Skip to main content

Biophysics of Synaptic Inhibition in Dendrites

  • Chapter
  • First Online:
  • 2149 Accesses

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 11))

Abstract

This chapter aims at investigating the functional implications of the biologically realistic and widespread case in which a single inhibitory axon forms multiple (10–20) synaptic contacts on the dendrites of its target neuron. We analyzed the impact of multi-site dendritic inhibition on the neurons’ output and, thus, gained several counterintuitive insights into the biophysical and functional implications of such connectivity pattern. In the course of the chapter, we propose a functional role for very distal dendritic inhibition; demonstrate the regional effect of multiple, rather than single, inhibitory synapses in terms of the spread of their collective shunting effect in the dendritic tree; and suggest an explanation as to why, in both cortex and hippocampus, the total number of inhibitory dendritic synapses per pyramidal cell is smaller (about 20 %) than that of excitatory synapses. This chapter, thus, provides a fresh perspective on the biophysical design principles that govern the operation of inhibition in dendrites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Antic SD, Zhou WL, Moore AR, Short SM, Ikonomu KD (2010) The decade of the dendritic NMDA spike. J Neurosci Res 88:2991–3001

    Article  PubMed  CAS  Google Scholar 

  • Archie KA, Mel BW (2000) A model for intradendritic computation of binocular disparity. Nat Neurosci 3:54–63

    Article  PubMed  CAS  Google Scholar 

  • Ascoli GA, Donohue DE, Halavi M (2007) NeuroMorpho.Org: a central resource for neuronal morphologies. J Neurosci 27:9247–9251

    Article  PubMed  CAS  Google Scholar 

  • Bar-Ilan L, Gidon A, Segev I (2013) The role of dendritic inhibition in shaping the plasticity of excitatory synapses. Front Neural Circuits 6:118

    Article  PubMed  Google Scholar 

  • Bock DD, Lee W-CA, Kerlin AM, Andermann ML, Hood G, Wetzel AW, Yurgenson S, Soucy ER, Kim HS, Reid RC (2011) Network anatomy and in vivo physiology of visual cortical neurons. Nature 471:177–182

    Article  PubMed  CAS  Google Scholar 

  • Briggman KL, Helmstaedter M, Denk W (2011) Wiring specificity in the direction-selectivity circuit of the retina. Nature 471:183–188

    Article  PubMed  CAS  Google Scholar 

  • Brock LG, Coombs JS, Eccles JC (1951) Action potentials of motoneurones with intracellular electrode. In: Proc. Univ. Otago Med. Sch, pp 14–15

    Google Scholar 

  • Buhl EH, Halasy K, Somogyi P (1994) Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature 368:823–828

    Article  PubMed  CAS  Google Scholar 

  • DeFelipe J, Fariñas I (1992) The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol 39:563–607

    Article  PubMed  CAS  Google Scholar 

  • DeFelipe J, Alonso-Nanclares L, Arellano JI (2002) Microstructure of the neocortex: comparative aspects. J Neurocytol 31:299–316

    Article  PubMed  Google Scholar 

  • Gidon A, Segev I (2012) Principles governing the operation of synaptic inhibition in dendrites. Neuron 75:330–341

    Article  PubMed  CAS  Google Scholar 

  • Golding NL, Mickus TJ, Katz Y, Kath WL, Spruston N (2005) Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. J Physiol 568:69–82

    Article  PubMed  CAS  Google Scholar 

  • Hao J, Wang XD, Dan Y, Poo MM, Zhang XH (2009) An arithmetic rule for spatial summation of excitatory and inhibitory inputs in pyramidal neurons. Proc Natl Acad Sci USA 106:21906–21911

    Article  PubMed  CAS  Google Scholar 

  • Jack JJB, Noble D, Tsien RW (1975) Electric current flow in excitable cells. Clarendon, Oxford

    Google Scholar 

  • Jadi M, Polsky A, Schiller J, Mel BW (2012) Location-dependent effects of inhibition on local spiking in pyramidal neuron dendrites. Plos Comput Biol 8:e1002550

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Guzman SJ, Hu H, Jonas P (2012) Active dendrites support efficient initiation of dendritic spikes in hippocampal CA3 pyramidal neurons. Nat Neurosci 15(4):600–606

    Article  PubMed  CAS  Google Scholar 

  • Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321:53–57

    Article  PubMed  CAS  Google Scholar 

  • Koch C (1998) Biophysics of computation: information processing in single neurons, 1st edn. Oxford University Press, New York, NY

    Google Scholar 

  • Koch C, Poggio T (1985) The synaptic veto mechanism: does it underlying direction and orientation selectivity in the visual cortex. In: Dobson VG, Rose D (eds) Models of the visual cortex. Wiley-Blackwell, New York, NY, pp 408–419

    Google Scholar 

  • Koch C, Poggio T, Torres V (1982) Retinal ganglion cells: a functional interpretation of Dendritic morphology. Philos Trans R Soc Lond B Biol Sci 298:227–263

    Article  PubMed  CAS  Google Scholar 

  • Koch C, Poggio T, Torre V (1983) Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. Proc Natl Acad Sci USA 80:2799–2802

    Article  PubMed  CAS  Google Scholar 

  • Koch C, Douglas R, Wehmeier U (1990) Visibility of synaptically induced conductance changes: theory and simulations of anatomically characterized cortical pyramidal cells. J Neurosci 10:1728–1744

    PubMed  CAS  Google Scholar 

  • Larkum ME, Kaiser KMM, Sakmann B (1999) Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. Proc Natl Acad Sci 96:14600–14604

    Article  PubMed  CAS  Google Scholar 

  • Larkum ME, Nevian T, Sandler M, Polsky A, Schiller J (2009) Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325:756–760

    Article  PubMed  CAS  Google Scholar 

  • Lavzin M, Rapoport S, Polsky A, Garion L, Schiller J (2012) Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo. Nature 490:397–401

    Article  PubMed  CAS  Google Scholar 

  • Ledergerber D, Larkum ME (2010) Properties of layer 6 pyramidal neuron apical dendrites. J Neurosci 30:13031–13044

    Article  PubMed  CAS  Google Scholar 

  • Liu G (2004) Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites. Nat Neurosci 7:373–379

    Article  PubMed  CAS  Google Scholar 

  • Lovett-Barron M, Turi GF, Kaifosh P, Lee PH, Bolze F, Sun X-H, Nicoud J-F, Zemelman BV, Sternson SM, Losonczy A (2012) Regulation of neuronal input transformations by tunable dendritic inhibition. Nat Neurosci 15(3):423–430

    Article  PubMed  CAS  Google Scholar 

  • MacDonald JF, Jackson MF, Beazely MA (2006) Hippocampal long-term synaptic plasticity and signal amplification of NMDA receptors. Crit Rev Neurobiol 18:71–84

    Article  PubMed  CAS  Google Scholar 

  • Magee JC (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci 18:7613–7624

    PubMed  CAS  Google Scholar 

  • Magee JC (2007) Voltage-gated ion channels in dendrites. In: Stuart G, Spruston N, Häusser M (eds) Dendrites. Oxford University Press, New York, pp 139–160

    Google Scholar 

  • Magee JC, Christofi G, Miyakawa H, Christie B, Lasser-Ross N, Johnston D (1995) Subthreshold synaptic activation of voltage-gated Ca2+ channels mediates a localized Ca2+ influx into the dendrites of hippocampal pyramidal neurons. J Neurophysiol 74:1335–1342

    PubMed  CAS  Google Scholar 

  • Malenka RC (1991) The role of postsynaptic calcium in the induction of long-term potentiation. Mol Neurobiol 5:289–295

    Article  PubMed  CAS  Google Scholar 

  • Malenka RC, Nicoll RA (1993) NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci 16:521–527

    Article  PubMed  CAS  Google Scholar 

  • Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807

    Article  PubMed  CAS  Google Scholar 

  • Megías M, Emri Z, Freund TF, Gulyás AI (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102:527–540

    Article  PubMed  Google Scholar 

  • Merchán-Pérez A, Rodriguez J-R, Alonso-Nanclares L, Schertel A, Defelipe J (2009) Counting synapses using FIB/SEM microscopy: a true revolution for ultrastructural volume reconstruction. Front Neuroanat 3:18

    Article  PubMed  Google Scholar 

  • Miles R, Toth K, Gulyas AI, Hajos N, Freund TF (1996) Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16:815–823

    Article  PubMed  CAS  Google Scholar 

  • Murayama M, Larkum ME (2009) Enhanced dendritic activity in awake rats. Proc Natl Acad Sci USA 106:20482–20486

    Article  PubMed  CAS  Google Scholar 

  • Murayama M, Perez-Garci E, Nevian T, Bock T, Senn W, Larkum ME (2009) Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature 457:1137–1141

    Article  PubMed  CAS  Google Scholar 

  • Palmer LM, Schulz JM, Murphy SC, Ledergerber D, Murayama M, Larkum ME (2012) The cellular basis of GABAB-mediated interhemispheric inhibition. Science 335:989–993

    Article  PubMed  CAS  Google Scholar 

  • Rall W (1959) Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol 1:491–527

    Google Scholar 

  • Rall W (1964) Theoretical significance of dendritic trees for neuronal input–output relations. In: Reiss RF (ed) Neural theory and modeling. Stanford University Press, Palo Alto, CA, pp 73–97

    Google Scholar 

  • Rall W (1967) Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J Neurophysiol 30:1138–1168

    PubMed  CAS  Google Scholar 

  • Rall W, Rinzel J (1973) Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys J 13:648–687

    Article  PubMed  CAS  Google Scholar 

  • Rhodes P (2006) The properties and implications of NMDA spikes in neocortical pyramidal cells. J Neurosci 26:6704–6715

    Article  PubMed  CAS  Google Scholar 

  • Rinzel J, Rall W (1974) Transient response in a dendritic neuron model for current injected at one branch. Biophys J 14:759–790

    Article  PubMed  CAS  Google Scholar 

  • Sarid L, Bruno R, Sakmann B, Segev I, Feldmeyer D (2007) Modeling a layer 4-to-layer 2/3 module of a single column in rat neocortex: interweaving in vitro and in vivo experimental observations. Proc Natl Acad Sci USA 104:16353–16358

    Article  PubMed  CAS  Google Scholar 

  • Schiller J, Schiller Y, Stuart G, Sakmann B (1997) Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J Physiol 505(Pt 3):605–616

    Article  PubMed  CAS  Google Scholar 

  • Schiller J, Major G, Koester HJ, Schiller Y (2000) NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404:285–289

    Article  PubMed  CAS  Google Scholar 

  • Seung HS (2009) Reading the book of memory: sparse sampling versus dense mapping of connectomes. Neuron 62:17–29

    Article  PubMed  CAS  Google Scholar 

  • Somogyi P, Nunzi MG, Gorio A, Smith AD (1983) A new type of specific interneuron in the monkey hippocampus forming synapses exclusively with the axon initial segments of pyramidal cells. Brain Res 259:137–142

    Article  PubMed  CAS  Google Scholar 

  • Stuart G, Spruston N (1998) Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J Neurosci 18:3501–3510

    PubMed  CAS  Google Scholar 

  • Szentágothai J, Arbib MA (1974) Conceptual models of neural organization. Neurosci Res Program Bull 12:305–510

    PubMed  Google Scholar 

  • Tepper JM, Koos T, Wilson CJ (2004) GABAergic microcircuits in the neostriatum. Trends Neurosci 27:662–669

    Article  PubMed  CAS  Google Scholar 

  • Traub RD, Wong RK, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 66:635–650

    PubMed  CAS  Google Scholar 

  • Wang Y, Gupta A, Toledo-Rodriguez M, Wu CZ, Markram H (2002) Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cereb Cortex 12:395–410

    Article  PubMed  Google Scholar 

  • Wen Q, Stepanyants A, Elston GN, Grosberg AY, Chklovskii DB (2009) Maximization of the connectivity repertoire as a statistical principle governing the shapes of dendritic arbors. Proc Natl Acad Sci 106:12536–12541

    Article  PubMed  CAS  Google Scholar 

  • Williams SR (2004) Spatial compartmentalization and functional impact of conductance in pyramidal neurons. Nat Neurosci 7:961–967

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Gidon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gidon, A. (2014). Biophysics of Synaptic Inhibition in Dendrites. In: Cuntz, H., Remme, M., Torben-Nielsen, B. (eds) The Computing Dendrite. Springer Series in Computational Neuroscience, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8094-5_18

Download citation

Publish with us

Policies and ethics