The Adhesion Molecule Anosmin-1 in Neurology: Kallmann Syndrome and Beyond

  • Fernando de Castro
  • Pedro F. Esteban
  • Ana Bribián
  • Verónica Murcia-Belmonte
  • Diego García-González
  • Diego Clemente
Chapter
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 8)

Abstract

Anosmin-1 is the glycoprotein encoded by the KAL1 gene and part of the extracellular matrix, which was first identified as defective in human Kallmann syndrome (KS, characterised by hypogonadotropic hypogonadism and anosmia); biochemically it is a cell adhesion protein. The meticulous biochemical dissection of the anosmin-1 domains has identified which domains are necessary for the protein to bind its different partners to display its biological effects. Research in the last decade has unravelled different roles of anosmin-1 during CNS development (axon pathfinding, axonal collateralisation, cell motility and migration), some of them intimately related with the cited KS but not only with this. More recently, anosmin-1 has been identified in other pathological scenarios both within (multiple sclerosis) and outside (cancer, atopic dermatitis) the CNS.

Keywords

Migration Cysteine Retina Serin Proline 

Notes

Acknowledgements

Our research is currently supported by grants from the Spanish Ministerio de Economía y Competitividad-MINECO (ADE10-0010, RD07-0060-2007, SAF2009-07842), and Fundación Eugenio Rodríguez Pascual (Spain) to FdC, Association pour la Recherche en Escleròse en Plaques-ARSEP (France) to DCL and FdC, and Gobierno de Castilla-La Mancha (PI2009/26 and PI2009/29,) to DCL and PFE, respectively. VMB is a PhD student who had a fellowship from Gobierno de Castilla-La Mancha (MOV2007-JI/19) and is currently hired under RD07-0060-2007. DGG is a PhD student who had a fellowship from Gobierno de Gastilla-La Mancha (PI2007-66) and is currently hired by SESCAM. DCL, FdCS and PFE are hired by SESCAM. ABA is the recipient of a Sara Borrell contract from the Spanish Ministerio de Economía y Competitividad-MINECO.

Compliance with Ethics Requirements

The authors declare that they have no conflicts of interest.

References

  1. Andrenacci D, Grimaldi MR, Panetta V, Riano E, Rugarli EI, Graziani F (2006) Functional dissection of the Drosophila Kallmann's syndrome protein DmKal-1. BMC Genet 7:47PubMedCentralPubMedGoogle Scholar
  2. Ardouin O, Legouis R, Fasano L, vid-Watine B, Korn H, Hardelin J, Petit C (2000) Characterization of the two zebrafish orthologues of the KAL-1 gene underlying X chromosome-linked Kallmann syndrome. Mech Dev 90:89–94PubMedGoogle Scholar
  3. Arikawa E, Quellhorst G, Han Y, Pan H, Yang J (2011) RT2 profilerTM PCR arrays: pathway-focused gene expression profiling with qRT-PCR. Technical article. SuperArray Bioscience Corporation, Frederick, MDGoogle Scholar
  4. Arnett HA, Fancy SP, Alberta JA, Zhao C, Plant SR, Kaing S, Raine CS, Rowitch DH, Franklin RJ, Stiles CD (2004) bHLH transcription factor Olig1 is required to repair demyelinated lesions in the CNS. Science 306:2111–2115PubMedGoogle Scholar
  5. Ayari B, Soussi-Yanicostas N (2007) FGFR1 and anosmin-1 underlying genetically distinct forms of Kallmann syndrome are co-expressed and interact in olfactory bulbs. Dev Genes Evol 217:169–175PubMedGoogle Scholar
  6. Ayari B, Landoulsi A, Soussi-Yanicostas N (2012) Localization and characterization of kal 1.a and kal 1.b in the brain of adult zebrafish (Danio rerio). Brain Res Bull 88:345–353PubMedGoogle Scholar
  7. Back SA, Tuohy TM, Chen H, Wallingford N, Craig A, Struve J, Luo NL, Banine F, Liu Y, Chang A, Trapp BD, Bebo BF Jr, Rao MS, Sherman LS (2005) Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med 11:966–972PubMedGoogle Scholar
  8. Baer AS, Syed YA, Kang SU, Mitteregger D, Vig R, Ffrench-Constant C, Franklin RJ, Altmann F, Lubec G, Kotter MR (2009) Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling. Brain 132:465–481PubMedCentralPubMedGoogle Scholar
  9. Bansal R, Kumar M, Murray K, Morrison RS, Pfeiffer SE (1996) Regulation of FGF receptors in the oligodendrocyte lineage. Mol Cell Neurosci 7:263–275PubMedGoogle Scholar
  10. Barkhof F, Bruck W, De Groot CJ, Bergers E, Hulshof S, Geurts J, Polman CH, van der Valk P (2003) Remyelinated lesions in multiple sclerosis: magnetic resonance image appearance. Arch Neurol 60:1073–1081PubMedGoogle Scholar
  11. Bauer NG, Ffrench-Constant C (2009) Physical forces in myelination and repair: a question of balance? J Biol 8:78PubMedCentralPubMedGoogle Scholar
  12. Bramow S, Frischer JM, Lassmann H, Koch-Henriksen N, Lucchinetti CF, Sorensen PS, Laursen H (2010) Demyelination versus remyelination in progressive multiple sclerosis. Brain 133:2983–2998PubMedGoogle Scholar
  13. Bribián A, Barallobre MJ, Soussi-Yanicostas N, de Castro F (2006) Anosmin-1 modulates the FGF-2-dependent migration of oligodendrocyte precursors in the developing optic nerve. Mol Cell Neurosci 33:2–14PubMedGoogle Scholar
  14. Bribián A, Esteban PF, Clemente D, Soussi-Yanicostas N, Thomas JL, Zalc B, de Castro F (2008) A novel role for anosmin-1 in the adhesion and migration of oligodendrocyte precursors. Dev Neurobiol 68:1503–1516PubMedGoogle Scholar
  15. Bülow HE, Hobert O (2004) Differential sulfations and epimerization define heparan sulfate specificity in nervous system development. Neuron 41:723–736PubMedGoogle Scholar
  16. Bülow HE, Berry KL, Topper LH, Peles E, Hobert O (2002) Heparan sulfate proteoglycan-dependent induction of axon branching and axon misrouting by the Kallmann syndrome gene kal-1. Proc Natl Acad Sci USA 99:6346–6351PubMedCentralPubMedGoogle Scholar
  17. Capello E, Voskuhl RR, McFarland HF, Raine CS (1997) Multiple sclerosis: re-expression of a developmental gene in chronic lesions correlates with remyelination. Ann Neurol 41:797–805PubMedGoogle Scholar
  18. Cariboni A, Pimpinelli F, Colamarino S, Zaninetti R, Piccolella M, Rumio C, Piva F, Rugarli EI, Maggi R (2004) The product of X-linked Kallmann's syndrome gene (KAL1) affects the migratory activity of gonadotropin-releasing hormone (GnRH)-producing neurons. Hum Mol Genet 13:2781–2791PubMedGoogle Scholar
  19. Charles P, Hernandez MP, Stankoff B, Aigrot MS, Colin C, Rougon G, Zalc B, Lubetzki C (2000) Negative regulation of central nervous system myelination by polysialylated-neural cell adhesion molecule. Proc Natl Acad Sci USA 97:7585–7590PubMedCentralPubMedGoogle Scholar
  20. Charles P, Reynolds R, Seilhean D, Rougon G, Aigrot MS, Niezgoda A, Zalc B, Lubetzki C (2002) Re-expression of PSA-NCAM by demyelinated axons: an inhibitor of remyelination in multiple sclerosis? Brain 125:1972–1979PubMedGoogle Scholar
  21. Chung WC, Tsai PS (2010) Role of fibroblast growth factor signaling in gonadotropin-releasing hormone neuronal system development. Front Horm Res 39:37–50PubMedCentralPubMedGoogle Scholar
  22. Chung WC, Matthews TA, Tata BK, Tsai PS (2010) Compound deficiencies in multiple fibroblast growth factor signalling components differentially impact the murine gonadotrophin-releasing hormone system. J Neuroendocrinol 22:944–950PubMedCentralPubMedGoogle Scholar
  23. Church DM et al (2009) Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol 7:e1000112PubMedCentralPubMedGoogle Scholar
  24. Clemente D, Esteban PF, Del Valle I, Bribian A, Soussi-Yanicostas N, Silva A, de Castro F (2008) Expression pattern of Anosmin-1 during pre- and postnatal rat brain development. Dev Dyn 237:2518–2528PubMedGoogle Scholar
  25. Clemente D, Ortega MC, Arenzana FJ, de Castro F (2011) FGF-2 and Anosmin-1 are selectively expressed in different types of multiple sclerosis lesions. J Neurosci 31:14899–14909PubMedGoogle Scholar
  26. de Morsier G (1954) Studies in cranio-encephalic dysraphia. I. Agenesia of the olfactory lobe (lateral telencephaloschisis) and of the callous and anterior commissures (median telencephaloschisis); olfacto-genital dysplasia. Schweiz Arch Neurol Psychiatr 74:309–361Google Scholar
  27. Decker L, Durbec P, Rougon G, Evercooren AB (2002) Loss of polysialic residues accelerates CNS neural precursor differentiation in pathological conditions. Mol Cell Neurosci 19:225–238PubMedGoogle Scholar
  28. de Castro F, Bribián A (2005) The molecular orchestra of the migration of oligodendrocyte progenitors during development. Brain Res Rev 49:227–241Google Scholar
  29. del Castillo I, Cohen-Salmon M, Blanchard S, Lutfalla G, Petit C (1992) Structure of the X-linked Kallmann syndrome gene and its homologous pseudogene on the Y chromosome. Nat Genet 2:305–310PubMedGoogle Scholar
  30. Dellovade TL, Hardelin JP, Soussi-Yanicostas N, Pfaff DW, Schwanzel-Fukuda M, Petit C (2003) Anosmin-1 immunoreactivity during embryogenesis in a primitive eutherian mammal. Brain Res Dev Brain Res 140:157–167PubMedGoogle Scholar
  31. Dodé C, Hardelin JP (2009) Kallmann syndrome. Eur J Hum Genet 17:139–146PubMedCentralPubMedGoogle Scholar
  32. Dode C et al (2003) Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet 33:463–465PubMedGoogle Scholar
  33. Dode C, Teixeira L, Levilliers J, Fouveaut C, Bouchard P, Kottler ML, Lespinasse J, Lienhardt-Roussie A, Mathieu M, Moerman A, Morgan G, Murat A, Toublanc JE, Wolczynski S, Delpech M, Petit C, Young J, Hardelin JP (2006) Kallmann syndrome: mutations in the genes encoding prokineticin-2 and prokineticin receptor-2. PLoS Genet 2:e175PubMedCentralPubMedGoogle Scholar
  34. Dubois-Dalcq M, Ffrench-Constant C, Franklin RJ (2005) Enhancing central nervous system remyelination in multiple sclerosis. Neuron 48:9–12PubMedGoogle Scholar
  35. Duke VM, Winyard PJ, Thorogood P, Soothill P, Bouloux PM, Woolf AS (1995) KAL, a gene mutated in Kallmann's syndrome, is expressed in the first trimester of human development. Mol Cell Endocrinol 110:73–79PubMedGoogle Scholar
  36. Endo Y, Ishiwata-Endo H, Yamada KM (2012) Extracellular Matrix Protein Anosmin Promotes Neural Crest Formation and Regulates FGF, BMP, and WNT Activities. Dev Cell 23:305–316PubMedCentralPubMedGoogle Scholar
  37. Falardeau J et al (2008) Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice. J Clin Invest 118:2822–2831PubMedCentralPubMedGoogle Scholar
  38. Franco B, Guioli S, Pragliola A, Incerti B, Bardoni B, Tonlorenzi R, Carrozzo R, Maestrini E, Pieretti M, Taillon-Miller P, Brown CJ, Willard HF, Lawrence C, Graziella PM, Camerino G, Ballabio A (1991) A gene deleted in Kallmann's syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature 353:529–536PubMedGoogle Scholar
  39. Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis–the plaque and its pathogenesis. N Engl J Med 354:942–955PubMedGoogle Scholar
  40. García-González D, Clemente D, Coelho M, Esteban PF, Soussi-Yanicostas N, de Castro F (2010) Dynamic roles of FGF-2 and Anosmin-1 in the migration of neuronal precursors from the subventricular zone during pre- and postnatal development. Exp Neurol 222:285–295PubMedGoogle Scholar
  41. Gianola S, de Castro F, Rossi F (2009) Anosmin-1 stimulates outgrowth and branching of developing Purkinje axons. Neuroscience 158:570–584PubMedGoogle Scholar
  42. Gill JC, Moenter SM, Tsai PS (2004) Developmental regulation of gonadotropin-releasing hormone neurons by fibroblast growth factor signaling. Endocrinology 145:3830–3839PubMedGoogle Scholar
  43. Gläser B, Myrtek D, Rumpler Y, Schiebel K, Hauwy M, Rappold GA, Schempp W (1999) Transposition of SRY into the ancestral pseudoautosomal region creates a new pseudoautosomal boundary in a progenitor of simian primates. Hum Mol Genet 8:2071–2078PubMedGoogle Scholar
  44. González-Martínez D, Kim SH, Hu Y, Guimond S, Schofield J, Winyard P, Vannelli GB, Turnbull J, Bouloux PM (2004) Anosmin-1 modulates fibroblast growth factor receptor 1 signaling in human gonadotropin-releasing hormone olfactory neuroblasts through a heparan sulfate-dependent mechanism. J Neurosci 24:10384–10392PubMedGoogle Scholar
  45. Guimond SE, Turnbull JE (1999) Fibroblast growth factor receptor signalling is dictated by specific heparan sulphate saccharides. Curr Biol 9:1343–1346PubMedGoogle Scholar
  46. Hardelin JP, Julliard AK, Moniot B, Soussi-Yanicostas N, Verney C, Schwanzel-Fukuda M, Ayer-Le Lievre C, Petit C (1999) Anosmin-1 is a regionally restricted component of basement membranes and interstitial matrices during organogenesis: implications for the developmental anomalies of X chromosome-linked Kallmann syndrome. Dev Dyn 215:26–44PubMedGoogle Scholar
  47. Hayes FJ, Seminara SB, Crowley WF, Jr. (1998) Hypogonadotropic hypogonadism. Endocrinol Metab Clin North Am 27:739-63, vii.Google Scholar
  48. Hu Y, Bouloux PM (2011) X-linked GnRH deficiency: role of KAL-1 mutations in GnRH deficiency. Mol Cell Endocrinol 346:13–20PubMedGoogle Scholar
  49. Hu Y, Gonzalez-Martinez D, Kim SH, Bouloux PM (2004) Cross-talk of anosmin-1, the protein implicated in X-linked Kallmann's syndrome, with heparan sulphate and urokinase-type plasminogen activator. Biochem J 384:495–505PubMedCentralPubMedGoogle Scholar
  50. Hu Y, Guimond SE, Travers P, Cadman S, Hohenester E, Turnbull JE, Kim SH, Bouloux PM (2009) Novel mechanisms of fibroblast growth factor receptor 1 regulation by extracellular matrix protein anosmin-1. J Biol Chem 284:29905–29920PubMedCentralPubMedGoogle Scholar
  51. Hu Y, Yu H, Shaw G, Pask AJ, Renfree MB (2011) Kallmann syndrome 1 gene is expressed in the marsupial gonad. Biol Reprod 84:595–603PubMedGoogle Scholar
  52. Hudson ML, Kinnunen T, Cinar HN, Chisholm AD (2006) C. elegans Kallmann syndrome protein KAL-1 interacts with syndecan and glypican to regulate neuronal cell migrations. Dev Biol 294:352–365PubMedGoogle Scholar
  53. Jakovcevski I, Mo Z, Zecevic N (2007) Down-regulation of the axonal polysialic acid-neural cell adhesion molecule expression coincides with the onset of myelination in the human fetal forebrain. Neuroscience 149:328–337PubMedCentralPubMedGoogle Scholar
  54. Jian B, Nagineni CN, Meleth S, Grizzle W, Bland K, Chaudry I, Raju R (2009) Anosmin-1 involved in neuronal cell migration is hypoxia inducible and cancer regulated. Cell Cycle 8:3770–3776PubMedGoogle Scholar
  55. Kallmann FJ, Schoenfeld WA, Barrera SE (1944) The genetic aspects of primary eunuchoidism. Am J Ment Defic 48:203–236Google Scholar
  56. Kawamata H, Furihata T, Omotehara F, Sakai T, Horiuchi H, Shinagawa Y, Imura J, Ohkura Y, Tachibana M, Kubota K, Terano A, Fujimori T (2003) Identification of genes differentially expressed in a newly isolated human metastasizing esophageal cancer cell line, T.Tn-AT1, by cDNA microarray. Cancer Sci 94:699–706PubMedGoogle Scholar
  57. Kawauchi S, Shou J, Santos R, Hebert JM, McConnell SK, Mason I, Calof AL (2005) Fgf8 expression defines a morphogenetic center required for olfactory neurogenesis and nasal cavity development in the mouse. Development 132:5211–5223PubMedGoogle Scholar
  58. Kim HG, Kurth I, Lan F, Meliciani I, Wenzel W, Eom SH, Kang GB, Rosenberger G, Tekin M, Ozata M, Bick DP, Sherins RJ, Walker SL, Shi Y, Gusella JF, Layman LC (2008) Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am J Hum Genet 83:511–519PubMedCentralPubMedGoogle Scholar
  59. Kippert A, Fitzner D, Helenius J, Simons M (2009) Actomyosin contractility controls cell surface area of oligodendrocytes. BMC Cell Biol 10:71PubMedCentralPubMedGoogle Scholar
  60. Kuhlmann T, Miron V, Cui Q, Wegner C, Antel J, Bruck W (2008) Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131:1749–1758PubMedGoogle Scholar
  61. Laitinen EM, Vaaralahti K, Tommiska J, Eklund E, Tervaniemi M, Valanne L, Raivio T (2011) Incidence, phenotypic features and molecular genetics of Kallmann syndrome in Finland. Orphanet J Rare Dis 6:41PubMedCentralPubMedGoogle Scholar
  62. Legouis R, Hardelin JP, Levilliers J, Claverie JM, Compain S, Wunderle V, Millasseau P, Le PD, Cohen D, Caterina D (1991) The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell 67:423–435PubMedGoogle Scholar
  63. Legouis R, Lievre CA, Leibovici M, Lapointe F, Petit C (1993) Expression of the KAL gene in multiple neuronal sites during chicken development. Proc Natl Acad Sci USA 90:2461–2465PubMedCentralPubMedGoogle Scholar
  64. Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148PubMedGoogle Scholar
  65. Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271:978–981PubMedGoogle Scholar
  66. Lutz B, Rugarli EI, Eichele G, Ballabio A (1993) X-linked Kallmann syndrome. A neuronal targeting defect in the olfactory system? FEBS Lett 325:128–134PubMedGoogle Scholar
  67. Lutz B, Kuratani S, Rugarli EI, Wawersik S, Wong C, Bieber FR, Ballabio A, Eichele G (1994) Expression of the Kallmann syndrome gene in human fetal brain and in the manipulated chick embryo. Hum Mol Genet 3:1717–1723PubMedGoogle Scholar
  68. Maestre de San Juan A (1856) Teratología: falta total de los nervios olfatorios con anosmia en un individuo en quien existía una atrofia congénita de los testículos y el miembro viril. El Siglo Médico, Madrid 3:211–221Google Scholar
  69. Mangs AH, Morris BJ (2007) The human pseudoautosomal region (PAR): origin, function and future. Curr Genomics 8:129–136Google Scholar
  70. Martin C, Balasubramanian R, Dwyer AA, Au MG, Sidis Y, Kaiser UB, Seminara SB, Pitteloud N, Zhou QY, Crowley WF Jr (2011) The role of the prokineticin 2 pathway in human reproduction: evidence from the study of human and murine gene mutations. Endocr Rev 32:225–246PubMedCentralPubMedGoogle Scholar
  71. Mihara M, Yoshida Y, Tsukamoto T, Inada K, Nakanishi Y, Yagi Y, Imai K, Sugimura T, Tatematsu M, Ushijima T (2006) Methylation of multiple genes in gastric glands with intestinal metaplasia: A disorder with polyclonal origins. Am J Pathol 169:1643–1651PubMedCentralPubMedGoogle Scholar
  72. Murcia-Belmonte V, Esteban PF, García-González D, de Castro F (2010) Biochemical dissection of Anosmin-1 interaction with FGFR1 and components of the extracellular matrix. J Neurochem 115:1256–1265PubMedGoogle Scholar
  73. Okubo K, Sakai F, Lau EL, Yoshizaki G, Takeuchi Y, Naruse K, Aida K, Nagahama Y (2006) Forebrain gonadotropin-releasing hormone neuronal development: insights from transgenic medaka and the relevance to X-linked Kallmann syndrome. Endocrinology 147:1076–1084PubMedGoogle Scholar
  74. Omari KM, John GR, Sealfon SC, Raine CS (2005) CXC chemokine receptors on human oligodendrocytes: implications for multiple sclerosis. Brain 128:1003–1015PubMedGoogle Scholar
  75. Patani R, Balaratnam M, Vora A, Reynolds R (2007) Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol Appl Neurobiol 33:277–287PubMedGoogle Scholar
  76. Patrikios P, Stadelmann C, Kutzelnigg A, Rauschka H, Schmidbauer M, Laursen H, Sorensen PS, Bruck W, Lucchinetti C, Lassmann H (2006) Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129:3165–3172PubMedGoogle Scholar
  77. Peretto P, Giachino C, Aimar P, Fasolo A, Bonfanti L (2005) Chain formation and glial tube assembly in the shift from neonatal to adult subventricular zone of the rodent forebrain. J Comp Neurol 487:407–427PubMedGoogle Scholar
  78. Perry J, Palmer S, Gabriel A, Ashworth A (2001) A short pseudoautosomal region in laboratory mice. Genome Res 11:1826–1832PubMedCentralPubMedGoogle Scholar
  79. Petreanu L, Álvarez-Buylla A (2002) Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction. J Neurosci 22:6106–6113PubMedGoogle Scholar
  80. Pitteloud N, Zhang C, Pignatelli D, Li JD, Raivio T, Cole LW, Plummer L, Jacobson-Dickman EE, Mellon PL, Zhou QY, Crowley WF Jr (2007) Loss-of-function mutation in the prokineticin 2 gene causes Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci USA 104:17447–17452PubMedCentralPubMedGoogle Scholar
  81. Prineas JW, Connell F (1979) Remyelination in multiple sclerosis. Ann Neurol 5:22–31PubMedGoogle Scholar
  82. Raju R, Dalakas MC (2005) Gene expression profile in the muscles of patients with inflammatory myopathies: effect of therapy with IVIg and biological validation of clinically relevant genes. Brain 128:1887–1896PubMedGoogle Scholar
  83. Robertson A, MacColl GS, Nash JA, Boehm MK, Perkins SJ, Bouloux PM (2001) Molecular modelling and experimental studies of mutation and cell-adhesion sites in the fibronectin type III and whey acidic protein domains of human anosmin-1. Biochem J 357:647–659PubMedCentralPubMedGoogle Scholar
  84. Ross MT et al (2005) The DNA sequence of the human X chromosome. Nature 434:325–337PubMedCentralPubMedGoogle Scholar
  85. Rugarli EI, Lutz B, Kuratani SC, Wawersik S, Borsani G, Ballabio A, Eichele G (1993) Expression pattern of the Kallmann syndrome gene in the olfactory system suggests a role in neuronal targeting. Nat Genet 4:19–26PubMedGoogle Scholar
  86. Rugarli EI, Ghezzi C, Valsecchi V, Ballabio A (1996) The Kallmann syndrome gene product expressed in COS cells is cleaved on the cell surface to yield a diffusible component. Hum Mol Genet 5:1109–1115PubMedGoogle Scholar
  87. Rugarli EI, Di SE, Hilliard MA, Arbucci S, Ghezzi C, Facciolli A, Coppola G, Ballabio A, Bazzicalupo P (2002) The Kallmann syndrome gene homolog in C. elegans is involved in epidermal morphogenesis and neurite branching. Development 129:1283–1294PubMedGoogle Scholar
  88. Sauka-Spengler T, Bronner-Fraser M (2008) Evolution of the neural crest viewed from a gene regulatory perspective. Genesis 46:673–682PubMedGoogle Scholar
  89. Schwanzel-Fukuda M, Bick D, Pfaff DW (1989) Luteinizing hormone-releasing hormone (LHRH)-expressing cells do not migrate normally in an inherited hypogonadal (Kallmann) syndrome. Brain Res Mol Brain Res 6:311–326PubMedGoogle Scholar
  90. Seki T, Arai Y (1991) The persistent expression of a highly polysialylated NCAM in the dentate gyrus of the adult rat. Neurosci Res 12:503–513PubMedGoogle Scholar
  91. Seki T, Arai Y (1993) Distribution and possible roles of the highly polysialylated neural cell adhesion molecule (NCAM-H) in the developing and adult central nervous system. Neurosci Res 17:265–290PubMedGoogle Scholar
  92. Seminara SB, Hayes FJ, Crowley WF Jr (1998) Gonadotropin-releasing hormone deficiency in the human (idiopathic hypogonadotropic hypogonadism and Kallmann's syndrome): pathophysiological and genetic considerations. Endocr Rev 19:521–539PubMedGoogle Scholar
  93. Shapiro LJ, Mohandas T, Weiss R, Romeo G (1979) Non-inactivation of an x-chromosome locus in man. Science 204:1224–1226PubMedGoogle Scholar
  94. Soussi-Yanicostas N, Hardelin JP, Arroyo-Jiménez MM, Ardouin O, Legouis R, Levilliers J, Traincard F, Betton JM, Cabanie L, Petit C (1996) Initial characterization of anosmin-1, a putative extracellular matrix protein synthesized by definite neuronal cell populations in the central nervous system. J Cell Sci 109(Pt 7):1749–1757PubMedGoogle Scholar
  95. Soussi-Yanicostas N, Faivre-Sarrailh C, Hardelin JP, Levilliers J, Rougon G, Petit C (1998) Anosmin-1 underlying the X chromosome-linked Kallmann syndrome is an adhesion molecule that can modulate neurite growth in a cell-type specific manner. J Cell Sci 111(Pt 19):2953–2965PubMedGoogle Scholar
  96. Soussi-Yanicostas N, de Castro F, Julliard AK, Perfettini I, Chedotal A, Petit C (2002) Anosmin-1, defective in the X-linked form of Kallmann syndrome, promotes axonal branch formation from olfactory bulb output neurons. Cell 109:217–228PubMedGoogle Scholar
  97. Tengara S, Tominaga M, Kamo A, Taneda K, Negi O, Ogawa H, Takamori K (2010) Keratinocyte-derived anosmin-1, an extracellular glycoprotein encoded by the X-linked Kallmann syndrome gene, is involved in modulation of epidermal nerve density in atopic dermatitis. J Dermatol Sci 58:64–71PubMedGoogle Scholar
  98. Trainor PA, Ariza-McNaughton L, Krumlauf R (2002) Role of the isthmus and FGFs in resolving the paradox of neural crest plasticity and prepatterning. Science 295:1288–1291PubMedGoogle Scholar
  99. Villanueva C, de Roux N (2010) FGFR1 mutations in Kallmann syndrome. Front Horm Res 39:51–61PubMedGoogle Scholar
  100. Wang Y, Imitola J, Rasmussen S, O'Connor KC, Khoury SJ (2008) Paradoxical dysregulation of the neural stem cell pathway sonic hedgehog-Gli1 in autoimmune encephalomyelitis and multiple sclerosis. Ann Neurol 64:417–427PubMedCentralPubMedGoogle Scholar
  101. Whitlock KE, Smith KM, Kim H, Harden MV (2005) A role for foxd3 and sox10 in the differentiation of gonadotropin-releasing hormone (GnRH) cells in the zebrafish Danio rerio. Development 132:5491–5502PubMedGoogle Scholar
  102. Williams A, Piaton G, Aigrot MS, Belhadi A, Theaudin M, Petermann F, Thomas JL, Zalc B, Lubetzki C (2007) Semaphorin 3A and 3F: key players in myelin repair in multiple sclerosis? Brain 130:2554–2565PubMedGoogle Scholar
  103. Wray S, Grant P, Gainer H (1989) Evidence that cells expressing luteinizing hormone-releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode. Proc Natl Acad Sci USA 86:8132–8136PubMedCentralPubMedGoogle Scholar
  104. Yanicostas C, Ernest S, Dayraud C, Petit C, Soussi-Yanicostas N (2008) Essential requirement for zebrafish anosmin-1a in the migration of the posterior lateral line primordium. Dev Biol 320:469–479PubMedGoogle Scholar
  105. Yanicostas C, Herbomel E, Dipietromaria A, Soussi-Yanicostas N (2009) Anosmin-1a is required for fasciculation and terminal targeting of olfactory sensory neuron axons in the zebrafish olfactory system. Mol Cell Endocrinol 312:53–60PubMedGoogle Scholar
  106. Young J, Metay C, Bouligand J, Tou B, Francou B, Maione L, Tosca L, Sarfati J, Brioude F, Esteva B, Briand-Suleau A, Brisset S, Goossens M, Tachdjian G, Guiochon-Mantel A (2012) SEMA3A deletion in a family with Kallmann syndrome validates the role of semaphorin 3A in human puberty and olfactory system development. Hum Reprod 27:1460–1465PubMedGoogle Scholar
  107. Zhang H, Vutskits L, Calaora V, Durbec P, Kiss JZ (2004) A role for the polysialic acid-neural cell adhesion molecule in PDGF-induced chemotaxis of oligodendrocyte precursor cells. J Cell Sci 117:93–103PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Fernando de Castro
    • 1
  • Pedro F. Esteban
    • 1
  • Ana Bribián
    • 1
    • 2
  • Verónica Murcia-Belmonte
    • 1
  • Diego García-González
    • 1
  • Diego Clemente
    • 1
  1. 1.Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos-SESCAMToledoSpain
  2. 2.Institute of Bioengineering of Catalonia, Parc Cientific de Barcelona and Cell Biology DepartmentUniversidad de BarcelonaBarcelonaSpain

Personalised recommendations