Skip to main content

Dendritic Computation of Direction in Retinal Neurons

  • Chapter
  • First Online:
The Computing Dendrite

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 11))

  • 2183 Accesses

Abstract

The retina utilizes a variety of dendritic mechanisms to compute direction from image motion. The computation is accomplished by starburst amacrine cells (SBACs) which are GABAergic neurons presynaptic to direction-selective ganglion cells (DSGCs). SBACs are symmetric neurons with several branched dendrites radiating out from the soma. Larger EPSPs are produced in the dendritic tips of SBACs as a stimulus sequentially activates inputs from the base of each dendrite outwards. The directional difference in EPSP amplitude is further amplified near the dendritic tips by voltage-gated channels to produce directional release of GABA. Reciprocal inhibition between adjacent SBACs may also amplify directional release. Directional signals in the independent SBAC branches are preserved because each dendrite makes selective contacts only with DSGCs of the appropriate preferred-direction. Directional signals are further enhanced within the dendritic arbor of the DSGC, which essentially comprises an array of distinct dendritic compartments. Each of these dendritic compartments locally sum excitatory and inhibitory inputs, amplifies them with voltage-gated channels, and generates spikes that propagate to the axon via the soma. Overall, the computation of direction in the retina is performed by several local dendritic mechanisms both presynaptic and postsynaptic, with the result that directional responses are robust over a broad range of stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of motion. J Opt Soc Am A 2:284–299

    Article  PubMed  CAS  Google Scholar 

  • Amthor FR, Keyser KT, Dmitrieva NA (2002) Effects of the destruction of starburst-cholinergic amacrine cells by the toxin AF64A on rabbit retinal directional selectivity. Vis Neurosci 19:495–509

    Article  PubMed  Google Scholar 

  • Ariel M, Daw NW (1982) Pharmacological analysis of directionally sensitive rabbit retinal ganglion cells. J Physiol 324:161–185

    PubMed  CAS  Google Scholar 

  • Barlow HB, Levick WR (1965) The mechanism of directionally selective units in rabbit’s retina. J Physiol 178:477–504

    PubMed  CAS  Google Scholar 

  • Branco T, Clark BA, Häusser M (2010) Dendritic discrimination of temporal input sequences in cortical neurons. Science 329:1671–1675

    Article  PubMed  CAS  Google Scholar 

  • Briggman KL, Helmstaedter M, Denk W (2011) Wiring specificity in the direction-selectivity circuit of the retina. Nature 471:183–188

    Article  PubMed  CAS  Google Scholar 

  • Caldwell JH, Daw NW, Wyatt HJ (1978) Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: lateral interactions for cells with more complex receptive fields. J Physiol 276:277–298

    PubMed  CAS  Google Scholar 

  • Chiao CC, Masland RH (2002) Starburst cells nondirectionally facilitate the responses of direction-selective retinal ganglion cells. J Neurosci 22:10509–10513

    PubMed  CAS  Google Scholar 

  • Cohen ED (2001) Voltage-gated calcium and sodium currents of starburst amacrine cells in the rabbit retina. Vis Neurosci 18:799–809

    Article  PubMed  CAS  Google Scholar 

  • Dong W, Sun W, Zhang Y, Chen X, He S (2004) Dendritic relationship between starburst amacrine cells and direction-selective ganglion cells in the rabbit retina. J Physiol 556:11–17

    Article  PubMed  CAS  Google Scholar 

  • Egelhaaf M, Borst A, Reichardt W (1989) Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly’s nervous system. J Opt Soc Am A 6:1070–1087

    Article  PubMed  CAS  Google Scholar 

  • Euler T, Detwiler PB, Denk W (2002) Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418:845–852

    Article  PubMed  CAS  Google Scholar 

  • Enciso GA, Rempe M, Dmitriev AV, Gavrikov KE, Terman D, Mangel SC (2010) A model of direction selectivity in the starburst amacrine cell network. J Comput Neurosci 28:567–578

    Article  PubMed  Google Scholar 

  • Famiglietti EV Jr (1983) ‘Starburst’ amacrine cells and cholinergic neurons: mirror-symmetric on and off amacrine cells of rabbit retina. Brain Res 261:138–144

    Article  PubMed  Google Scholar 

  • Famiglietti EV (1991) Synaptic organization of starburst amacrine cells in rabbit retina: analysis of serial thin sections by electron microscopy and graphic reconstruction. J Comp Neurol 309:40–70

    Article  PubMed  CAS  Google Scholar 

  • Famiglietti EV (1992) Dendritic co-stratification of ON and ON-OFF directionally selective ganglion cells with starburst amacrine cells in rabbit retina. J Comp Neurol 324:322–335

    Article  PubMed  CAS  Google Scholar 

  • Fried SI, Münch TA, Werblin FS (2005) Directional selectivity is formed at multiple levels by laterally offset inhibition in the rabbit retina. Neuron 46:117–127

    Article  PubMed  CAS  Google Scholar 

  • Gavrikov KE, Nilson JE, Dmitriev AV, Zucker CL, Mangel SC (2006) Dendritic compartmentalization of chloride cotransporters underlies directional responses of starburst amacrine cells in retina. Proc Natl Acad Sci USA 103:18793–18798

    Article  PubMed  CAS  Google Scholar 

  • Grzywacz NM, Amthor FR (2007) Robust directional computation in on-off directionally selective ganglion cells of rabbit retina. Vis Neurosci 24:647–661

    Article  PubMed  Google Scholar 

  • Hausselt SE, Euler T, Detwiler PB, Denk W (2007) A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells. PLoS Biol 5:e185

    Article  PubMed  Google Scholar 

  • He S, Jin ZF, Masland RH (1999) The nondiscriminating zone of directionally selective retinal ganglion cells: comparison with dendritic structure and implications for mechanism. J Neurosci 19:8049–8056

    PubMed  CAS  Google Scholar 

  • He S, Levick WR (2000) Spatial-temporal response characteristics of the ON-OFF direction selective ganglion cells in the rabbit retina. Neurosci Lett 285:25–28

    Article  PubMed  CAS  Google Scholar 

  • Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W (2013) Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500:168–174

    Article  PubMed  CAS  Google Scholar 

  • Huberman AD, Wei W, Elstrott J, Stafford BK, Feller MB, Barres BA (2009) Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion. Neuron 62:327–334

    Article  PubMed  CAS  Google Scholar 

  • Kim IJ, Zhang Y, Yamagata M, Meister M, Sanes JR (2008) Molecular identification of a retinal cell type that responds to upward motion. Nature 452:478–482

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kim K, Zhou ZJ (2010) Role of ACh-GABA cotransmission in detecting image motion and motion direction. Neuron 68:1159–1172

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Zhou ZJ (2006) The synaptic mechanism of direction selectivity in distal processes of starburst amacrine cells. Neuron 51:787–799

    Article  PubMed  CAS  Google Scholar 

  • Masland RH (2012) The neuronal organization of the retina. Neuron 76:266–280

    Google Scholar 

  • McGinley MJ, Liberman MC, Bal R, Oertel D (2012) Generating synchrony from the asynchronous: compensation for cochlear traveling wave delays by the dendrites of individual brainstem neurons. J Neurosci 32:9301–9311

    Article  PubMed  CAS  Google Scholar 

  • McLean J, Raab S, Palmer LA (1994) Contribution of linear mechanisms to the specification of local motion by simple cells in areas 17 and 18 of the cat. Vis Neurosci 11:271–294

    Article  PubMed  CAS  Google Scholar 

  • Miller RF, Bloomfield SA (1983) Electroanatomy of a unique amacrine cell in the rabbit retina. Proc Natl Acad Sci USA 80:3069–3073

    Article  PubMed  CAS  Google Scholar 

  • Oesch N, Euler T, Taylor WR (2005) Direction-selective dendritic action potentials in rabbit retina. Neuron 47:739–750

    Article  PubMed  CAS  Google Scholar 

  • Oesch NW, Taylor WR (2010) Tetrodotoxin-resistant sodium channels contribute to directional responses in starburst amacrine cells. PLoS One 5(8):e12447

    Article  PubMed  Google Scholar 

  • O’Malley DM, Sandell JH, Masland RH (1992) Co-release of acetylcholine and GABA by the starburst amacrine cells. J Neurosci 12:1394–1408

    PubMed  Google Scholar 

  • Ozaita A, Petit-Jacques J, Völgyi B, Ho CS, Joho RH, Bloomfield SA, Rudy B (2004) A unique role for Kv3 voltage-gated potassium channels in starburst amacrine cell signaling in mouse retina. J Neurosci 24:7335–7343

    Article  PubMed  CAS  Google Scholar 

  • Peters BN, Masland RH (1996) Responses to light of starburst amacrine cells. J Neurophysiol 75:469–480

    PubMed  CAS  Google Scholar 

  • Poleg-Polsky A, Diamond JS (2011) Imperfect space clamp permits electrotonic interactions between inhibitory and excitatory synaptic conductances, distorting voltage clamp recordings. PLoS One 6(4):e19463

    Article  PubMed  CAS  Google Scholar 

  • Rall W (1964) Theoretical significance of dendritic trees for neuronal input-output relations. In: Reis RF (ed) Neural theory and modeling. Stanford University Press, Stanford, CA, pp 72–97

    Google Scholar 

  • Rodieck RW (1998) The first steps in seeing. Sinauer Associates, Sunderland, MA. ISBN 9780878937578

    Google Scholar 

  • Schachter MJ, Oesch N, Smith RG, Taylor WR (2010) Dendritic spikes amplify the synaptic signal to enhance detection of motion in a simulation of the direction-selective ganglion cell. PLoS Comput Biol 6(8):e1000899

    Google Scholar 

  • Sivyer B, van Wyk M, Vaney DI, Taylor WR (2010) Synaptic inputs and timing underlying the velocity tuning of direction-selective ganglion cells in rabbit retina. J Physiol 588:3243–3253

    Article  PubMed  CAS  Google Scholar 

  • Tauchi M, Masland RH (1985) Local order among the dendrites of an amacrine cell population. J Neurosci 5:2494–2501

    PubMed  CAS  Google Scholar 

  • Taylor WR, Vaney DI (2002) Diverse synaptic mechanisms generate direction selectivity in the rabbit retina. J Neurosci 22:7712–7720

    PubMed  CAS  Google Scholar 

  • Taylor WR, Vaney DI (2003) New directions in retinal research. Trends Neurosci 26:379–385

    Article  PubMed  CAS  Google Scholar 

  • Taylor WR, Wässle H (1995) Receptive field properties of starburst cholinergic amacrine cells in the rabbit retina. Eur J Neurosci 7:2308–2321

    Article  PubMed  CAS  Google Scholar 

  • Taylor WR, Smith RG (2012) The role of starburst amacrine cells in visual signal processing. Vis Neurosci 29:73–81

    Article  PubMed  CAS  Google Scholar 

  • Trenholm S, Johnson K, Li X, Smith RG, Awatramani GB (2011) Parallel mechanisms encode direction in the retina. Neuron 71:683–694

    Article  PubMed  CAS  Google Scholar 

  • Tukker JJ, Taylor WR, Smith RG (2004) Direction selectivity in a model of the starburst amacrine cell. Vis Neurosci 21:611–625

    Article  PubMed  Google Scholar 

  • Vaney DI (1984) ‘Coronate’ amacrine cells in the rabbit retina have the ‘starburst’ dendritic morphology. Proc R Soc Lond B Biol Sci 220:501–508

    Article  PubMed  CAS  Google Scholar 

  • Vaney DI, Collin SP, Young HM (1989) Dendritic relationships between cholinergic amacrine cells and direction-selective retinal ganglion cells. In: Osborne NN, Weiler R (eds) Neurobiology of the inner retina. Springer, Berlin, pp 157–168

    Chapter  Google Scholar 

  • Vaney DI, Pow DV (2000) The dendritic architecture of the cholinergic plexus in the rabbit retina: selective labeling by glycine accumulation in the presence of sarcosine. J Comp Neurol 421:1–13

    Article  PubMed  CAS  Google Scholar 

  • Vaney DI, Sivyer B, Taylor WR (2012) Direction selectivity in the retina: symmetry and asymmetry in structure and function. Nat Rev Neurosci 13:194–208

    Google Scholar 

  • Velte TJ, Miller RF (1997) Spiking and nonspiking models of starburst amacrine cells in the rabbit retina. Vis Neurosci 14:1073–1088

    Article  PubMed  CAS  Google Scholar 

  • Vigeland LE, Contreras D, Palmer LA (2013) Synaptic mechanisms of temporal diversity in the lateral geniculate nucleus of the thalamus. J Neurosci 33:1887–1896

    Google Scholar 

  • Williams SR (2004) Spatial compartmentalization and functional impact of conductance in pyramidal neurons. Nat Neurosci 7:961–967

    Article  PubMed  CAS  Google Scholar 

  • Wei W, Hamby AM, Zhou K, Feller MB (2011) Development of asymmetric inhibition underlying direction selectivity in the retina. Nature 469:402–406

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Masland RH (1994) Receptive fields and dendritic structure of directionally selective retinal ganglion cells. J Neurosci 14:5267–5280

    PubMed  CAS  Google Scholar 

  • Yoshida K, Watanabe D, Ishikane H, Tachibana M, Pastan I, Nakanishi S (2001) A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement. Neuron 30:771–780

    Article  PubMed  CAS  Google Scholar 

  • Zhou ZJ, Fain GL (1996) Starburst amacrine cells change from spiking to nonspiking neurons during retinal development. Proc Natl Acad Sci USA 93:8057–8062

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to David Vaney for the image of the starburst amacrine cell in Fig. 13.1a. This study was supported by NEI grant EY022070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Smith, R.G., Taylor, W.R. (2014). Dendritic Computation of Direction in Retinal Neurons. In: Cuntz, H., Remme, M., Torben-Nielsen, B. (eds) The Computing Dendrite. Springer Series in Computational Neuroscience, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8094-5_13

Download citation

Publish with us

Policies and ethics