Skip to main content

Genomics of Papaya Disease Resistance

  • Chapter
  • First Online:
Genetics and Genomics of Papaya

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 10))

Abstract

From seedling emergence through postharvest fruit distribution, Carica papaya is challenged by a wide range of pests and pathogens that diminish fruit yield and marketability. Because chemical control may be costly, unavailable, or ineffective, comprehensive pathogen management strategies, including increased genetic resistance, are needed. Today, heterologous transformation and interspecific and intergeneric hybridization are used to improve disease resistance. Transgene approaches have been used to control several strains of papaya ringspot virus and, along with the introgression of resistance from wild relatives, may be used for controlling other pathogens as well. Expansions of these sources of resistance are needed to ensure that modern cultivars evolve with microbial populations. The papaya genome sequence is available and can be used to provide markers to identify and isolate R-genes from C. papaya and related species. These genes can be introduced into susceptible lines using transformation. The emergence of new diseases and movement of pathogens suggests that extending resistance durability will require a comprehensive strategy of integrating genetic resistance, cultural practices, and factors including innate protection provided by beneficial plant–microbe interactions. Transgene efficacy will need to be monitored during disease epidemics and, likewise, evaluated for changes that may occur over generations in the absence of pathogen selection pressure. Developing and coordinating the use of papaya’s disease resistance resources will ensure that this species continues to provide a valuable source of nutrition for the world’s tropical and subtropical regions and the markets that rely upon these regions for imported fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel PP, Nelson RS, De B, Hoffmann N, Rogers G, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743

    Article  PubMed  CAS  Google Scholar 

  • Adrian M, Jeandet P, Veneau J, Weston LA, Bessis R (1997) Biological activity of resveratrol, a stilbenic compound from grapevines, against Botrytis cinerea, the causal agent for gray mold. J Chem Ecol 23:1689–1702

    Article  CAS  Google Scholar 

  • Aluja M, Jimene A, Camino M, Aldana L, Castrejon V, Valdes YME (1994) Determinacion de la susceptibilidad de tres variedades de papaya (Carica papaya) al ataque de Toxotrypana curvicauda (Diptera: Tephritidae). Folia Entomol Mex 90:33–42

    Google Scholar 

  • Alvarez AM, Nishijima WT (1987) Postharvest diseases of papaya. Plant Disease 71:681–686

    Article  Google Scholar 

  • Aradhya MK, Manshardt RM, Zee F, Morden CW (1999) A phylogenetic analysis of the genus Carica L. (Caricaceae) based on restriction fragment length variation in a cpDNA intergenic spacer region. Genet Resour Crop Evol 46:579–586

    Article  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274

    Article  Google Scholar 

  • Arocha Y, Horta D, Peralta E, Jones P (2003) First report on molecular detection of phytoplasmas in papaya in Cuba. Disease notes. Plant Disease 87:1148

    Article  Google Scholar 

  • Arocha Y, Piñol B, Picornell B, Almeida R, Jones P (2006) First report of a 16SrII (“Candidatus Phytoplasma aurantifolia”) group phytoplasma associated with a bunchy-top disease of papaya in Cuba. New disease report. Plant Pathol 55:821

    Article  Google Scholar 

  • Arocha Y, Bekele B, Tadesse D, Jones P (2007) First report of a 16SrII group phytoplasma associated with die-back diseases of papaya and citrus in Ethiopia. New disease report. Plant Pathol 56:1039

    Article  Google Scholar 

  • Arocha Y, Vigheri N, Nkoy-Florent B, Bakwanamaha K, Bolomphety B, Kasongo M, Betts P, Monger WA, Harju V, Mumford RA, Jones P (2008) First report of the identification of Moroccan watermelon mosaic virus in papaya in Democratic Republic of Congo. New disease report. Plant Pathol 57:387

    Article  Google Scholar 

  • Asurmendi S, Berg RH, Koo JC, Beachy RN (2004) Coat protein regulates formation of replication complexes during tobacco mosaic virus infection. Proc Natl Acad Sci USA 101:1415–1420

    Article  PubMed  CAS  Google Scholar 

  • Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20:79–110

    Article  PubMed  CAS  Google Scholar 

  • Badillo VM (2000) Carica L. vs. Vasconcellea St. Hil. (Caricaceae) con la rehabilitacion de este ultimo. Ernstia 10:74–79

    Google Scholar 

  • Bau HJ, Kung YJ, Raja JA, Chan SJ, Chen KC, Chen YK, Wu HW, Yeh SD (2008) Potential threat of a new pathotype of Papaya leaf distortion mosaic virus infecting transgenic papaya resistant to Papaya ringspot virus. Phytopathology 98:848–856

    Article  PubMed  CAS  Google Scholar 

  • Baulcombe DC (1996) Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8:1833–1844

    PubMed  CAS  Google Scholar 

  • Bazzini AA, Hopp HE, Beachy RN, Asurmendi S (2006) Posttranscriptional gene silencing does not play a significant role in Potato virus X coat protein-mediated resistance. Phytopathology 96:1175–1178

    Article  PubMed  CAS  Google Scholar 

  • Bendahmane M, Szecsi J, Chen I, Berg RH, Beachy RN (2002) Characterization of mutant tobacco mosaic virus coat protein that interferes with virus cell-to-cell movement. Proc Natl Acad Sci USA 99:3645–3650

    Article  PubMed  CAS  Google Scholar 

  • Birch PR, Rehmany AP, Pritchard L, Kamoun S, Beynon JL (2006) Trafficking arms: oomycete effectors enter host plant cells. Trends Microbiol 14:8–11

    Article  PubMed  CAS  Google Scholar 

  • Boot RG, Blommaart EF, Swart E, Ghauharali-van der Vlugt K, Bijl N, Moe C, Place A, Aerts JM (2001) Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J Biol Chem 276:6770–6778

    Article  PubMed  CAS  Google Scholar 

  • Bos JI, Armstrong MR, Gilroy EM, Boevink PC, Hein I, Taylor RM, Zhendong T, Engelhardt S, Vetukuri RR, Harrower B, Dixelius C, Bryan G, Sadanandom A, Whisson SC, Kamoun S, Birch PR (2010) Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proc Natl Acad Sci USA 107:9909–9914

    Article  PubMed  CAS  Google Scholar 

  • CERA (2010) GM crop database. Center for Environmental Risk Assessment (CERA), ILSI Research Foundation, Washington, DC. http://cera-gmc.org/index.php?action=gm_crop_database.

  • Champouret N, Bouwmeester K, Rietman H, van der Lee T, Maliepaard C, Heupink A, van de Vondervoort PJ, Jacobsen E, Visser RG, van der Vossen EA, Govers F, Vleeshouwers VG (2009) Phytophthora infestans isolates lacking class I ipiO variants are virulent on Rpi-blb1 potato. Mol Plant Microbe Interact 22:1535–1545

    Article  PubMed  CAS  Google Scholar 

  • Chang LS, Lee YS, Su HJ, Hung TH (2003) First report of Papaya leaf curl virus infecting papaya plants in Taiwan. Disease notes. Plant Disease 87:204

    Article  Google Scholar 

  • Chaudhari SS, Arakane Y, Specht CA, Moussian B, Boyle DL, Park Y, Kramer KJ, Beeman RW, Muthukrishnan S (2011) Knickkopf protein protects and organizes chitin in the newly synthesized insect exoskeleton. Proc Natl Acad Sci USA 108:17028–17033

    Article  PubMed  CAS  Google Scholar 

  • Chen KC, Chiang CH, Raja JA, Liu FL, Tai CH, Yeh SD (2008) A single amino acid of NIaPro of Papaya ringspot virus determines host specificity for infection of papaya. Mol Plant Microbe Interact 21:1046–1057

    Article  PubMed  CAS  Google Scholar 

  • Chen RS, Wang WL, Li JC, Wang YY, Tsay JG (2009) First report of papaya scab caused by Cladosporium cladosporioides in Taiwan. Disease notes. Plant Disease 93:426

    Article  Google Scholar 

  • Chin M, Ahmad MH, Tennant P (2007) Momordica charantia is a weed host reservoir for Papaya ringspot virus Type P in Jamaica. Disease notes. Plant Disease 91:1518

    Article  Google Scholar 

  • Chou S, Krasileva KV, Holton JM, Steinbrenner AD, Alber T, Staskawicz BJ (2011) Hyaloperonospora arabidopsidis ATR1 effector is a repeat protein with distributed recognition surfaces. Proc Natl Acad Sci USA 108:13323–13328

    Article  PubMed  CAS  Google Scholar 

  • Conove RA (1964) Distortion ringspot, a severe virus disease of papaya in Florida. Fla Agric Exp Stations J Ser 2001:440–444

    Google Scholar 

  • Conover RA, Litz RE (1978) Progress in breeding papayas with tolerance to papaya ringspot virus. Proc Fla State Hortic Soc 91:182–184

    Google Scholar 

  • Conover RA, Litz RE, Malo SE (1986) “Cariflora” a papaya ringspot virus tolerant papaya for South Florida and the Caribbean. Hortscience 21:1072

    Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  PubMed  CAS  Google Scholar 

  • Delaunois B, Cordelier S, Conreux A, Clément C, Jeandet P (2009) Molecular engineering of resveratrol in plants. Plant Biotechnol J 7:2–12

    Article  PubMed  CAS  Google Scholar 

  • DeYoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7:1243–1249

    Article  PubMed  CAS  Google Scholar 

  • Diallo HA, Monger W, Kouassi N, Yoro DT, Jones P (2007) First report of Papaya ringspot virus infecting papaya in Côte d’Ivoire. New disease report. Plant Pathol 56:718

    Article  Google Scholar 

  • Dianese AC, Blum LEB, Dutra JB, Lopes LF, Sena MC, Freitas LF, Yamanishi OK (2007) Reaction of papaya genotypes to black-spot and foot-rot. Fitopatol Bras 32:419–423

    Google Scholar 

  • Dianese AC, Blum LEB, Dutra JB, Freitas LF, Lopes LF, Sena MC, Lima L, Yamanishi OK, Martins DMS (2010) Reaction of papaya (Carica papaya) genotypes to foot rot caused by Phytophthora palmivora. Acta Hortic 864:249–255

    Google Scholar 

  • Dillon SK, Drew RA, Ramage C (2005a) Development of a co-dominant SCAR marker linked to a putative PRSV-P resistance locus in “wild papaya”. Acta Hortic 694:101–104

    CAS  Google Scholar 

  • Dillon S, Ramage C, Drew R, Ashmore S (2005b) Genetic mapping of a PRSV-P resistance gene in “highland papaya” based on inheritance of RAF markers. Euphytica 145:11–23

    Article  CAS  Google Scholar 

  • Dillon S, O’Brien CM, Drew RA, Ramage C (2006a) Application of SCAR markers linked to a putative PRSV-P resistance locus for assisted breeding of resistant C. papaya cultivars. Acta Hortic 725:627–633

    CAS  Google Scholar 

  • Dillon S, Ramage C, Ashmore S, Drew RA (2006b) Development of a codominant CAPS marker linked to PRSV-P resistance in highland papaya. Theor Appl Genet 113:1159–1169

    Article  PubMed  CAS  Google Scholar 

  • Ding X, Gopalakrishnan B, Johnson LB, White FF, Wang X, Morgan TD, Kramer KJ, Muthukrishnan S (1998) Insect resistance of transgenic tobacco expressing an insect chitinase gene. Transgenic Res 7:77–84

    Article  PubMed  CAS  Google Scholar 

  • Dowd C, Wilson IW, McFadden H (2004) Gene expression profile changes in cotton root and hypocotyl tissues in response to infection with Fusarium oxysporum f. sp. vasinfectum. Mol Plant Microbe Interact 17:654–667

    Article  PubMed  CAS  Google Scholar 

  • Drew RA, Magdalita PM, O’Brien CM (1998) Development of Carica interspecific hybrids. Acta Hortic 461:285–291

    Google Scholar 

  • Drew R, Persley D, O’Brien C, Bateson M (2005a) Papaya ringspot virus in Australia and the development of virus resistant plants. Acta Hortic 692:101–106

    Google Scholar 

  • Drew RA, Siar SV, Villegas VN, O’Brien CM, Sajise AGC (2005b) Development of PRSV-P resistant Carica papaya genotypes by introgression of genes from wild Vasconcella species. Acta Hortic 694:73–77

    CAS  Google Scholar 

  • Drew R, Siar SV, Dillon S, Ramage C, O’Brien C, Sajise AGC (2007) Intergeneric hybridisation between Carica papaya and wild Vasconcellea species and identification of a PRSV-P resistance gene. Acta Hortic 738:165–169

    Google Scholar 

  • Ellis JG, Dodds PN (2011) Showdown at the RXLR motif: Serious differences of opinion in how effector proteins from filamentous eukaryotic pathogens enter plant cells. Proc Natl Acad Sci USA 108:14381–14382

    Article  PubMed  CAS  Google Scholar 

  • Environmental Protection Agency (2009) Pesticide Fact Sheet. Available: http://www.epa.gov/oppbppd1/biopesticides/pips/smartstax-factsheet.pdf

  • Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. APS, St. Paul

    Google Scholar 

  • Fermin G, Inglessis V, Garboza C, Rangel S, Dagert M, Gonsalves D (2004) Engineered resistance against papaya ringspot virus in Venezuelan transgenic papayas. Plant Disease 88:516–522

    Article  Google Scholar 

  • Ferrer JL, Austin MB, Stewart C Jr, Noel JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46:356–370

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Budde I, Hain R (1997) Stilbene synthase gene expression causes changes in flower colour and male sterility in tobacco. Plant J 11:489–498

    Article  CAS  Google Scholar 

  • Fitch MMM (1993) High frequency somatic embryogenesis and plant regeneration from papaya hypocotyl callus. Plant Cell Tiss Org Cult 32:205–212

    Article  CAS  Google Scholar 

  • Fitch MMM, Manshardt RM (1990) Somatic embryogenesis and plant regeneration from immature zygotic embryos of papaya (Carica papaya L.). Plant Cell Rep 9:320–324

    CAS  Google Scholar 

  • Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC (1990) Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep 9:189–194

    CAS  Google Scholar 

  • Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC (1992) Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Nat Biotechnol 10:1466–1472

    Article  CAS  Google Scholar 

  • Fitter AH, Moyerson B (1996) Evolutionary trends in root-microbe symbioses. Phil Trans R Soc Land B 351:1367–1375

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2009) Statistics Division, FAOSTAT, Crops Production Data

    Google Scholar 

  • Fornara V, Onelli E, Sparvoli F, Rossoni M, Aina R, Marino G, Citterio S (2008) Localization of stilbene synthase in Vitis vinifera L. during berry development. Protoplasma 233:83–93

    Article  PubMed  CAS  Google Scholar 

  • Freeman S, Rodriguez RJ (1992) A rapid, reliable bioassay for pathogenicity of Colletotrichum magna on cucurbits and its use in screening for nonpathogenic mutants. Plant Disease 76:901–905

    Article  Google Scholar 

  • Freeman S, Rodriguez RJ (1993) Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist. Science 260:75–78

    Article  PubMed  CAS  Google Scholar 

  • Fry W (2008) Phytophthora infestans: the plant (and R gene) destroyer. Mol Plant Pathol 9:385–402

    Article  PubMed  Google Scholar 

  • Fullerton RA, Taufa L, Vanneste JL, Yu J, Cornish DA, Park D (2011) First record of bacterial crown rot of papaya (Carica papaya) caused by an Erwinia papayae-like bacterium in the Kingdom of Tonga. Disease notes. Plant Disease 95:70

    Article  Google Scholar 

  • Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720

    Article  PubMed  CAS  Google Scholar 

  • Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang J, Rommens CM (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 18:1307–1310

    Article  PubMed  CAS  Google Scholar 

  • Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW (2011) Field-evolved resistance to Bt maize by western corn rootworm. PLoS One 6(7):e22629

    Article  PubMed  CAS  Google Scholar 

  • Gera A, Mawassi M, Zeidan M, Spiegel S, Bar-Joseph M (2005) An isolate of “Candidatus Phytoplasma australiense” group associated with Nivun-Haamir-Die Back disease of papaya in Israel. New disease report. Plant Pathol 54:560

    Article  Google Scholar 

  • Gibb KS, Schneider B, Padovan AC (1998) Differential detection and genetic relatedness of phytoplasmas in papaya. Plant Pathol 47:325–332

    Article  CAS  Google Scholar 

  • Gilroy EM, Taylor RM, Hein I, Boevink P, Sadanandom A, Birch PR (2011) CMPG1-dependent cell death follows perception of diverse pathogen elicitors at the host plasma membrane and is suppressed by Phytophthora infestans RXLR effector AVR3a. New Phytol 190:653–666

    Article  PubMed  CAS  Google Scholar 

  • Goff L (1986) Spider mites (Acari: Tetranychidae) in the Hawaiian Islands. Int J Acarol 12:43–49

    Article  Google Scholar 

  • Gonsalves D (1998) Control of papaya ringspot virus in papaya: a case study. Annu Rev Phytopathol 36:415–437

    Article  PubMed  CAS  Google Scholar 

  • Grünwald NJ, Flier WG (2005) The biology of Phytophthora infestans at its center of origin. Annu Rev Phytopathol 43:171–190

    Article  PubMed  CAS  Google Scholar 

  • Guttman JA, Samji FN, Li Y, Deng W, Lin A, Finlay BB (2007) Aquaporins contribute to diarrhoea caused by attaching and effacing bacterial pathogens. Cell Microbiol 9:131–141

    Article  PubMed  CAS  Google Scholar 

  • Hain R, Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stöcker RH, Stenzel K (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361:153–156

    Article  PubMed  CAS  Google Scholar 

  • Hammerbacher A, Ralph SG, Bohlmann J, Fenning TM, Gershenzon J, Schmidt A (2011) Biosynthesis of the major tetrahydroxystilbenes in spruce, astringin and isorhapontin, proceeds via resveratrol and is enhanced by fungal infection. Plant Physiol 157:876–890, Epub 2011 Aug 24

    Article  PubMed  CAS  Google Scholar 

  • Hawtin RE, Zarkowska T, Arnold K, Thomas CJ, Gooday GW, King LA, Kuzio JA, Possee RD (1997) Liquefaction of Autographa californica nucleopolyhedrovirus-infected insects is dependent on the integrity of virus-encoded chitinase and cathepsin genes. Virology 238:243–253

    Article  PubMed  CAS  Google Scholar 

  • Hijmans RJ, Spooner DM (2001) Geographic distribution of wild potato species. Am J Bot 88:2101–2112

    Article  PubMed  CAS  Google Scholar 

  • Hipskind JD, Paiva NL (2000) Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Mol Plant Microbe Interact 13:551–562

    Article  PubMed  CAS  Google Scholar 

  • Horovitz S, Jiménez H (1967) Cruzamientos interespecíficos e intergenéricos en caricaceae y sus implicaciones fitotécnicas. Agron Trop 3:323–343

    Google Scholar 

  • Ingrosso I, Bonsegna S, Dedomenico S, Laddomada B, Blando F, Santino A, Giovinazzo G (2011) Over-expression of a grape stilbene synthase gene in tomato induces parthenocarpy and causes abnormal pollen development. Plant Physiol Biochem 49:1092–1099

    Article  PubMed  CAS  Google Scholar 

  • Initiative AG (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  PubMed  CAS  Google Scholar 

  • Jain RK, Nasiruddin KM, Sharma J, Pant RP, Varma A (2004) First report of occurrence of papaya ring spot virus infecting papaya in Bangladesh. Disease notes. Plant Disease 88:221

    Article  Google Scholar 

  • Jaizme-Vega MC, Rodríguez-Romero AS, Núñez LAB (2006) Effect of the combined inoculation of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria on papaya (Carica papaya L.) infected with the root-knot nematode Meloidogyne incognita. Fruits 61:151–162

    Article  Google Scholar 

  • Jha S, Tank HG, Prasad BD, Chattoo BB (2009) Expression of Dm-AMP1 in rice confers resistance to Magnaporthe oryzae and Rhizoctonia solani. Transgenic Res 18:59–69

    Article  PubMed  CAS  Google Scholar 

  • Jobin-Décor MP, Graham GC, Henry RJ, Drew RA (1997) RAPD and isozyme analysis of genetic relationships between Carica papaya and wild relatives. Genet Resour Crop Evol 44:471–477

    Article  Google Scholar 

  • Júnior MTS, Nickel O, Gonsalves D (2005) Development of virus resistant transgenic papayas expressing the coat protein gene from a Brazilian isolate of Papaya ringspot virus. Fitopatol Bras 30:357–365

    Google Scholar 

  • Kale SD, Gu B, Capelluto DG, Dou D, Feldman E, Rumore A, Arredondo FD, Hanlon R, Fudal I, Rouxel T, Lawrence CB, Shan W, Tyler BM (2010) External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell 142:284–295

    Article  PubMed  CAS  Google Scholar 

  • Kalleshwaraswamy CM, Kumar NK (2008) Transmission efficiency of papaya ringspot virus by three aphid species. Phytopathology 98:541–546

    Article  PubMed  CAS  Google Scholar 

  • Keith RC, Nishijima KA, Keith LM, Fitch MM, Nishijima WT, Wall MM (2008) Atypical internal yellowing of papaya fruit in Hawaii caused by Enterobacter sakazakii. Disease notes. Plant Disease 92:487

    Article  Google Scholar 

  • Kempler C, Kabaluk T (1996) Babaco (Carica pentagona Heilb.): a possible crop for the greenhouse. Hortscience 31:785–788

    Google Scholar 

  • Kilman S (2001) Monsanto Co. shelves seed that turned out to be a dud of a spud. Wall Street J B21 (March 21)

    Google Scholar 

  • Kim MS, Moore PH, Zee F, Fitch MMM, Steiger DL, Manshardt RM, Paull RE, Drew RA, Sekioka T, Ming R (2002) Genetic diversity of Carica papaya as revealed by AFLP markers. Genome 45:503–512

    Article  PubMed  CAS  Google Scholar 

  • Kung YJ, Bau HJ, Wu YL, Huang CH, Chen TM, Yeh SD (2009) Generation of transgenic papaya with double resistance to Papaya ringspot virus and Papaya leaf-distortion mosaic virus. Phytopathology 99:1312–1320

    Article  PubMed  CAS  Google Scholar 

  • Kung YJ, Yu TA, Huang CH, Wang HC, Wang SL, Yeh SD (2010) Generation of hermaphrodite transgenic papaya lines with virus resistance via transformation of somatic embryos derived from adventitious roots of in vitro shoots. Transgenic Res 19:621–635

    Article  PubMed  CAS  Google Scholar 

  • Kyndt T, Gheysen G (2007) Evolutionary relationships between and within the highland papayas (Genus Vasconcellea) and the common papaya (Carica papaya). Acta Hortic 740:61–72

    CAS  Google Scholar 

  • Latijnhouwers M, de Wit PJ, Govers F (2003) Oomycetes and fungi: similar weaponry to attack plants. Trends Microbiol 11:462–469

    Article  PubMed  CAS  Google Scholar 

  • Leckband G, Lörz H (1998) Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor Appl Genet 96:1004–1012

    Article  CAS  Google Scholar 

  • Lentz DL (1999) Plant resources of the ancient Maya, The paleoethnobotanical evidence. In: White CD (ed) Reconstructing ancient Maya diet. The University of Utah Press, Salt Lake City, pp 3–18 (Chapter 1)

    Google Scholar 

  • Ling K, Namba S, Gonsalves C, Slightom JL, Gonsalves G (1991) Protection against detrimental effects of potyvirus infection in transgenic tobacco plants expressing the papaya ringspot virus coat protein gene. Biotechnology 9:752–758

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Zhuang C, Sheng S, Shao L, Zhao W, Zhao S (2011) Overexpression of a resveratrol synthase gene (PcRS) from Polygonum cuspidatum in transgenic Arabidopsis causes the accumulation of trans-piceid with antifungal activity. Plant Cell Rep 30:2027–2036

    Article  PubMed  CAS  Google Scholar 

  • Magdalita PM, Adkins SW, Godwin ID, Drew RA (1996) An improved embryo-rescue protocol for a Carica interspecific hybrid. Aust J Bot 44:343–353

    Article  Google Scholar 

  • Magdalita PM, Persley DM, Godwin ID, Drew RA (1997) Screening Carica papaya × C. cauliflora hybrids for resistance to papaya ringspot virus-type P. Plant Pathol 46:837–841

    Article  Google Scholar 

  • Magdalita PM, Drew RA, Godwin ID, Adkins SW (1998) An efficient interspecific hybridization protocol for Carica papaya L. × C. cauliflora Jacq. Aust J Exp Agric 38:523–530

    Article  Google Scholar 

  • Maktar NH, Kamis S, Mohd Yusof FZ, Hussain NH (2008) Erwinia papayae causing papaya dieback in Malaysia. New disease report. Plant Pathol 57:774

    Article  Google Scholar 

  • Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, Howard E, Shendure J, Turner DJ (2010) Target-enrichment strategies for next-generation sequencing. Nat Methods 7:111–118

    Article  PubMed  CAS  Google Scholar 

  • Mangrauthia SK, Singh P, Praveen S (2010) Genomics of helper component proteinase reveals effective strategy for papaya ringspot virus resistance. Mol Biotechnol 44:22–29

    Article  PubMed  CAS  Google Scholar 

  • Manshardt RM, Wenslaff TF (1989a) Zygotic polyembryony in interspecific hybrids of Carica papaya and C. cauliflora. J Am Soc Hortic Sci 114:684–689

    Google Scholar 

  • Manshardt RM, Wenslaff TF (1989b) Interspecific hybridization of papaya with other Carica species. J Am Soc Hortic Sci 114:689–694

    Google Scholar 

  • Manshardt RM, Zee FTP (1994) Papaya germplasm and breeding in Hawaii. Fruit Varieties J 48:146–152

    Google Scholar 

  • Maoka T, Hataya T (2005) The complete nucleotide sequence and biotype variability of papaya leaf distortion mosaic virus. Phytopathology 95:128–135

    Article  PubMed  CAS  Google Scholar 

  • McCafferty HR, Moore PH, Zhu YJ (2006) Improved Carica papaya tolerance to carmine spider mite by the expression of Manduca sexta chitinase transgene. Transgenic Res 15:337–347

    Article  PubMed  CAS  Google Scholar 

  • McDowell JM, Simon SA (2006) Recent insights into R gene evolution. Mol Plant Pathol 7:437–448

    Article  PubMed  CAS  Google Scholar 

  • Mchau GRA, Coffey MD (1994) Isozyme diversity in Phytophthora palmivora: evidence for a southeast Asian centre of origin. Mycol Res 98:1035–1043

    Article  CAS  Google Scholar 

  • Mekako HU, Nakasone HY (1975) Interspecific hybridization among 6 Carica species. J Am Soc Hortic Sci 100:237–242

    Google Scholar 

  • Miksicek CH (1983) Macrofloral remains of the Pulltrouser area: settlements and fields. In: Turner II BL, Harrison PD (eds) Pulltrouser swamp: ancient Maya habitat, agriculture, and settlement in northern Belize. University of Texas Press, Austin, pp 94–104

    Google Scholar 

  • Miller CD (1926) The vitamins (A, B, and C) of papaya. Biochem J 20:515–518

    PubMed  CAS  Google Scholar 

  • Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    Article  PubMed  CAS  Google Scholar 

  • Miyasaka SC, Habte M (2001) Plant mechanisms and mycorrhizal symbioses to increase phosphorus uptake efficiency. Commun Soil Sci Plant Anal 32(7/8):1101–1147

    Article  CAS  Google Scholar 

  • Mlot C (2004) Microbial diversity unbound. What DNA-based techniques are revealing about the planet’s hidden biodiversity. Bioscience 54:1064–1068

    Article  Google Scholar 

  • Mosqueda-Vázquez R, Nakasone HY (1982) Diallel analysis of root rot resistance in papaya. Hortscience 17:384–385

    Google Scholar 

  • Mosqueda-Vázquez R, Aragaki M, Nakasone HY (1981) Screening of Carica papaya L. seedlings for resistance to root rot caused by Phytophthora palmivora Butl. J Am Soc Hortic Sci 106:484–487

    Google Scholar 

  • Nadeem A, Mehmood T, Tahir M, Khalid S, Xiong Z (1997) First report of Papaya leaf curl disease in Pakistan. Disease notes. Plant Disease 81:1333

    Article  Google Scholar 

  • Nakasone HY, Aragaki M (1982) Current status of papaya improvement program. Hawaii Inst Trop Agric Hum Resour Res Ext Ser 033:51–55

    Google Scholar 

  • Nascimento RJ, Mizubuti ESG, Câmara MPS, Ferreira MF, Maymon M, Freeman S, Michereff SJ (2010) First report of papaya fruit rot caused by Colletotrichum magna in Brazil. Disease notes. Plant Disease 94:1506

    Article  Google Scholar 

  • National Oceanic and Atmospheric Administration (NOAA), climate data, climatological normals, normal precipitation inches, 30 year normals 1971–2000. http://www.ncdc.noaa.gov/oa/climate/online/ccd/nrmpcp.txt

  • National Research Council (1989) Lost crops of the Incas: little-known plants of the Andes with promise for worldwide cultivation. National Academy Press, Washington, DC

    Google Scholar 

  • Newcombe G, Martin F, Kohler A (2010) Defense and nutrient mutualisms in Populus. In: Jansson S, Bhalerao RP, Groove, AT (eds) Genetics and genomics of Populus. Part III. Genetics and genomics of key Populus traits. Springer, New York, pp 247–277

    Google Scholar 

  • Nishijima WT, Aragaki M (1973) Pathogenicity and further characterization of Calonectria crotalariae causing collar rot of papaya. Phytopathology 63:553–558

    Article  Google Scholar 

  • Noa-Carrazana JC, Silva-Rosales L (2001) First report of a Mexican isolate of Papaya mosaic virus in papaya (Carica papaya) and pumpkin (Cucurbita pepo). Disease notes. Plant Disease 85:558

    Article  Google Scholar 

  • Noorda-Nguyen K, Jia R, Aoki A, Yu Q, Nishijima W, Zhu YJ (2010) Identification of disease tolerance loci to Phytophthora palmivora in Carica papaya using molecular marker approach. Acta Hortic 851:189–196

    CAS  Google Scholar 

  • O’Brien CM, Drew RA (2010) Parker-assisted hybridization and backcrossing between Vasconcellea species and Carica papaya for PRSV-P resistance. Acta Hortic 859:361–368

    Google Scholar 

  • Ochoa J, Fonseca G, Ellis MA (2000) First report of Fusarium wilt of Babaco (Carica × heilbornii var. pentagona) in Ecuador. Plant Disease 84:199

    Article  Google Scholar 

  • Ogata DY, Heu RA (2001) Black spot of papaya disease, Asperisporium caricae (Speg.) Maulbl. State of Hawaii, Department of Agriculture. New pest advisory no. 2001-01

    Google Scholar 

  • Osborn RW, De Samblanx GW, Thevissen K, Goderis I, Torrekens S, Van Leuven F, Attenborough S, Rees SB, Broekaert WF (1995) Isolation and characterization of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. Fed Eur Biochem Soc Lett 368:257–262

    Article  CAS  Google Scholar 

  • Pantoja A, Follett PA, Villanueva-Jiménez JA (2002) Pests of papaya. In: Peña JE, Sharp JL, Wysoki M (eds) Tropical fruit pests and pollinators: biology, economic importance, natural enemies and control. CABI, New York, pp 131–156 (Chapter 5)

    Google Scholar 

  • Parris GK (1941) Diseases of papaya in Hawaii and their control. In: Papaya production in the Hawaiian Islands. Hawaii Experiment Station Bulletin 87, pp 32–44

    Google Scholar 

  • Penninckx IA, Eggermont K, Terras FR, Thomma BP, De Samblanx GW, Buchala A, Métraux JP, Manners JM, Broekaert WF (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309–2323

    PubMed  CAS  Google Scholar 

  • Persley DM, Ploetz RC (2003) Diseases of papaya. In: Ploetz, RC. (ed) Diseases of tropical fruit crops. CABI, Cambridge, pp 373–412 (Chapter 17)

    Google Scholar 

  • Pezet R, Pont V (1990) Ultrastructural observations of pterostilbene fungitoxicity in dormant conidia of Botrytis cinerea Pers. J Phytopathol 129:19–30

    Article  CAS  Google Scholar 

  • Pezet R, Gindro K, Viret O, Spring JL (2004) Glycosylation and oxidative dimerization of resveratrol are respectively associated to sensitivity and resistance of grapevine cultivars to downy mildew. Physiol Mol Plant Pathol 65:297–303

    Article  CAS  Google Scholar 

  • Porter BW, Aizawa KS, Zhu YJ, Christopher DA (2008) Differentially expressed and new non-protein-coding genes from a Carica papaya root transcriptome survey. Plant Sci 174:38–50

    Article  CAS  Google Scholar 

  • Porter BW, Paidi M, Ming R, Alam M, Nishijima WT, Zhu YJ (2009a) Genome-wide analysis of Carica papaya reveals a small NBS resistance gene family. Mol Genet Genomics 281:609–626

    Article  PubMed  CAS  Google Scholar 

  • Porter BW, Zhu YJ, Christopher DA (2009b) Carica papaya genes regulated by Phytophthora palmivora: a model system for genomic studies of compatible Phytophthora-plant interactions. Trop Plant Biol 2:84–97

    Article  CAS  Google Scholar 

  • Pourrahim R, Farzadfar S, Golnaraghi AR, Shahraeen N (2003) First report of Papaya ringspot virus on papaya in Iran. Disease notes. Plant Disease 87:1148

    Article  Google Scholar 

  • Preisig-Müller R, Schwekendiek A, Brehm I, Reif HJ, Kindl H (1999) Characterization of a pine multigene family containing elicitor-responsive stilbene synthase genes. Plant Mol Biol 39:221–229

    Article  PubMed  Google Scholar 

  • Redman RS, Ranson JC, Rodriguez RJ (1999) Conversion of the pathogenic fungus Colletotrichum magna to a nonpathogenic, endophytic mutualist by gene disruption. Mol Plant Microbe Interact 12:969–975

    Article  CAS  Google Scholar 

  • Register JC 3rd, Beachy RN (1988) Resistance to TMV in transgenic plants results from interference with an early event in infection. Virology 166:524–532

    Article  PubMed  CAS  Google Scholar 

  • Rimando AM, Pan Z, Polashock JJ, Dayan FE, Mizuno CS, Snook ME, Liu CJ, Baerson SR (2012) In planta production of the highly potent resveratrol analogue pterostilbene via stilbene synthase and O-methyltransferase co-expression. Plant Biotechnol J 10(3):269–283

    Article  PubMed  CAS  Google Scholar 

  • Roberts PD, Trujillo E (1998) First report of Phytophthora nicotianae causing leaf blight, fruit rot, and root rot of papaya in American Samoa. Disease notes. Plant Disease 82:712

    Article  Google Scholar 

  • Rodriguez-Alvarado G, Fernandez-Pavìa SP, Geraldo-Verdugo JA, Landa-Hernandez L (2001) Pythium aphanidermatum causing collar rot on papaya in Baja California Sur, Mexico. Disease notes. Plant Disease 85:444

    Article  Google Scholar 

  • Rodriguez-Romero AS, Azcón R, Jaizme-Vega MDC (2011) Early mycorrhization of two tropical crops, papaya (Carica papaya L.) and pineapple [Ananas comosus (L.) Merr.], reduces the necessity of P fertilization during the nursery stage. Fruits 66:3–10

    Article  Google Scholar 

  • Samappito S, Page JE, Schmidt J, De-Eknamkul W, Kutchan TM (2003) Aromatic and pyrone polyketides synthesized by a stilbene synthase from Rheum tataricum. Phytochemistry 62:313–323

    Article  PubMed  CAS  Google Scholar 

  • Sanchez M, Dianese JC, Costa CL (1991) Factors affecting the damage by Phoma caricae-papayae on papaya fruits, and detection of resistance to the fungus in Carica gaudotiana. Fitopatol Bras 16:121–129

    Google Scholar 

  • Sanford JC, Johnston SA (1985) The concept of parasite-derived resistance-Deriving resistance genes from the parasite’s own genome. J Theor Biol 113:395–405

    Article  Google Scholar 

  • Schanz S, Schröder G, Schröder J (1992) Stilbene synthase from Scots pine (Pinus sylvestris). Fed Eur Biochem Soc Lett 313:71–74

    Article  CAS  Google Scholar 

  • Scheldeman X, Motoche JPR, Van Damme V, Heyens V, Van Damme P (2003) Potential of highland papayas (Vasconcella spp.) in southern Ecuador. Lyonia 5:73–80

    Google Scholar 

  • Scheldeman X, Willemen L, Coppens d’Eeckenbrugge G, Romeijn-Peeters E, Restrepo MT, Motoche JR, Jiménez D, Lobo M, Medina CI, Reyes C, Rodríguez D, Ocampo JA, Van Damme P, Goetgebeur P (2007) Distribution, diversity and environmental adaptation of highland papayas (Vasconcellea spp.) in tropical and subtropical America. Biodivers Conserv 16:1867–1884

    Article  Google Scholar 

  • Schmidlin L, Poutaraud A, Claudel P, Mestre P, Prado E, Santos-Rosa M, Wiedemann-Merdinoglu S, Karst F, Merdinoglu D, Hugueney P (2008) A stress-inducible resveratrol O-methyltransferase involved in the biosynthesis of pterostilbene in grapevine. Plant Physiol 148:1630–1639

    Article  PubMed  CAS  Google Scholar 

  • Schnee S, Viret O, Gindro K (2008) Role of stilbenes in the resistance of grapevine to powdery mildew. Physiol Mol Plant Pathol 72:128–133

    Article  CAS  Google Scholar 

  • Schöppner A, Kindl H (1984) Purification and properties of a stilbene synthase from induced cell suspension cultures of peanut. J Biol Chem 259:6806–6811

    PubMed  Google Scholar 

  • Sémon M, Wolfe KH (2007) Consequences of genome duplication. Curr Opin Genet Dev 17:505–512

    Article  PubMed  CAS  Google Scholar 

  • Serazetdinova L, Oldach KH, Lörz H (2005) Expression of transgenic stilbene synthases in wheat causes the accumulation of unknown stilbene derivatives with antifungal activity. J Plant Physiol 162:985–1002

    Article  PubMed  CAS  Google Scholar 

  • Shahollari B, Vadassery J, Varma A, Oelmüller R (2007) A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana. Plant J 50:1–13

    Article  PubMed  CAS  Google Scholar 

  • Shen W, Yan P, Gao L, Pan X, Wu J, Zhou P (2010) Helper component-proteinase (HC-Pro) protein of Papaya ringspot virus interacts with papaya calreticulin. Mol Plant Pathol 11:335–346

    Article  PubMed  CAS  Google Scholar 

  • Siar SV, Beligan GA, Drew RA, O’Brien C (2009) Final report: development of PRSV-P resistant papaya genotypes by introgression of genes from wild Carica species. Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • Sobolev VS, Guo BZ, Holbrook CC, Lynch RE (2007) Interrelationship of phytoalexin production and disease resistance in selected peanut genotypes. J Agric Food Chem 55:2195–2200

    Article  PubMed  CAS  Google Scholar 

  • Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buell CR, Helgeson JP, Jiang J (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci USA 100:9128–9133

    Article  PubMed  CAS  Google Scholar 

  • Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonelli C (1994) Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol Biol 24:743–755

    Article  PubMed  CAS  Google Scholar 

  • Stark-Lorenzen P, Nelke B, Hänßler G, Mühlbach HP, Thomzik JE (1997) Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L.). Plant Cell Rep 16:668–673

    Article  CAS  Google Scholar 

  • Stein E, Molitor A, Kogel KH, Waller F (2008) Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol 49:1747–1751

    Article  PubMed  CAS  Google Scholar 

  • Takeguchi A, Hollyer J, Koga W, Hakoda M, Rohrbach K, Bittenbender HC, Buckley B, Friday J B, Bowen R, Manshardt R, Leary J, Teves G, Herring E, Zaleski H, Leonhardt K, Eger B (1999) History of agriculture in Hawaii. State of Hawaii Department of Agriculture. http://hawaii.gov/hdoa/ag-resources/history

  • Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B (2006) Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic interaction. Plant Cell 18:1052–1066

    Article  PubMed  CAS  Google Scholar 

  • Tarnowski TLB, Ploetz RC (2010) First report of Colletotrichum capsici causing postharvest anthracnose on papaya in South Florida. Disease notes. Plant Disease 94:1065

    Article  Google Scholar 

  • Tennant P, Fermin G, Fitch MM, Manshardt RM, Slightom JL, Gonsalves D (2001) Papaya ringspot virus resistance of transgenic Rainbow and SunUp is affected by gene dosage, plant development, and coat protein homology. Eur J Plant Pathol 107:645–653

    Article  CAS  Google Scholar 

  • Tennant P, Ahmad MH, Gonsalves D (2005) Field resistance of coat protein transgenic papaya to Papaya ringspot virus in Jamaica. Plant Disease 89:841–847

    Article  CAS  Google Scholar 

  • Terras FR, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, Torrekens S, Van Leuven F, Vanderleyden J, Cammue BPA, Broekaert WF (1995) Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell 7:573–588

    PubMed  CAS  Google Scholar 

  • Thevissen K, Osborn RW, Acland DP, Broekaert WF (2000a) Specific binding sites for an antifungal plant defensin from Dahlia (Dahlia merckii) on fungal cells are required for antifungal activity. Mol Plant Microbe Interact 13:54–61

    Article  PubMed  CAS  Google Scholar 

  • Thevissen K, Cammue BP, Lemaire K, Winderickx J, Dickson C, Lester RL, Ferket KK, Van Even F, Parret AH, Broekaert WF (2000b) A gene encoding a sphingolipid biosynthesis enzyme determines the sensitivity of Saccharomyces cerevisiae to an antifungal plant defensin from dahlia (Dahlia merckii). Proc Natl Acad Sci USA 97:9531–9536

    Article  PubMed  CAS  Google Scholar 

  • Thevissen K, François IE, Takemoto JY, Ferket KK, Meert EM, Cammue BP (2003) DmAMP1, an antifungal plant defensin from dahlia (Dahlia merckii), interacts with sphingolipids from Saccharomyces cerevisiae. FEMS Microbiol Lett 226:169–173

    Article  PubMed  CAS  Google Scholar 

  • Thomma BP, Eggermont K, Penninckx IA, Mauch-Mani B, Vogelsang R, Cammue BP, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95:15107–15111

    Article  PubMed  CAS  Google Scholar 

  • Thomzik JE, Stenzel K, Stöcker R, Schreier PH, Hain R, Stahl DJ (1997) Synthesis of a grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentum Mill.) conditions resistance against Phytophthora infestans. Physiol Mol Plant Pathol 51:265–278

    Article  CAS  Google Scholar 

  • Tripathi S, Suzuki J, Gonsalves D (2006) Development of genetically engineered resistant papaya for Papaya ringspot virus in a timely manner-A comprehensive and successful approach. In: Ronald P (ed) Plant-pathogen interactions: methods and protocols, vol 354. The Humana Press, Totowa, pp 197–240

    Google Scholar 

  • Tripathi S, Suzuki JY, Ferreira SA, Gonsalves D (2008) Papaya ringspot virus-P: characteristics, pathogenicity, sequence variability and control. Mol Plant Pathol 9:269–280

    Article  PubMed  CAS  Google Scholar 

  • Tropf S, Lanz T, Rensing SA, Schröder J, Schröder G (1994) Evidence that stilbene synthases have developed from chalcone synthases several times in the course of evolution. J Mol Evol 38:610–618

    Article  PubMed  CAS  Google Scholar 

  • Tsay JG, Chen RS, Wang HL, Wang WL, Weng BC (2011) First report of powdery mildew caused by Erysiphe diffusa, Oidium neolycopersici, and Podosphaera xanthii on papaya in Taiwan. Disease notes. Plant Disease 95:1188

    Article  Google Scholar 

  • Turrini A, Sbrana C, Pitto L, Castiglione MR, Giorgetti L, Briganti R, Bracci T, Evangelista M, Nuti MP, Giovannetti M (2004a) The antifungal DM-AMP1 protein from Dahlia merckii expressed in Solanum melongena is released in root exudates and differentially affects pathogenic fungi and mycorrhizal symbiosis. New Phytol 163:393–403

    Article  CAS  Google Scholar 

  • Turrini A, Sbrana C, Nuti MP, Pietrangeli BM, Giovannetti M (2004b) Development of a model system to assess the impact of genetically modified corn and aubergine plants on arbuscular mycorrhizal fungi. Plant Soil 266:69–75

    Article  CAS  Google Scholar 

  • Tuskan A, Difazio S, Jansson S, Bohlmann J, Grigoriev I et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Van der Biezen EA, Jones JD (1998) Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem Sci 23:454–456

    Article  PubMed  Google Scholar 

  • van der Vossen E, Sikkema A, Hekkert BL, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allefs S (2003) An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J 36:867–882

    Article  PubMed  CAS  Google Scholar 

  • Vega FE, Posada F, Aime MC, Pava-Ripoll M, Infante F, Rehner SA (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82

    Article  Google Scholar 

  • Ventura JA, Costa H, da Silva Tatagiba J (2004) Papaya diseases and integrated control. In: Naqvi SAMH (ed) Diseases of fruits and vegetables, vol II. Kluwer Academic, Dordrecht, pp 201–268

    Google Scholar 

  • Verma LR, Sharma RC (1999) Fungal diseases of papaya and their management. In: Verma LR, Sharma RC (eds) Diseases of horticultural crops, fruits. Indus Publishing Company, New Delhi, pp 479–492 (Chapter 21)

    Google Scholar 

  • Verma S, Varma A, Rexer KH, Hassel A, Kost G, Sarbhoy A, Bisen P, Bütehorn B, Franken P (1998) Piriformospora indica, gen. et sp. Nov., a new root-colonizing fungus. Mycologia 90:896–903

    Article  CAS  Google Scholar 

  • Vierheilig H, Alt M, Neuhaus JM, Boller T, Wiemken A (1993) Colonization of transgenic Nicotiana sylvestris plants, expressing different forms of Nicotiana tabacum chitinase, by the root pathogen Rhizoctonia solani and by mycorrhizal symbiont Glomus mosseae. Mol Plant Microbe Interact 6:261–264

    Article  CAS  Google Scholar 

  • Vierheilig H, Alt M, Lange J, Gut-Rella M, Wiemken A, Boller T (1995) Colonization of transgenic tobacco constitutively expressing pathogenesis-related proteins by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Appl Environ Microbiol 61:3031–3034

    PubMed  CAS  Google Scholar 

  • Vinet M, Dave SK, Specht CA, Brameld KA, Xu B, Hayward R, Fidock DA (1999) The chitinase PfCHT1 from the human malaria parasite Plasmodium falciparum lacks proenzyme and chitin-binding domains and displays unique substrate preferences. Proc Natl Acad Sci USA 96:14061–14066

    Article  Google Scholar 

  • Vleeshouwers VG, Raffaele S, Vossen JH, Champouret N, Oliva R, Segretin ME, Rietman H, Cano LM, Lokossou A, Kessel G, Pel MA, Kamoun S (2011) Understanding and exploiting late blight resistance in the age of effectors. Annu Rev Phytopathol 49:507–531

    Article  PubMed  CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386–13391

    Article  PubMed  CAS  Google Scholar 

  • Walton JD, Avis TJ, Alfano JR, Gijzen M, Spanu P, Hammond-Kosack K, Sánchez F (2009) Effectors, effectors et encore des effectors: the XIV international congress on molecular-plant microbe interactions, Quebec. Mol Plant Microbe Interact 22:1479–1483

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Nowak G, Culley D, Hadwiger LA, Fristensky B (1999) Constitutive expression of pea defense gene DRR206 confers resistance to blackleg (Leptosphaeria maculans) disease in transgenic canola (Brassica napus). Mol Plant Microbe Interact 12:410–418

    Article  CAS  Google Scholar 

  • Wang J, Chen Z, Du J, Sun Y, Liang A (2005) Novel insect resistance in Brassica napus developed by transformation of chitinase and scorpion toxin genes. Plant Cell Rep 24:549–555

    Article  PubMed  CAS  Google Scholar 

  • Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG, Gilroy EM, Armstrong MR, Grouffaud S, van West P, Chapman S, Hein I, Toth IK, Pritchard L, Birch PR (2007) A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450:115–118

    Article  PubMed  CAS  Google Scholar 

  • Wilmes M, Cammue BP, Sahl HG, Thevissen K (2011) Antibiotic activities of host defense peptides: more to it than lipid bilayer perturbation. Nat Prod Rep 28:1350–1358

    Article  PubMed  CAS  Google Scholar 

  • Yaeno T, Li H, Chaparro-Garcia A, Schornack S, Koshiba S, Watanabe S, Kigawa T, Kamoun S, Shirasu K (2011) Phosphatidylinositol monophosphate-binding interface in the oomycete RXLR effector AVR3a is required for its stability in host cells to modulate plant immunity. Proc Natl Acad Sci USA 108:14682–14687

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki Y, Suh DY, Sitthithaworn W, Ishiguro K, Kobayashi Y, Shibuya M, Ebizuka Y, Sankawa U (2001) Diverse chalcone synthase superfamily enzymes from the most primitive vascular plant, Psilotum nudum. Planta 214:75–84

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Zhang X, Yue JX, Tian D, Chen JQ (2008) Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Genet Genomics 280:187–198

    Article  PubMed  CAS  Google Scholar 

  • Yeh S-D, Gonsalves D, Wang H-L, Namba R, Chiu R-J (1988) Control of papaya ringspot virus by cross protection. Plant Disease 72:375–380

    Article  Google Scholar 

  • Yu CKY, Springob K, Schmidt J, Nicholson RL, Chu IK, Yip WK, Lo C (2005) A stilbene synthase gene (SbSTS1) is involved in host and nonhost defense responses in sorghum. Plant Physiol 138:393–401

    Article  PubMed  CAS  Google Scholar 

  • Zentmyer GA (1988) Origin and distribution of four species of Phytophthora. Trans Br Mycol Soc 91:367–378

    Article  Google Scholar 

  • Zentmyer GA, Mitchell DJ (1985/1986) Phytophthora diseases of fruit trees in the tropics. Rev Trop Plant Pathol 2:287–309

    Google Scholar 

  • Zeya HI, Spitznagel JK (1963) Antibacterial and enzymatic basic proteins from leukocyte lysosomes: Separation and identification. Science 3595:1085–1087

    Article  Google Scholar 

  • Zhu S (2007) Evidence for myxobacterial origin of eukaryotic defensins. Immunogenetics 59:949–954

    Article  PubMed  CAS  Google Scholar 

  • Zhu YJ, Agbayani R, Jackson MC, Tang CS, Moore PH (2004) Expression of the grapevine stilbene synthase gene VST1 in papaya provides increased resistance against diseases caused by Phytophthora palmivora. Planta 220:241–250

    Article  PubMed  CAS  Google Scholar 

  • Zhu YJ, Agbayani R, Moore PH (2007) Ectopic expression of Dahlia merckii defensin DmAMP1 improves papaya resistance to Phytophthora palmivora by reducing pathogen vigor. Planta 226:87–97

    Article  PubMed  CAS  Google Scholar 

  • Ziebell H, Carr JP (2010) Cross-protection: a century of mystery. Adv Virus Res 76:211–264 (Chapter 6)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun J. Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Porter, B.W., Christopher, D.A., Zhu, Y.J. (2014). Genomics of Papaya Disease Resistance. In: Ming, R., Moore, P. (eds) Genetics and Genomics of Papaya. Plant Genetics and Genomics: Crops and Models, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8087-7_15

Download citation

Publish with us

Policies and ethics