Skip to main content

Biophysical Mechanisms of Computation in a Looming Sensitive Neuron

  • Chapter
  • First Online:
Book cover The Computing Dendrite

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 11))

Abstract

The lobula giant movement detector (LGMD) is a large-field visual interneuron believed to be involved in collision avoidance and escape behaviors in orthopteran insects, such as locusts. Responses to approaching—or looming—stimuli are highly stereotypical, producing a peak that signals an angular size threshold. Over the past several decades, investigators have elucidated many of the mechanisms underpinning this response, demonstrating that the LGMD implements a multiplication in log-transformed coordinates. Furthermore, the LGMD possesses several mechanisms that preclude it responding to non-looming stimuli. This chapter explores these biophysical mechanisms, as well as highlighting insights the LGMD provides into general principles of dendritic integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bacon JP, Thompson KS, Stern M (1995) Identified octopaminergic neurons provide an arousal mechanism in the locust brain. J Neurophysiol 74:2739–2743

    PubMed  CAS  Google Scholar 

  • Baden T, Hedwig B (2007) Neurite-specific Ca2+ dynamics underlying sound processing in an auditory interneurone. Dev Neurobiol 67:68–80

    Article  PubMed  CAS  Google Scholar 

  • Bernander O, Douglas RJ, Martin KA, Koch C (1991) Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proc Natl Acad Sci USA 88:11569–11573

    Article  PubMed  CAS  Google Scholar 

  • Bollmann JH, Engert F (2009) Subcellular topography of visually driven dendritic activity in the vertebrate visual system. Neuron 61:895–905

    Article  PubMed  CAS  Google Scholar 

  • Borst A, Egelhaaf M (1992) In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation. Proc Natl Acad Sci USA 89:4139–4143

    Article  PubMed  CAS  Google Scholar 

  • Borst A, Haag J, Reiff DF (2010) Fly motion vision. Annu Rev Neurosci 33:49–70

    Article  PubMed  CAS  Google Scholar 

  • Branco T, Clark BA, Häusser M (2010) Dendritic discrimination of temporal input sequences in cortical neurons. Science 329:1671–1675

    Article  PubMed  CAS  Google Scholar 

  • Burrows M, Rowell CHF (1973) Connections between descending visual interneurons and metathoracic motoneurons in the locust. J Comp Physiol 85:221–234

    Article  Google Scholar 

  • Dewell RB, Gabbiani F (2012) Role of active conductances for dendritic processing in a looming sensitive neuron. Poster presented at the Society for Neuroscience, New Orleans, 13–17 October 2012

    Google Scholar 

  • Douglass JK, Strausfeld NJ (2003) Retinotopic pathways providing motion-selective information to the lobula from peripheral elementary motion-detecting circuits. J Comp Neurol 457:326–344

    Article  PubMed  Google Scholar 

  • Fotowat H, Gabbiani F (2007) Relationship between the phases of sensory and motor activity during a looming-evoked multistage escape behavior. J Neurosci 27:10047–10059

    Article  PubMed  CAS  Google Scholar 

  • Fotowat H, Gabbiani F (2011) Collision detection as a model for sensory-motor integration. Annu Rev Neurosci 34:1–19

    Article  PubMed  CAS  Google Scholar 

  • Fotowat H, Harrison RR, Gabbiani F (2011) Multiplexing of motor information in the discharge of a collision detecting neuron during escape behaviors. Neuron 69:147–158

    Article  PubMed  CAS  Google Scholar 

  • Gabbiani F, Cohen I, Laurent G (2005) Time-dependent activation of feed-forward inhibition in a looming-sensitive neuron. J Neurophysiol 94:2150–2161

    Article  PubMed  Google Scholar 

  • Gabbiani F, Krapp HG (2006) Spike-frequency adaptation and intrinsic properties of an identified, looming-sensitive neuron. J Neurophysiol 96:2951–2962

    Article  PubMed  Google Scholar 

  • Gabbiani F, Krapp HG, Hatsopoulos N, Mo CH, Koch C, Laurent G (2004) Multiplication and stimulus invariance in a looming-sensitive neuron. J Physiol Paris 98:19–34

    Article  PubMed  Google Scholar 

  • Gabbiani F, Krapp HG, Koch C, Laurent G (2002) Multiplicative computation in a visual neuron sensitive to looming. Nature 420:320–324

    Article  PubMed  CAS  Google Scholar 

  • Gabbiani F, Krapp HG, Laurent G (1999) Computation of object approach by a wide-field, motion-sensitive neuron. J Neurosci 19:1122–1141

    PubMed  CAS  Google Scholar 

  • Gabbiani F, Mo C, Laurent G (2001) Invariance of angular threshold computation in a wide-field looming-sensitive neuron. J Neurosci 21:314–329

    PubMed  CAS  Google Scholar 

  • Guest BB, Gray JR (2006) Responses of a looming-sensitive neuron to compound and paired object approaches. J Neurophysiol 95:1428–1441

    Article  PubMed  Google Scholar 

  • Hatsopoulos N, Gabbiani F, Laurent G (1995) Elementary computation of object approach by wide-field visual neuron. Science 270:1000–1003

    Article  PubMed  CAS  Google Scholar 

  • Hille B (2001) Ionic channels of excitable membranes. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • James AC, Osorio D (1996) Characterisation of columnar neurons and visual signal processing in the medulla of the locust optic lobe by system identification techniques. J Comp Physiol A 178:183–199

    Article  PubMed  CAS  Google Scholar 

  • Joesch M, Schnell B, Raghu SV, Reiff DF, Borst A (2010) ON and OFF pathways in Drosophila motion vision. Nature 468:300–304

    Article  PubMed  CAS  Google Scholar 

  • Johnston D, Magee JC, Colbert CM, Cristie BR (1996) Active properties of neuronal dendrites. Annu Rev Neurosci 19:165–186

    Article  PubMed  CAS  Google Scholar 

  • Johnston D, Wu SM (1995) Foundations of cellular neurophysiology. Bradford Books, New York, NY

    Google Scholar 

  • Jones PW, Gabbiani F (2010) Synchronized neural input shapes stimulus selectivity in a collision-detecting neuron. Curr Biol 20:2052–2057

    Article  PubMed  CAS  Google Scholar 

  • Jones PW, Gabbiani F (2012) Logarithmic compression of sensory signals within the dendritic tree of a collision-sensitive neuron. J Neurosci 32:4923–4934

    Article  PubMed  CAS  Google Scholar 

  • Judge S, Rind F (1997) The locust DCMD, a movement-detecting neuron tightly tuned to collision trajectories. J Exp Biol 200:2209–2216

    PubMed  Google Scholar 

  • Judkewitz B, Rizzi M, Kitamura K, Häusser M (2009) Targeted single-cell electroporation of mammalian neurons in vivo. Nat Protoc 4:862–869

    Article  PubMed  CAS  Google Scholar 

  • Jung SN, Borst A, Haag J (2011) Flight activity alters velocity tuning of fly motion-sensitive neurons. J Neurosci 31:9231–9237

    Article  PubMed  CAS  Google Scholar 

  • Killmann F, Gras H, Schürmann F (1999) Types, numbers and distribution of synapses on the dendritic tree of an identified visual interneuron in the brain of the locust. Cell Tissue Res 296:645–665

    Article  PubMed  CAS  Google Scholar 

  • Killmann F, Schürmann FW (1985) Both electrical and chemical transmission between the lobula giant movement detector and the descending contralateral movement detector neurons of locusts are supported by electron microscopy. J Neurocytol 14:637–652

    Article  PubMed  CAS  Google Scholar 

  • Koch C, Poggio T, Torre V (1983) Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. Proc Natl Acad Sci USA 80:2799–2802

    Article  PubMed  CAS  Google Scholar 

  • Krapp HG, Gabbiani F (2005) Spatial distribution of inputs and local receptive field properties of a wide-field, looming sensitive neuron. J Neurophysiol 93:2240–2253

    Article  PubMed  Google Scholar 

  • Liang P, Kern R, Kurtz R, Egelhaaf M (2011) Impact of visual motion adaptation on neural responses to objects and its dependence on the temporal characteristics of optic flow. J Neurophysiol 105:1825–1834

    Article  PubMed  Google Scholar 

  • London M, Häusser M (2005) Dendritic computation. Annu Rev Neurosci 28:503–532

    Article  PubMed  CAS  Google Scholar 

  • Magee JC (1999) Dendritic lh normalizes temporal summation in hippocampal CA1 neurons. Nat Neurosci 2:508–514

    Article  PubMed  CAS  Google Scholar 

  • Magee JC (2000) Dendritic integration of excitatory synaptic input. Nat Rev Neurosci 1:181–190

    Article  PubMed  CAS  Google Scholar 

  • O’Shea M (1975) Two sites of axonal spike initiation in a bimodal interneuron. Brain Res 96:93–98

    Article  PubMed  Google Scholar 

  • O’Shea M, Rowell CHF (1975a) A spike-transmitting electrical synapse between visual interneurons in the locust movement detector system. J Comp Physiol 97:143–158

    Article  Google Scholar 

  • O’Shea M, Rowell CHF (1975b) Protection from habituation by lateral inhibition. Nature 254:53–55

    Article  PubMed  Google Scholar 

  • O’Shea M, Rowell CHF (1976) The neuronal basis of a sensory analyser, the acridid movement detector system. II. Response decrement, convergence, and the nature of the excitatory afferents to the fan-like dendrites of the LGMD. J Exp Biol 65:289–308

    PubMed  Google Scholar 

  • O’Shea M, Rowell CHF, Williams JLD (1974) The anatomy of a locust visual interneurone: the descending contralateral movement detector. J Exp Biol 60:1–12

    Google Scholar 

  • O’Shea M, Williams JLD (1974) The anatomy and output connection of a locust visual interneurone: the lobular giant movement detector (LGMD) neuron. J Comp Physiol 91:257–266

    Article  Google Scholar 

  • Ogawa H, Cummins GI, Jacobs GA, Miller JP (2006) Visualization of ensemble activity patterns of mechanosensory afferents in the cricket cercal sensory system with calcium imaging. J Neurobiol 66:293–307

    Article  PubMed  CAS  Google Scholar 

  • Ogawa H, Cummins GI, Jacobs GA, Oka K (2008) Dendritic design implements algorithm for synaptic extraction of sensory information. J Neurosci 28:4592–4603

    Article  PubMed  CAS  Google Scholar 

  • Palka J (1967) An inhibitory process influencing visual responses in a fibre of the ventral nerve cord of locusts. J Insect Physiol 13:235–248

    Article  Google Scholar 

  • Peron SP, Gabbiani F (2009a) Spike frequency adaptation mediates looming stimulus selectivity in a collision-detecting neuron. Nat Neurosci 12:318–326

    Article  PubMed  CAS  Google Scholar 

  • Peron SP, Gabbiani F (2009b) Role of spike-frequency adaptation in shaping neuronal response to dynamic stimuli. Biol Cybern 100:505–520

    Article  PubMed  Google Scholar 

  • Peron SP, Jones PW, Gabbiani F (2009) Precise subcellular input retinotopy and its computational consequences in an identified visual interneuron. Neuron 63:830–842

    Article  PubMed  CAS  Google Scholar 

  • Peron SP, Krapp HG, Gabbiani F (2007) Influence of electrotonic structure and synaptic mapping on the receptive field properties of a collision-detecting neuron. J Neurophysiol 97:159–177

    Article  PubMed  Google Scholar 

  • Petreanu L, Mao T, Sternson SM, Svoboda K (2009) The subcellular organization of neocortical excitatory connections. Nature 457:1142–1145

    Article  PubMed  CAS  Google Scholar 

  • Rall W (1967) Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J Neurophysiol 30:1138–1168

    PubMed  CAS  Google Scholar 

  • Rall W, Burke RE, Smith TG, Nelson PG, Frank K (1967) Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons. J Neurophysiol 30:1169–1193

    PubMed  CAS  Google Scholar 

  • Reichardt W (1987) Computation of optical motion by movement detectors. Biophys Chem 26:263–278

    Article  PubMed  CAS  Google Scholar 

  • Rind FC (1984) A chemical synapse between two motion detecting neurones in the locust brain. J Exp Biol 110:143–167

    PubMed  CAS  Google Scholar 

  • Rind FC, Leitinger G (2000) Immunocytochemical evidence that collision sensing neurons in the locust visual system contain acetylcholine. J Comp Neurol 423:389–401

    Article  PubMed  CAS  Google Scholar 

  • Rind FC, Santer RD, Wright GA (2008) Arousal facilitates collision avoidance mediated by a looming sensitive visual neuron in a flying locust. J Neurophysiol 100:670–680

    Article  PubMed  Google Scholar 

  • Rind FC, Simmons PJ (1992) Orthopteran DCMD neuron: a reevaluation of responses to moving objects. I. Selective responses to approaching objects. J Neurophysiol 68:1654–1666

    PubMed  CAS  Google Scholar 

  • Rind FC, Simmons PJ (1998) Local circuit for the computation of object approach by an identified visual neuron in the locust. J Comp Neurol 395:405–415

    Article  PubMed  CAS  Google Scholar 

  • Rogers SM, Krapp HG, Burrows M, Matheson T (2007) Compensatory plasticity at an identified synapse tunes a visuomotor pathway. J Neurosci 27:4621–4633

    Article  PubMed  CAS  Google Scholar 

  • Rowell CHF (1971) Variable responsiveness of a visual interneurone in the free-moving locust, and its relation to behaviour and arousal. J Exp Biol 55:727–747

    Google Scholar 

  • Rowell CHF, O’Shea M (1976a) The neuronal basis of a sensory analyser, the acridid movement detector system. I. Effects of simple incremental and decremental stimuli in light and dark adapted animals. J Exp Biol 65:273–288

    PubMed  CAS  Google Scholar 

  • Rowell CHF, O’Shea M (1976b) Neuronal basis of a sensory analyser, the acridid movement detector system. III. Control of response amplitude by tonic lateral inhibition. J Exp Biol 65:617–625

    Google Scholar 

  • Rowell CHF, O’Shea M, Williams JLD (1977) The neuronal basis of a sensory analyser, the acridid movement detector system. IV. The preference for small field stimuli. J Exp Biol 68:157–185

    Google Scholar 

  • Santer RD, Rind FC, Stafford R, Simmons PJ (2006) Role of an identified looming-sensitive neuron in triggering a flying locusts escape. J Neurophysiol 95:3391–3400

    Article  PubMed  Google Scholar 

  • Santer RD, Simmons PJ, Rind FC (2005) Gliding behaviour elicited by lateral looming stimuli in flying locusts. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191:61–73

    Article  PubMed  Google Scholar 

  • Santer RD, Yamawaki Y, Rind FC, Simmons PJ (2008) Preparing for escape: an examination of the role of the DCMD neuron in locust escape jumps. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194:69–77

    Article  PubMed  Google Scholar 

  • Schlotterer GR (1977) Response of the locust descending movement detector neuron to rapidly approaching and withdrawing visual stimuli. Can J Zool 55:1372–1376

    Article  Google Scholar 

  • Segev I, London M (2000) Untangling dendrites with quantitative models. Science 290:744–750

    Article  PubMed  CAS  Google Scholar 

  • Silver RA (2010) Neuronal arithmetic. Nat Rev Neurosci 11:474–489

    Article  PubMed  CAS  Google Scholar 

  • Simmons PJ (1980) Connexions between a movement-detecting visual interneurone and flight motoneurons of a locust. J Exp Biol 86:87–97

    Google Scholar 

  • Simmons PJ, Rind FC (1992) Orthopteran DCMD neuron: a reevaluation of responses to moving objects. II. Critical cues for detecting approaching objects. J Neurophysiol 68:1667–1682

    PubMed  CAS  Google Scholar 

  • Single S, Borst A (2002) Different mechanisms of calcium entry within different dendritic compartments. J Neurophysiol 87:1616–1624

    PubMed  CAS  Google Scholar 

  • Single S, Haag J, Borst A (1997) Dendritic computation of direction selectivity and gain control in visual interneurons. J Neurosci 17:6023–6030

    PubMed  CAS  Google Scholar 

  • Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 11:1059–1067

    Article  Google Scholar 

  • Strausfeld NJ, Nässel DR (1981) Neuroarchitectures serving compound eyes of crustacea and insects. In: Autrum H (ed) Handbook of sensory physiology, vol VII/68. Springer, Berlin

    Google Scholar 

  • Stuart G, Spruston N, Häusser M (2008) Dendrites. Oxford University Press, New York, NY

    Google Scholar 

  • Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19:2396–2404

    Article  PubMed  CAS  Google Scholar 

  • Zador AM, Agmon-Snir H, Segev I (1995) The morphoelectrotonic transform: a graphical approach to dendritic function. J Neurosci 15:1669–1682

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon P. Peron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Peron, S.P. (2014). Biophysical Mechanisms of Computation in a Looming Sensitive Neuron. In: Cuntz, H., Remme, M., Torben-Nielsen, B. (eds) The Computing Dendrite. Springer Series in Computational Neuroscience, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8094-5_17

Download citation

Publish with us

Policies and ethics