Advertisement

Autosomal Monoallelic Expression

Chapter

Abstract

In mammals, relative expression of the maternal and paternal alleles of many genes is controlled by three types of epigenetic phenomena: X chromosome inactivation, imprinting, and mitotically stable autosomal monoallelic expression (MAE). MAE imposes a mitotically stable allelic imbalance in the expression of a significant fraction of human autosomal genes. Cells in the same individual make independent choices of active and inactive alleles, leading to remarkable epigenetic diversity between otherwise identical clonal lineages. Genes subject to MAE play critical roles in a variety of major disorders, including schizophrenia, Alzheimer’s disease, and cancer. In this chapter, we review the current state of understanding of MAE biology, and assess various implications of MAE for analysis of genotype–phenotype relationship.

Keywords

Clonal Lineage Allelic Imbalance Autosomal Gene Monoallelic Expression Active Allele 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Anwesha Nag for figure design, and Sebastien Vigneau and Gimelbrant lab members for stimulating discussions.

References

  1. Abramowitz LK, Bartolomei MS (2012) Genomic imprinting: recognition and marking of imprinted loci. Curr Opin Genet Dev 22:72–78. doi: 10.1016/j.gde.2011.12.001 PubMedCrossRefGoogle Scholar
  2. Antequera F, Boyes J, Bird A (1990) High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 62:503–514PubMedCrossRefGoogle Scholar
  3. Augui S, Nora EP, Heard E (2011) Regulation of X-chromosome inactivation by the X-inactivation centre. Nat Rev Genet 12:429–442. doi: 10.1038/nrg2987 PubMedCrossRefGoogle Scholar
  4. Berger AH, Pandolfi PP (2011) Haplo-insufficiency: a driving force in cancer. J Pathol 223:137–146. doi: 10.1002/path.2800 PubMedCrossRefGoogle Scholar
  5. Berletch JB, Yang F, Disteche CM (2010) Escape from X inactivation in mice and humans. Genome Biol 11:213. doi: 10.1186/gb-2010-11-6-213, gb-2010-11-6-213 [pii]PubMedCrossRefGoogle Scholar
  6. Bix M, Locksley RM (1998) Independent and epigenetic regulation of the interleukin-4 alleles in CD4+ T cells. Science 281:1352–1354PubMedCrossRefGoogle Scholar
  7. Bock C, Halachev K, Buch J, Lengauer T (2009) EpiGRAPH: user-friendly software for statistical analysis and prediction of (epi)genomic data. Genome Biol 10:R14PubMedCrossRefGoogle Scholar
  8. Bolduc V, Chagnon P, Provost S, Dube MP, Belisle C, Gingras M, Mollica L, Busque L (2008) No evidence that skewing of X chromosome inactivation patterns is transmitted to offspring in humans. J Clin Invest 118:333–341. doi: 10.1172/JCI33166 PubMedCrossRefGoogle Scholar
  9. Carrel L, Willard HF (2005) X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434:400–404PubMedCrossRefGoogle Scholar
  10. Chadwick LH, Willard HF (2005) Genetic and parent-of-origin influences on X chromosome choice in Xce heterozygous mice. Mamm Genome 16:691–699. doi: 10.1007/s00335-005-0059-2 PubMedCrossRefGoogle Scholar
  11. Chadwick LH, Pertz LM, Broman KW, Bartolomei MS, Willard HF (2006) Genetic control of X chromosome inactivation in mice: definition of the Xce candidate interval. Genetics 173:2103–2110. doi: 10.1534/genetics.105.054882 PubMedCrossRefGoogle Scholar
  12. Chess A, Simon I, Cedar H, Axel R (1994) Allelic inactivation regulates olfactory receptor gene expression. Cell 78:823–834PubMedCrossRefGoogle Scholar
  13. Cowles CR, Hirschhorn JN, Altshuler D, Lander ES (2002) Detection of regulatory variation in mouse genes. Nat Genet 32:432–437PubMedCrossRefGoogle Scholar
  14. Dixon AL, Liang L, Moffatt MF, Chen W, Heath S, Wong KC, Taylor J, Burnett E, Gut I, Farrall M, Lathrop GM, Abecasis GR, Cookson WO (2007) A genome-wide association study of global gene expression. Nat Genet 39:1202–1207. doi: 10.1038/ng2109 PubMedCrossRefGoogle Scholar
  15. Farago M, Rosenbluh C, Tevlin M, Fraenkel S, Schlesinger S, Masika H, Gouzman M, Teng G, Schatz D, Rais Y, Hanna JH, Mildner A, Jung S, Mostoslavsky G, Cedar H, Bergman Y (2012) Clonal allelic predetermination of immunoglobulin-kappa rearrangement. Nature 490:561. doi: 10.1038/nature11496, nature11496 [pii]PubMedCrossRefGoogle Scholar
  16. Gilad Y, Rifkin SA, Pritchard JK (2008) Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet 24:408–415. doi: 10.1016/j.tig.2008.06.001, S0168-9525(08)00177-7 [pii]PubMedCrossRefGoogle Scholar
  17. Gimelbrant AA, Chess A (2006) An epigenetic state associated with areas of gene duplication. Genome Res 16:723–729PubMedCrossRefGoogle Scholar
  18. Gimelbrant AA, Ensminger AW, Qi P, Zucker J, Chess A (2005) Monoallelic expression and asynchronous replication of p120 catenin in mouse and human cells. J Biol Chem 280:1354–1359PubMedCrossRefGoogle Scholar
  19. Gimelbrant A, Hutchinson JN, Thompson BR, Chess A (2007) Widespread monoallelic expression on human autosomes. Science 318:1136–1140PubMedCrossRefGoogle Scholar
  20. Glaser RL, Ramsay JP, Morison IM (2006) The imprinted gene and parent-of-origin effect database now includes parental origin of de novo mutations. Nucleic Acids Res 34:D29–D31. doi: 10.1093/nar/gkj101, 34/suppl_1/D29 [pii]PubMedCrossRefGoogle Scholar
  21. Gordon GJ, Rockwell GN, Jensen RV, Rheinwald JG, Glickman JN, Aronson JP, Pottorf BJ, Nitz MD, Richards WG, Sugarbaker DJ, Bueno R (2005) Identification of novel candidate oncogenes and tumor suppressors in malignant pleural mesothelioma using large-scale transcriptional profiling. Am J Pathol 166:1827–1840. doi: 10.1016/S0002-9440(10)62492-3 PubMedCrossRefGoogle Scholar
  22. Hattori D, Millard SS, Wojtowicz WM, Zipursky SL (2008) Dscam-mediated cell recognition regulates neural circuit formation. Annu Rev Cell Dev Biol 24:597–620. doi: 10.1146/annurev.cellbio.24.110707.175250 PubMedCrossRefGoogle Scholar
  23. Heard E, Clerc P, Avner P (1997) X-chromosome inactivation in mammals. Annu Rev Genet 31:571–610PubMedCrossRefGoogle Scholar
  24. Hollander GA, Zuklys S, Morel C, Mizoguchi E, Mobisson K, Simpson S, Terhorst C, Wishart W, Golan DE, Bhan AK, Burakoff SJ (1998) Monoallelic expression of the interleukin-2 locus. Science 279:2118–2121PubMedCrossRefGoogle Scholar
  25. Hu B, Castillo E, Harewood L, Ostano P, Reymond A, Dummer R, Raffoul W, Hoetzenecker W, Hofbauer GF, Dotto GP (2012) Multifocal epithelial tumors and field cancerization from loss of mesenchymal CSL signaling. Cell 149:1207–1220. doi: 10.1016/j.cell.2012.03.048 PubMedCrossRefGoogle Scholar
  26. Hu-Li J, Pannetier C, Guo L, Lohning M, Gu H, Watson C, Assenmacher M, Radbruch A, Paul WE (2001) Regulation of expression of IL-4 alleles: analysis using a chimeric GFP/IL-4 gene. Immunity 14:1–11PubMedCrossRefGoogle Scholar
  27. Hull J, Campino S, Rowlands K, Chan MS, Copley RR, Taylor MS, Rockett K, Elvidge G, Keating B, Knight J, Kwiatkowski D (2007) Identification of common genetic variation that modulates alternative splicing. PLoS Genet 3:e99. doi: 10.1371/journal.pgen.0030099 PubMedCrossRefGoogle Scholar
  28. Jeffries AR, Perfect LW, Ledderose J, Schalkwyk LC, Bray NJ, Mill J, Price J (2012) Stochastic choice of allelic expression in human neural stem cells. Stem Cells 30:1938–1947. doi: 10.1002/stem.1155 PubMedCrossRefGoogle Scholar
  29. Jeon Y, Sarma K, Lee JT (2012) New and Xisting regulatory mechanisms of X chromosome inactivation. Curr Opin Genet Dev 22:62–71. doi: 10.1016/j.gde.2012.02.007 PubMedCrossRefGoogle Scholar
  30. Jung D, Giallourakis C, Mostoslavsky R, Alt FW (2006) Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev Immunol 24:541–570PubMedCrossRefGoogle Scholar
  31. Kelsey G, Bartolomei MS (2012) Imprinted genes … and the number is? PLoS Genet 8:e1002601. doi: 10.1371/journal.pgen.1002601 PubMedCrossRefGoogle Scholar
  32. Kirchgessner CU, Warren ST, Willard HF (1995) X inactivation of the FMR1 fragile X mental retardation gene. J Med Genet 32:925–929PubMedCrossRefGoogle Scholar
  33. Ko J, Lee YH, Hwang SY, Lee YS, Shin SM, Hwang JH, Kim J, Kim YW, Jang SW, Ryoo ZY, Kim IK, Namkoong SE, Kim JW (2003) Identification and differential expression of novel human cervical cancer oncogene HCCR-2 in human cancers and its involvement in p53 stabilization. Oncogene 22:4679–4689. doi: 10.1038/sj.onc.1206624 PubMedCrossRefGoogle Scholar
  34. Kreso A, O’Brien CA, van Galen P, Gan O, Notta F, Brown AM, Ng K, Ma J, Wienholds E, Dunant C, Pollett A, Gallinger S, McPherson J, Mullighan CG, Shibata D, Dick JE (2012) Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339:543. doi: 10.1126/science.1227670, science.1227670 [pii]PubMedCrossRefGoogle Scholar
  35. Lamb AN, Rosenfeld JA, Neill NJ, Talkowski ME, Blumenthal I, Girirajan S, Keelean-Fuller D, Fan Z, Pouncey J, Stevens C, Mackay-Loder L, Terespolsky D, Bader PI, Rosenbaum K, Vallee SE, Moeschler JB, Ladda R, Sell S, Martin J, Ryan S, Jones MC, Moran R, Shealy A, Madan-Khetarpal S, McConnell J, Surti U, Delahaye A, Heron-Longe B, Pipiras E, Benzacken B, Passemard S, Verloes A, Isidor B, Le Caignec C, Glew GM, Opheim KE, Descartes M, Eichler EE, Morton CC, Gusella JF, Schultz RA, Ballif BC, Shaffer LG (2012) Haploinsufficiency of SOX5 at 12p12.1 is associated with developmental delays with prominent language delay, behavior problems, and mild dysmorphic features. Hum Mutat 33:728–740. doi: 10.1002/humu.22037 PubMedCrossRefGoogle Scholar
  36. Lee SH, Harold D, Nyholt DR, Goddard ME, Zondervan KT, Williams J, Montgomery GW, Wray NR, Visscher PM (2013) Estimation and partitioning of polygenic variation captured by common SNPs for Alzheimer’s disease, multiple sclerosis and endometriosis. Hum Mol Genet 22:832–841. doi: 10.1093/hmg/dds491 PubMedCrossRefGoogle Scholar
  37. Li SM, Valo Z, Wang J, Gao H, Bowers CW, Singer-Sam J (2012) Transcriptome-wide survey of mouse CNS-derived cells reveals monoallelic expression within novel gene families. PLoS One 7:e31751. doi: 10.1371/journal.pone.0031751, PONE-D-11-22867 [pii]PubMedCrossRefGoogle Scholar
  38. Li Q, Seo JH, Stranger B, McKenna A, Pe’er I, Laframboise T, Brown M, Tyekucheva S, Freedman ML (2013) Integrative eQTL-based analyses reveal the biology of breast cancer risk loci. Cell 152:633–641. doi: 10.1016/j.cell.2012.12.034 PubMedCrossRefGoogle Scholar
  39. Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373PubMedCrossRefGoogle Scholar
  40. Magklara A, Yen A, Colquitt BM, Clowney EJ, Allen W, Markenscoff-Papadimitriou E, Evans ZA, Kheradpour P, Mountoufaris G, Carey C, Barnea G, Kellis M, Lomvardas S (2011) An epigenetic signature for monoallelic olfactory receptor expression. Cell 145:555–570. doi: 10.1016/j.cell.2011.03.040, S0092-8674(11)00374-6 [pii]PubMedCrossRefGoogle Scholar
  41. Meng X, Lu X, Morris CA, Keating MT (1998) A novel human gene FKBP6 is deleted in Williams syndrome. Genomics 52:130–137. doi: 10.1006/geno.1998.5412 PubMedCrossRefGoogle Scholar
  42. Miyanari Y, Torres-Padilla ME (2012) Control of ground-state pluripotency by allelic regulation of Nanog. Nature 483:470–473. doi: 10.1038/nature10807 PubMedCrossRefGoogle Scholar
  43. Necsulea A, Semon M, Duret L, Hurst LD (2009) Monoallelic expression and tissue specificity are associated with high crossover rates. Trends Genet 25:519–522PubMedCrossRefGoogle Scholar
  44. Pastinen T, Sladek R, Gurd S, Sammak A, Ge B, Lepage P, Lavergne K, Villeneuve A, Gaudin T, Brandstrom H, Beck A, Verner A, Kingsley J, Harmsen E, Labuda D, Morgan K, Vohl MC, Naumova AK, Sinnett D, Hudson TJ (2004) A survey of genetic and epigenetic variation affecting human gene expression. Physiol Genomics 16:184–193PubMedGoogle Scholar
  45. Pereira JP, Girard R, Chaby R, Cumano A, Vieira P (2003) Monoallelic expression of the murine gene encoding Toll-like receptor 4. Nat Immunol 4:464–470PubMedCrossRefGoogle Scholar
  46. Pernis B, Chiappino G, Kelus AS, Gell PG (1965) Cellular localization of immunoglobulins with different allotypic specificities in rabbit lymphoid tissues. J Exp Med 122:853–876PubMedCrossRefGoogle Scholar
  47. Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, Veyrieras JB, Stephens M, Gilad Y, Pritchard JK (2010) Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464:768–772. doi: 10.1038/nature08872 PubMedCrossRefGoogle Scholar
  48. Plagnol V, Uz E, Wallace C, Stevens H, Clayton D, Ozcelik T, Todd JA (2008) Extreme clonality in lymphoblastoid cell lines with implications for allele specific expression analyses. PLoS One 3:e2966. doi: 10.1371/journal.pone.0002966 PubMedCrossRefGoogle Scholar
  49. Plenge RM, Percec I, Nadeau JH, Willard HF (2000) Expression-based assay of an X-linked gene to examine effects of the X-controlling element (Xce) locus. Mamm Genome 11:405–408PubMedCrossRefGoogle Scholar
  50. Plenge RM, Stevenson RA, Lubs HA, Schwartz CE, Willard HF (2002) Skewed X-chromosome inactivation is a common feature of X-linked mental retardation disorders. Am J Hum Genet 71:168–173. doi: 10.1086/341123 PubMedCrossRefGoogle Scholar
  51. Ratushny V, Gober MD, Hick R, Ridky TW, Seykora JT (2012) From keratinocyte to cancer: the pathogenesis and modeling of cutaneous squamous cell carcinoma. J Clin Invest 122:464–472. doi: 10.1172/JCI57415 PubMedCrossRefGoogle Scholar
  52. Saferali A, Grundberg E, Berlivet S, Beauchemin H, Morcos L, Polychronakos C, Pastinen T, Graham J, McNeney B, Naumova AK (2010) Cell culture-induced aberrant methylation of the imprinted IG DMR in human lymphoblastoid cell lines. Epigenetics 5:50–60PubMedCrossRefGoogle Scholar
  53. Santarius T, Shipley J, Brewer D, Stratton MR, Cooper CS (2010) A census of amplified and overexpressed human cancer genes. Nat Rev Cancer 10:59–64. doi: 10.1038/nrc2771 PubMedCrossRefGoogle Scholar
  54. Schlesinger S, Selig S, Bergman Y, Cedar H (2009) Allelic inactivation of rDNA loci. Genes Dev 23:2437–2447PubMedCrossRefGoogle Scholar
  55. Serizawa S, Ishii T, Nakatani H, Tsuboi A, Nagawa F, Asano M, Sudo K, Sakagami J, Sakano H, Ijiri T, Matsuda Y, Suzuki M, Yamamori T, Iwakura Y (2000) Mutually exclusive expression of odorant receptor transgenes. Nat Neurosci 3:687–693PubMedCrossRefGoogle Scholar
  56. Slaughter DP, Southwick HW, Smejkal W (1953) Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 6:963–968PubMedCrossRefGoogle Scholar
  57. Takizawa T, Gudla PR, Guo L, Lockett S, Misteli T (2008) Allele-specific nuclear positioning of the monoallelically expressed astrocyte marker GFAP. Genes Dev 22:489–498PubMedCrossRefGoogle Scholar
  58. Tonon L, Bergamaschi G, Dellavecchia C, Rosti V, Lucotti C, Malabarba L, Novella A, Vercesi E, Frassoni F, Cazzola M (1998) Unbalanced X-chromosome inactivation in haemopoietic cells from normal women. Br J Haematol 102:996–1003PubMedCrossRefGoogle Scholar
  59. Wang X, Soloway PD, Clark AG (2010) Paternally biased X inactivation in mouse neonatal brain. Genome Biol 11:R79. doi: 10.1186/gb-2010-11-7-r79 PubMedCrossRefGoogle Scholar
  60. Yan H, Yuan W, Velculescu VE, Vogelstein B, Kinzler KW (2002) Allelic variation in human gene expression. Science 297:1143PubMedCrossRefGoogle Scholar
  61. Yang F, Babak T, Shendure J, Disteche CM (2010) Global survey of escape from X inactivation by RNA-sequencing in mouse. Genome Res 20:614–622. doi: 10.1101/gr.103200.109, gr.103200.109 [pii]PubMedCrossRefGoogle Scholar
  62. Zhang Y, Rohde C, Reinhardt R, Voelcker-Rehage C, Jeltsch A (2009) Non-imprinted allele-specific DNA methylation on human autosomes. Genome Biol 10:R138. doi: 10.1186/gb-2009-10-12-r138 PubMedCrossRefGoogle Scholar
  63. Zuo T, Wang L, Morrison C, Chang X, Zhang H, Li W, Liu Y, Wang Y, Liu X, Chan MW, Liu JQ, Love R, Liu CG, Godfrey V, Shen R, Huang TH, Yang T, Park BK, Wang CY, Zheng P, Liu Y (2007) FOXP3 is an X-linked breast cancer suppressor gene and an important repressor of the HER-2/ErbB2 oncogene. Cell 129:1275–1286PubMedCrossRefGoogle Scholar
  64. Zwemer LM, Zak A, Thompson BR, Kirby A, Daly MJ, Chess A, Gimelbrant AA (2012) Autosomal monoallelic expression in the mouse. Genome Biol 13:R10. doi: 10.1186/gb-2012-13-2-r10, gb-2012-13-2-r10 [pii]PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Cancer BiologyDana-Farber Cancer InstituteBostonUSA
  2. 2.Department of GeneticsHarvard Medical SchoolBostonUSA
  3. 3.Department of Cancer BiologyDana-Farber Cancer InstituteBostonUSA

Personalised recommendations