience 97:253–266

    Article  PubMed  CAS  Google Scholar 

  • Stern EA, Bacskai BJ, Hickey GA, Attenello FJ, Lombardo JA, Hyman BT (2004) Cortical synaptic integration in vivo is disrupted by amyloid-beta plaques. J Neurosci 24:4535–4540

    Article  PubMed  CAS  Google Scholar 

  • Swadlow HA, Gusev AG (2001) The impact of ‘bursting’ thalamic impulses at a neocortical synapse. Nat Neurosci 4:402–408

    Article  PubMed  CAS  Google Scholar 

  • Teskey GC, Monfils M-H, Silasi G, Kolb B (2006) Neocortical kindling is associated with opposing alterations in dendritic morphology in neocortical layer V and striatum from neocortical layer III. Synapse 59:1–9

    Article  PubMed  CAS  Google Scholar 

  • Valentine PA, Teskey GC, Eggermont JJ (2004) Kindling changes burst firing, neural synchrony and tonotopic organization of cat primary auditory cortex. Cereb Cortex 14:827–839

    Article  PubMed  Google Scholar 

  • Van Elburg RAJ, Van Ooyen A (2004) A new measure for bursting. Neurocomputing 58–60:497–502

    Article  Google Scholar 

  • Van Elburg RAJ, Van Ooyen A (2010) Impact of dendritic size and dendritic topology on burst firing in pyramidal cells. PloS Comput Biol 6(5):e1000781

    Google Scholar 

  • Van Ooyen A, Duijnhouwer J, Remme MWH, Van Pelt J (2002) The effect of dendritic topology on firing patterns in model neurons. Network 13:311–325

    Article  PubMed  Google Scholar 

  • Wang X-J (1999) Fast burst firing and short-term synaptic plasticity: a model of neocortical chattering neurons. Neuroscience 89:347–362

    Article  PubMed  CAS  Google Scholar 

  • Williams SR, Stuart GJ (1999) Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons. J Physiol (Lond) 521:467–482

    Article  CAS  Google Scholar 

  • Woolley C, Gould E, McEwen BS (1990) Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res 531:225–231

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Wada Y, Tsukagoshi H, Otomo E, Hayakawa M (1988) A quantitative Golgi study of basal dendrites of hippocampal CA1 pyramidal cells in senile dementia of Alzheimer type. J Neurol Neurosurg Psyhiatry 51:1088–1090

    Article  CAS  Google Scholar 

  • Yang CR, Seamans JK, Gorelova N (1996) Electrophysiological and morphological properties of layers V-VI principal pyramidal cells in rat prefrontal cortex in vitro. J Neurosci 16:1904–1921

    PubMed  CAS  Google Scholar 

  • Yun SH, Mook-Jung I, Jung MW (2002) Variation in effective stimulus patterns for induction of long-term potentiation across different layers of rat entorhinal cortex. J Neurosci 22:RC214

    PubMed  Google Scholar 

  • Zhang Z-W (2004) Maturation of layer V pyramidal neurons in the rat prefrontal cortex: intrinsic properties and synaptic function. J Neurophysiol 91:1171–1182

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjen van Ooyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

van Ooyen, A., van Elburg, R.A.J. (2014). Dendritic Size and Topology Influence Burst Firing in Pyramidal Cells. In: Cuntz, H., Remme, M., Torben-Nielsen, B. (eds) The Computing Dendrite. Springer Series in Computational Neuroscience, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8094-5_23

Download citation

Publish with us

Policies and ethics