Skip to main content

Pediatric Diseases and Stem Cells: Recent Advances and Challenges

  • Chapter
  • First Online:
Stem Cells: Current Challenges and New Directions

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1719 Accesses

Abstract

Stem cell treatments hold promise in the pediatric field. Children have increased regenerative potential when compared with adults. In addition, the number of stem cells needed for therapeutic efficacy is much lower in children based on their lower body weights. Therefore, sufficient number of cells may readily be collected from donors and/or may be expanded ex vivo in lesser number of passages. All of these factors are expected to enable more efficient, less expensive, and timely application of stem cells in clinical practice. In this review, we will cover the areas potentially suitable for stem cell therapies in children including inborn errors of metabolism, transplantation, and autoimmune/inflammatory conditions. Hematopoetic and mesenchymal stromal/stem cells will be emphasized as the most available stem cell sources for clinical application at present. In addition, the invaluable role of doing research with the use of induced pluripotent stem cell lines obtained from the cells/tissues of inherited rare diseases is highlighted and future application areas are included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALD:

Adrenoleukodystrophy

BMT:

Bone marrow transplantation

BPD:

Bronchopulmonary dysplasia

cGMP:

Current good manufacturing practices

CD:

Crohn’s disease

EBMT:

European Group for blood and marrow transplantation

ESC:

Embryonic stem cell

GLD:

Globoid cell leukodystrophy

GCSF:

Granulocyte colony stimulating factor

GVHD:

Graft versus host disease

HSCs:

Hematopoetic stem cells

HSCT:

Hematopoetic stem cell transplantation

HIV:

Human immunodeficiency virus

i.v.:

Intravenous

iPSC:

Induced pluripotent stem cell

MIOP:

Malignant infantile osteopetrosis

MLD:

Metachromatic leukodystrophy

MPS:

Mucopolysaccharidosis

MSC:

Mesenchymal stem cell/mesenchymal stromal cell

NEC:

Necrotizing enterocolitis

OI:

Osteogenesis imperfecta

RDEB:

Recessive dystrophic epidermolysis bullosa

SDF-1 alpha:

Stromal-derived factor 1 alpha

UCB:

Umbilical cord blood

UCBT:

Umbilical cord blood transplantation

References

  1. Krivit W, Peters C, Shapiro EG (1999) Bone Marrow transplantation as effective treatment of central nervous system disease in globoid cell leukodystrophy, metachromatic leukodystrophy, adrenoleukodystrophy, mannosidosis, fucosidosis, aspartylglucosaminuria, Hurler, Maroteaux-Lamy and Sly syndromes, and Gaucher disease type III. Curr Opin Neurol 12:167–176

    CAS  PubMed  Google Scholar 

  2. Krivit W (2004) Allogeneic stem cell transplantation for treatment of lysosomal and peroxisomal metaboloic diseases. Springer Semin Immunopathol 26:119–132

    PubMed  Google Scholar 

  3. Peters C, Steward CG, National Marrow Donor Program, International Bone Marrow Transplant Registry Working Party on Inborn Errors (2003) Hematopoietic cell transplantation for inherited metabolic diseases: an overview of outcomes and practice guidelines. Bone Marrow Transplant 31(4):229–239

    CAS  PubMed  Google Scholar 

  4. Caillat-Zucman S, Le Deist F, Haddad E, Gannagé M, Dal Cortivo L, Jabado N, Hacein-Bey-Abina S, Blanche S, Casanova JL, Fischer A, Cavazzana-Calvo M (2004) Impact of HLA matching on outcome after hematopoietic stem cell transplantation study in children with inherited diseases: a single center comparative analysis of genoidentical, haploidentical or unrelated donors. Bone Marrow Transplant 33(11):1089–1095

    CAS  PubMed  Google Scholar 

  5. Prasad VK, Kurtzberg J (2009) Cord blood and bone marrow transplantation in inherited metabolic diseases: scientific basis, current status and future directions. Br J Haematol 148(3):356–372

    PubMed  Google Scholar 

  6. Boelens J, Prasad VK, Tolar J, Wynn RF, Peters C (2010) Current international perspectives on hematopoietic stem cell transplantation for Inherited metabolic disorders. Pediatr Clin North Am 57(1):123–145

    PubMed  Google Scholar 

  7. Prasad VK, Kurtzberg J (2010) Transplant outcomes in mucopolysaccharidoses. Semin Hematol 47(1):59–69

    CAS  PubMed  Google Scholar 

  8. Orchard P, Tolar J (2010) Transplant outcomes in leukodystrophies. Semin Hematol 47(1):70–78

    CAS  PubMed  Google Scholar 

  9. Wynn R (2011) Stem cell transplantation in inherited metabolic disorders. Hematology Am Soc Hematol Educ Program 2011:285–291

    PubMed  Google Scholar 

  10. Ljungman P, Urbano-Ispizua A, Cavazzana-Calvo M, Demirer T, Dini G, Einsele H, Gratwohl A, Madrigal A, Niederwieser D, Passweg J, Rocha V, Saccardi R, Schouten H, Schmitz N, Socie G, Sureda A, Apperley J (2006) Allogeneic and autologous transplantation for haematological diseases, solid tumours and immune disorders: definitions and current practice in Europe. Bone Marrow Transplant 37(5):439–449

    CAS  PubMed  Google Scholar 

  11. Boelens JJ, Rocha V, Aldenhoven M, Wynn R, O’Meara A, Michel G, Ionescu I, Parikh S, Prasad VK, Szabolcs P, Escolar M, Gluckman E, Cavazzana-Calvo M, Kurtzberg J, EUROCORD, Inborn error Working Party of EBMT and Duke University (2009) Risk factor analysis of outcomes after unrelated cord blood transplantation in patients with hurler syndrome. Biol Blood Marrow Transplant 15(5):618–625

    PubMed  Google Scholar 

  12. Boelens JJ, Wynn RF, O'Meara A, Veys P, Bertrand Y, Souillet G, Wraith JE, Fischer A, Cavazzana-Calvo M, Sykora KW, Sedlacek P, Rovelli A, Uiterwaal CS, Wulffraat N (2007) Outcomes of hematopoietic stem cell transplantation for Hurler’s syndrome in Europe: a risk factor analysis for graft failure. Bone Marrow Transplant 40(3):225–233

    CAS  PubMed  Google Scholar 

  13. Sauer M, Meissner B, Fuchs D, Gruhn B, Kabisch H, Erttmann R, Suttorp M, Beilken A, Luecke T, Welte K, Grigull L, Sykora KW (2009) Allogeneic blood SCT for children with Hurler’s syndrome:resultsfrom the German multicenter approach MPS-HCT 2005. Bone Marrow Transplant 43(5):375–381

    CAS  PubMed  Google Scholar 

  14. Staba SL, Escolar ML, Poe M, Kim Y, Martin PL, Szabolcs P, Allison-Thacker J, Wood S, Wenger DA, Rubinstein P, Hopwood JJ, Krivit W, Kurtzberg J (2004) Cord-blood transplants from unrelated donors in patients with Hurler’s syndrome. N Engl J Med 350(19):1960–1969

    CAS  PubMed  Google Scholar 

  15. Loes DJ, Hite S, Moser H, Stillman AE, Shapiro E, Lockman L, Latchaw RE (1994) Adrenoleukodystrophy: a scoring method for brain MR observations. AJNR Am J Neuroradiol 15(9):1761–1766

    CAS  PubMed  Google Scholar 

  16. Peters C, Charnas LR, Tan Y, Ziegler RS, Shapiro EG, DeFor T, Grewal SS, Orchard PJ, Abel SL, Goldman AI, Ramsay NK, Dusenbery KE, Loes DJ, Lockman LA, Kato S, Aubourg PR, Moser HW, Krivit W (2004) Cerebral X-linked adrenoleukodystrophy: the international hematopoietic cell transplantation experience from 1982 to 1999. Blood 104(3):881–888. Erratum in: Blood 2004;104(13):3857.

    Google Scholar 

  17. Ratko TA, Belinson SE, Brown HM, Noorani HZ, Chopra RD, Marbella A, Samson DJ, Bonnell CJ, Ziegler KM, Aronson N (2012) Hematopoietic stem-cell transplantation in the pediatric population—internet. Agency for Healthcare Research and Quality (US), Rockville, MD, 2012 Report 12-EHC018-EF.

    Google Scholar 

  18. Domen J, Gandy K, Dalal J (2012) Emerging uses for pediatric hematopoietic stem cells. Pediatr Res 71(4 Pt 2):411–417

    CAS  PubMed  Google Scholar 

  19. Good RA, Meuwissen HJ, Hong R, Gatti RA (1969) Bone marrow transplantation: correction of immune deficit in lymphopenic immunologic deficiency and correction of an immunologically induced pancytopenia. Trans Assoc Am Phys 82:278–285

    CAS  PubMed  Google Scholar 

  20. Gatti RA, Meuwissen HJ, Allen HD, Hong R, Good RA (1968) Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 2(7583):1366–1369

    CAS  PubMed  Google Scholar 

  21. Meuwissen HJ, Gatti RA, Terasaki PI, Hong R, Good RA (1969) Treatment of lymphopenic hypogammaglobulinemia and bone-marrow aplasia by transplantation of allogeneic marrow. Crucial role of histocompatiility matching. N Engl J Med 281(13):691–697

    CAS  PubMed  Google Scholar 

  22. Ammann AJ, Meuwissen HJ, Good RA, Hong R (1970) Successful bone marrow transplantation in a patient with humoral and cellular immunity deficiency. Clin Exp Immunol 7(3):343–353

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Baldomero H, Passweg J (2011) Annual report of EBMT: 1990–2010: an overview from the EBMT Transplant Activity Survey. EBMT Activity Survey Data Office, Basel, Switzerland www.ebmt.org

  24. Tomita S, Li RK, Weisel RD, Mickle DA, Kim EJ, Sakai T, Jia ZQ (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100(Suppl 19):II247–II256

    CAS  PubMed  Google Scholar 

  25. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410(6829):701–705

    CAS  PubMed  Google Scholar 

  26. Harris DT (2008) Cord blood stem cells: a review of potential neurological applications. Stem Cell Rev 4(4):269–274

    PubMed  Google Scholar 

  27. Martin I, Baldomero H, Tyndall A, Niederwieser D, Gratwohl A (2010) A survey on cellular and engineered tissue therapies in europe in 2008. Tissue Eng Part A 16(8):2419–2427

    PubMed  Google Scholar 

  28. Borlongan CV (2011) Bone marrow stem cell mobilization in stroke: a “bonehead” may be good after all! Leukemia 25(11):1674–1686

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Borlongan CV, Glover LE, Tajiri N, Kaneko Y, Freeman TB (2011) The great migration of bone marrow-derived stem cells toward the ischemic brain: therapeutic implications for stroke and other neurological disorders. Prog Neurobiol 95(2):213–228

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Boy S, Sauerbruch S, Kraemer M, Schormann T, Schlachetzki F, Schuierer G, Luerding R, Hennemann B, Orso E, Dabringhaus A, Winkler J, Bogdahn U, RAIS (Regeneration in Acute Ischemic Stroke) Study Group (2011) Mobilisation of hematopoietic CD34+ precursor cells in patients with acute stroke is safe–results of an open-labeled non randomized phase I/II trial. PLoS One 6(8):e23099

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Martin I, Baldomero H, Bocelli-Tyndall C, Passweg J, Saris D, Tyndall A (2012) The survey on cellular and engineered tissue therapies in Europe in 2010. Tissue Eng Part A 18(21–22):2268–2279

    CAS  PubMed  Google Scholar 

  32. Spyridonidis A, Schmitt-Gräff A, Tomann T, Dwenger A, Follo M, Behringer D, Finke J (2004) Epithelial tissue chimerism after human hematopoietic cell transplantation is a real phenomenon. Am J Pathol 164(4):1147–1155

    PubMed Central  PubMed  Google Scholar 

  33. Filip S, Mokrý J, Vávrová J, Cízková D, Sinkorová Z, Tosnerová V, Bláha M (2009) Homing of lin(−)/CD117(+) hematopoietic stem cells. Transfus Apher Sci 41(3):183–190

    PubMed  Google Scholar 

  34. Cogle CR, Yachnis AT, Laywell ED, Zander DS, Wingard JR, Steindler DA, Scott EW (2004) Bone marrow transdifferentiation in brain after transplantation: a retrospective study. Lancet 363(9419):1432–1437

    CAS  PubMed  Google Scholar 

  35. Idilman R, Kuzu I, Erden E, Arat M, Soydan E, Soykan I, Akyol G, Karayalcin S, Akan H, Beksac M (2006) Evaluation of the effect of transplant-related factors and tissue injury on donor-derived hepatocyte and gastrointestinal epithelial cell repopulation following hematopoietic cell transplantation. Bone Marrow Transplant 37(2):199–206

    CAS  PubMed  Google Scholar 

  36. Murata H, Janin A, Leboeuf C, Soulier J, Gluckman E, Meignin V, Socie G (2007) Donor-derived cells and human graft-versus-host disease of the skin. Blood 109(6):2663–2665

    CAS  PubMed  Google Scholar 

  37. Shivtiel S, Lapid K, Kalchenko V, Avigdor A, Goichberg P, Kalinkovich A, Nagler A, Kollet O, Lapidot T (2011) CD45 regulates homing and engraftment of immature normal and leukemic human cells in transplanted immunodeficient mice. Exp Hematol 39(12):1161–1170

    CAS  PubMed  Google Scholar 

  38. Lapidot T, Dar A, Kollet O (2005) How do stem cells find their way home? Blood 106(6):1901–1910

    CAS  PubMed  Google Scholar 

  39. Lapidot T, Kollet O (2010) The brain-bone-blood triad: traffic lights for stem-cell homing and mobilization. Hematology Am Soc Hematol Educ Program 2010:1–6

    PubMed  Google Scholar 

  40. Vagima Y, Lapid K, Kollet O, Goichberg P, Alon R, Lapidot T (2011) Pathways implicated in stem cell migration: the SDF-1/CXCR4 axis. Meth Mol Biol 750:277–289

    CAS  Google Scholar 

  41. Willemze AJ, Bakker AC, von dem Borne PA, Bajema IM, Vossen JM (2009) The effect of graft-versus-host disease on skin endothelial and epithelial cell chimerism in stem-cell transplant recipients. Transplantation 87(7):1096–1101

    PubMed  Google Scholar 

  42. Araya K, Sakai N, Mohri I, Kagitani-Shimono K, Okinaga T, Hashii Y, Ohta H, Nakamichi I, Aozasa K, Taniike M, Ozono K (2009) Localized donor cells in brain of a Hunter disease patient after cord blood stem cell transplantation. Mol Genet Metab 98(3):255–263

    CAS  PubMed  Google Scholar 

  43. Durdu S, Akar AR, Arat M, Sancak T, Eren NT, Ozyurda U (2006) Autologous bone-marrow mononuclear cell implantation for patients with Rutherford grade II-III thromboangiitis obliterans. J Vasc Surg 44(4):732–739

    PubMed  Google Scholar 

  44. Zimmet H, Porapakkham P, Porapakkham P, Sata Y, Haas SJ, Itescu S, Forbes A, Krum H (2012) Short- and long-term outcomes of intracoronary and endogenously mobilized bone marrow stem cells in the treatment of ST-segment elevation myocardial infarction: a meta-analysis of randomized control trials. Eur J Heart Fail 14(1):91–105

    PubMed  Google Scholar 

  45. Tongers J, Losordo DW, Landmesser U (2011) Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges. Eur Heart J 32(10):1197–1206

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Jonsson TB, Larzon T, Arfvidsson B, Tidefelt U, Axelsson CG, Jurstrand M, Norgren L (2012) Adverse events during treatment of critical limb ischemia with autologous peripheral blood mononuclear cell implant. Int Angiol 31(1):77–84

    CAS  PubMed  Google Scholar 

  47. Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Hassan M, Uzunel M, Ringdén O (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363(1):1439–1441

    PubMed  Google Scholar 

  48. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, Dini G, Egeler RM, Bacigalupo A, Fibbe W, Ringden O, DevelopmentalCommittee of the European Group for Blood and Marrow Transplantation (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371(9624):1579–1586

    CAS  PubMed  Google Scholar 

  49. Zeinaloo A, Zanjani KS, Bagheri MM, Mohyeddin-Bonab M, Monajemzadeh M, Arjmandnia MH (2011) Intracoronary administration of autologous mesenchymal stem cells in a critically ill patient with dilated cardiomyopathy. Pediatr Transplant 15(8):E183–E186

    PubMed  Google Scholar 

  50. van Haaften T, Thébaud B (2006) Adult bone marrow-derived stem cells for the lung: implications for pediatric lung diseases. Pediatr Res 59(4 Pt 2):94R–99R

    PubMed  Google Scholar 

  51. Lange P, Fishman JM, Elliott MJ, De Coppi P, Birchall MA (2011) What can regenerative medicine offer for infants with laryngotracheal agenesis? Otolaryngol Head Neck Surg 145(4):544–550

    PubMed  Google Scholar 

  52. Pimentel-Coelho PM, Mendez-Otero R (2010) Cell therapy for neonatal hypoxic-ischemic encephalopathy. Stem Cells Dev 19(3):299–310

    PubMed  Google Scholar 

  53. Kaushal S, Jacobs JP, Gossett JG, Steele A, Steele P, Davis CR, Pahl E, Vijayan K, Asante-Korang A, Boucek RJ, Backer CL, Wold LE (2009) Innovation in basic science: stem cells and their role in the treatment of paediatric cardiac failure—opportunities and challenges. Cardiol Young 19(Suppl 2):74–84

    PubMed  Google Scholar 

  54. Pillekamp F, Khalil M, Emmel M, Brockmeier K, Hescheler J (2008) Stem cells in pediatric heart failure. Minerva Cardioangiol 56(3):335–348

    CAS  PubMed  Google Scholar 

  55. Pozzobon M, Ghionzoli M, De Coppi P (2010) ES, iPS, MSC, and AFS cells. Stem cells exploitation for pediatric surgery: current research and perspective. Pediatr Surg Int 26(1):3–10

    PubMed  Google Scholar 

  56. Ringden O, Le Blanc K (2011) Mesenchymal stem cells for treatment of acute and chronic graft-versus-host disease, tissue toxicity and hemorrhages. Best Pract Res Clin Haematol 24(1):65–72

    CAS  PubMed  Google Scholar 

  57. Seminatore C, Polentes J, Ellman D, Kozubenko N, Itier V, Tine S, Tritschler L, Brenot M, Guidou E, Blondeau J, Lhuillier M, Bugi A, Aubry L, Jendelova P, Sykova E, Perrier AL, Finsen B, Onteniente B (2010) The postischemic environment differentially impacts teratoma or tumor formation after transplantation of human embryonic stem cell-derived neural progenitors. Stroke 41(1):153–159

    PubMed  Google Scholar 

  58. Kooreman NG, Wu JC (2010) Tumorigenicity of pluripotent stem cells: biological insights from molecular imaging. J R Soc Interface 7(Suppl 6):S753–S763

    PubMed Central  PubMed  Google Scholar 

  59. Prasad VK, Lucas KG, Kleiner GI, Talano JA, Jacobsohn D, Broadwater G, Monroy R, Kurtzberg J (2011) Efficacy and safety of ex vivo cultured adult human mesenchymal stem cells (Prochymal™) in pediatric patients with severe refractory acute graft-versus-host disease in a compassionate use study. Biol Blood Marrow Transplant 17(4):534–541

    CAS  PubMed  Google Scholar 

  60. Bassi EJ, Moraes-Vieira PM, Moreira Sá CS, Almeida DC, Vieira LM, Cunha CS, Hiyane MI, Basso AS, Pacheco-Silva A, Câmara NO (2012) Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes. Diabetes 61(10):2534–2545

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Yuan W, Zong C, Huang Y, Gao Y, Shi D, Chen C, Liu L, Wang J (2012) Biological, immunological and regenerative characteristics of placenta-derived mesenchymal stem cell isolated using a time-gradient attachment method. Stem Cell Res 9(2):110–123

    CAS  PubMed  Google Scholar 

  62. Delarosa O, Dalemans W, Lombardo E (2012) Mesenchymal stem cells as therapeutic agents of inflammatory and autoimmune diseases. Curr Opin Biotechnol 23(6):978–983

    CAS  PubMed  Google Scholar 

  63. Karlsson H, Erkers T, Nava S, Ruhm S, Westgren M, Ringdén O (2012) Stromal cells from term fetal membrane are highly suppressive in allogeneic settings in vitro. Clin Exp Immunol 167(3):543–555

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Zhang ZY, Teoh SH, Hui JH, Fisk NM, Choolani M, Chan JK (2012) The potential of human fetal mesenchymal stem cells for off-the-shelf bone tissue engineering application. Biomaterials 33(9):2656–2672

    CAS  PubMed  Google Scholar 

  65. Kuzmina LA, Petinati NA, Parovichnikova EN, Lubimova LS, Gribanova EO, Gaponova TV, Shipounova IN, Zhironkina OA, Bigildeev AE, Svinareva DA, Drize NJ, Savchenko VG (2012) Multipotent mesenchymal stromal cells for the prophylaxis of acute graft-versus-host disease—a phase II study. Stem Cells Int 2012:968213

    PubMed Central  PubMed  Google Scholar 

  66. Giordano A, Galderisi U, Marino IR (2007) From the laboratory bench to the patient’s bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol 211(1):27–35

    CAS  PubMed  Google Scholar 

  67. Owen ME (1998) The marrow stromal system. In: Beresford JN, Owen ME (eds) Marrow stromal cell culture. Cambridge University Press, Cambridge, UK, pp 1–10

    Google Scholar 

  68. Yamada Y, Ito K, Nakamura S, Ueda M, Nagasaka T (2011) Promising cell-based therapy for bone regeneration using stem cells from deciduous teeth, dental pulp, and bone marrow. Cell Transplant 20(7):1003–1013

    PubMed  Google Scholar 

  69. Cananzi M, Atala A, De Coppi P (2009) Stem cells derived from amniotic fluid: new potentials in regenerative medicine. Reprod Biomed Online 18(Suppl 1):17–27

    PubMed  Google Scholar 

  70. Prockop DJ (1997) Marrow stromal cells as stem cells for non-hematopoietic tissues. Science 276:71–74

    CAS  PubMed  Google Scholar 

  71. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    CAS  PubMed  Google Scholar 

  72. Witkowska-Zimny M, Wrobel E (2011) Perinatal sources of mesenchymal stem cells: Wharton’s jelly, amnion and chorion. Cell Mol Biol Lett 16(3):493–514

    PubMed  Google Scholar 

  73. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop DJ, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    CAS  PubMed  Google Scholar 

  74. Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL (1998) Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 176(1):57–66

    CAS  PubMed  Google Scholar 

  75. Krause DS (2002) Plasticity of marrow-derived stem cells. Gene Ther 9(11):754–758

    CAS  PubMed  Google Scholar 

  76. Phinney DG (2007) Biochemical heterogeneity of mesenchymal stem cell populations: clues to their therapeutic efficacy. Cell Cycle 6(23):2884–2889

    CAS  PubMed  Google Scholar 

  77. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators.J. Cell Biochem 98(5):1076–1084

    CAS  Google Scholar 

  78. Zhukareva V, Obrocka M, Houle JD, Fischer I, Neuhuber B (2010) Secretion profile of human bone marrow stromal cells: donor variability and response to inflammatory stimuli. Cytokine 50(3):317–321

    CAS  PubMed  Google Scholar 

  79. Pochampally RR, Horwitz EM, DiGirolamo CM, Stokes DS, Prockop DJ (2005) Correction of a mineralization defect by overexpression of a wild-type cDNA for COL1A1 in marrow stromal cells (MSCs) from a patient with osteogenesis imperfecta: a strategy for rescuing mutations that produce dominant-negative protein defects. Gene Ther 12(14):1119–1125

    CAS  PubMed  Google Scholar 

  80. Potapova I, Plotnikov A, Lu Z, Danilo P Jr, Valiunas V, Qu J, Doronin S, Zuckerman J, Shlapakova IN, Gao J, Pan Z, Herron AJ, Robinson RB, Brink PR, Rosen MR, Cohen IS (2004) Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circ Res 94(7):952–959

    CAS  PubMed  Google Scholar 

  81. Xiang J, Tang J, Song C, Yang Z, Hirst DG, Zheng QJ, Li G (2009) Mesenchymal stem cells as a gene therapy carrier for treatment of fibrosarcoma. Cytotherapy 11(5):516–526

    CAS  PubMed  Google Scholar 

  82. Sánchez-Guijo FM, López-Villar O, López-Anglada L, Villarón EM, Muntión S, Díez-Campelo M, Perez-Simón JA, San Miguel JF, Caballero D, del Cañizo MC (2012) Allogeneic mesenchymal stem cell therapy for refractory cytopenias after hematopoietic stem cell transplantation. Transfusion 52(5):1086–1091

    PubMed  Google Scholar 

  83. Williams AR, Hare JM (2011) Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res 109(8):923–940

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal stem cells in children with osteogenesis imperfacta. Nat Med 5(3):309–313

    CAS  PubMed  Google Scholar 

  85. Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, Muul L, Hofmann T (2002) Isolated allogeneic bone marrowderivedmesenchymal cells engraft and stimulate growth inchildren with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci USA 99(13):8932–8937

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Ball LM, Bernardo ME, Roelofs H, Lankester A, Cometa A, Egeler RM, Locatelli F, Fibbe WE (2007) Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. Blood 110(7):2764–2767

    CAS  PubMed  Google Scholar 

  87. Koç ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W (2002) Allogenic mesenchymal stem cell infusion for the treatment of metachromatic leuokodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant 30(4):215–222

    PubMed  Google Scholar 

  88. Ringdén O, Uzunel M, Rasmusson I, Remberger M, Sundberg B, Lönnies H, Marschall HU, Dlugosz A, Szakos A, Hassan Z, Omazic B, Aschan J, Barkholt L, Le Blanc K (2006) Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81(10):1390–1397

    PubMed  Google Scholar 

  89. Ricart E (2012) Current status of mesenchymal stem cell therapy and bone marrow transplantation in IBD. Dig Dis 30(4):387–391

    PubMed  Google Scholar 

  90. Chang JW, Hung SP, Wu HH, Wu WM, Yang AH, Tsai HL, Yang LY, Lee OK (2011) Therapeutic effects of umbilical cord blood-derived mesenchymal stem cell transplantation in experimental lupus nephritis. Cell Transplant 20(2):245–257

    PubMed  Google Scholar 

  91. Hu YL, Huang B, Zhang TY, Miao PH, Tang GP, Tabata Y, Gao JQ (2012) Mesenchymal stem cells as a novel carrier for targeted delivery of gene incancer therapy based on nonviral transfection. Mol Pharm 49(9):2698–2709

    Google Scholar 

  92. Panciani PF, Fontanella M, Tamagno I, Battaglia L, Garbossa D, Inghirami G, Fagioli F, Pagano M, Ducati A, Lanotte M (2012) Stem cells based therapy in high grade glioma: why the intraventricular route should be preferred? J Neurosurg Sci 56(3):221–229

    CAS  PubMed  Google Scholar 

  93. Ryu CH, Park KY, Kim SM, Jeong CH, Woo JS, Hou Y, Jeun SS (2012) Valproic acid enhances anti-tumor effect of mesenchymal stem cell mediated HSV-TK gene therapy in intracranial glioma. Biochem Biophys Res Commun 421(3):585–590

    CAS  PubMed  Google Scholar 

  94. Bao Q, Zhao Y, Niess H, Conrad C, Schwarz B, Jauch KW, Huss R, Nelson PJ, Bruns CJ (2012) Mesenchymal stem cell-based tumor-targeted gene therapy in gastrointestinal cancer. Stem Cells Dev 21(13):2355–2363

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Bernardo ME, Ball LM, Cometa AM, Roelofs H, Zecca M, Avanzini MA, Bertaina A, Vinti L, Lankester A, Maccario R, Ringden O, Le Blanc K, Egeler RM, Fibbe WE, Locatelli F (2011) Co-infusion of ex vivo-expanded, parental MSCs prevents life-threatening acute GVHD, but does not reduce the risk of graft failure in pediatric patients undergoing allogeneic umbilical cord blood transplantation. Bone Marrow Transplant 46(2):200–207

    CAS  PubMed  Google Scholar 

  96. Lawitschka A, Ball L, Peters C (2012) Nonpharmacologic treatment of chronic graft-versus-host disease in children and adolescents. Biol Blood Marrow Transplant 18(1 Suppl):S74–S81

    PubMed  Google Scholar 

  97. Baron F, Lechanteur C, Willems E, Bruck F, Baudoux E, Seidel L, Vanbellinghen JF, Hafraoui K, Lejeune M, Gothot A, Fillet G, Beguin Y (2010) Cotransplantation of mesenchymal stem cells might prevent death from graft-versus-host disease (GVHD) without abrogating graft-versus-tumor effects after HLA-mismatched allogeneic transplantation following nonmyeloablative conditioning. Biol Blood Marrow Transplant 16(6):838–847

    PubMed  Google Scholar 

  98. Ball LM, Bernardo ME, Locatelli F, Egeler RM (2008) Potential role of mesenchymal stromal cells in pediatric hematopoietic SCT. Bone Marrow Transplant 42(Suppl 2):S60–S66

    CAS  PubMed  Google Scholar 

  99. Koç ON, Peters C, Aubourg P, Raghavan S, Dyhouse S, DeGasperi R, Kolodny EH, Yoseph YB, Gerson SL, Lazarus HM, Caplan AI, Watkins PA, Krivit W (1999) Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Exp Hematol 27(11):1675–1681

    PubMed  Google Scholar 

  100. Duijvestein M, Vos AC, Roelofs H, Wildenberg ME, Wendrich BB, Verspaget HW, Kooy-Winkelaar EM, Koning F, Zwaginga JJ, Fidder HH, Verhaar AP, Fibbe WE, van den Brink GR, Hommes DW (2010) Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut 59(12):1662–1669

    PubMed  Google Scholar 

  101. Nauta AJ, Westerhuis G, Kruisselbrink AB, Lurvink EG, Willemze R, Fibbe WE (2006) Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 108(6):2114–2120

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Ilic N, Brooke G, Murray P, Barlow S, Rossetti T, Pelekanos R, Hancock S, Atkinson K (2011) Manufacture of clinical grade human placenta-derived multipotent mesenchymal stromal cells. Meth Mol Biol 698:89–106

    CAS  Google Scholar 

  103. Sensebé L, Bourin P, Tarte K (2011) Good manufacturing practices production of mesenchymal stem/stromal cells. Hum Gene Ther 22(1):19–26

    PubMed  Google Scholar 

  104. Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A, Montagna D, Maccario R, Villa R, Daidone MG, Zuffardi O, Locatelli F (2007) Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 67(19):9142–9149

    CAS  PubMed  Google Scholar 

  105. Dahl JA, Duggal S, Coulston N, Millar D, Melki J, Shahdadfar A, Brinchmann JE, Collas P (2008) Genetic and epigenetic instability of human bone marrow mesenchymal stem cells expanded in autologous serum or fetal bovine serum. Int J Dev Biol 52(8):1033–1042

    CAS  PubMed  Google Scholar 

  106. Ferreira RJ, Irioda AC, Cunha RC, Francisco JC, Guarita-Souza LC, Srikanth GV, Nityanand S, Rosati R, Chachques JC, de Carvalho KA (2012) Controversies about the chromosomal stability of cultivated mesenchymal stem cells: their clinical use is it safe? Curr Stem Cell Res Ther 7(5):356–363

    CAS  PubMed  Google Scholar 

  107. Alt EU, Senst C, Murthy SN, Slakey DP, Dupin CL, Chaffin AE, Kadowitz PJ, Izadpanah R (2012) Aging alters tissue resident mesenchymal stem cell properties. Stem Cell Res 8(2):215–225

    CAS  PubMed  Google Scholar 

  108. Piper SL, Wang M, Yamamoto A, Malek F, Luu A, Kuo AC, Kim HT (2012) Inducible immortality in hTERT-human mesenchymal stem cells. J Orthop Res 30(12):1879–1885

    CAS  PubMed  Google Scholar 

  109. Mehrotra M, Rosol M, Ogawa M, Larue AC (2010) Amelioration of a mouse model of osteogenesis imperfecta with hematopoietic stem cell transplantation: microcomputed tomography studies. Exp Hematol 38(7):593–602

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Baxter MA, Wynn RF, Deakin JA, Bellantuono I, Edington KG, Cooper A, Besley GT, Church HJ, Wraith JE, Carr TF, Fairbairn LJ (2002) Retrovirally mediated correction of bone marrow-derived mesenchymal stem cells from patients with mucopolysaccharidosis type I. Blood 99(5):1857–1859

    PubMed  Google Scholar 

  111. Batzios SP, Zafeiriou DI (2012) Developing treatment options for metachromatic leukodystrophy. Mol Genet Metab 105(1):56–63

    CAS  PubMed  Google Scholar 

  112. Meyerrose TE, Roberts M, Ohlemiller KK, Vogler CA, Wirthlin L, Nolta JA, Sands MS (2008) Lentiviral-transduced human mesenchymal stem cells persistently express therapeutic levels of enzyme in a xenotransplantation model of human disease. Stem Cells 26(7):1713–1722

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Biffi A, Aubourg P, Cartier N (2011) Gene therapy for leukodystrophies. Hum Mol Genet 20(R1):R42–R53

    CAS  PubMed  Google Scholar 

  114. Coutu DL, Cuerquis J, El Ayoubi R, Forner KA, Roy R, François M, Griffith M, Lillicrap D, Yousefi AM, Blostein MD, Galipeau J (2011) Hierarchical scaffold design for mesenchymal stem cell-based gene therapy of hemophilia B. Biomaterials 32(1):295–305

    CAS  PubMed  Google Scholar 

  115. Doering CB (2008) Retroviral modification of mesenchymal stem cells for gene therapy of hemophilia. Meth Mol Biol 433:203–212

    CAS  Google Scholar 

  116. Jacome A, Navarro S, Río P, Yañez RM, González-Murillo A, Lozano ML, Lamana ML, Sevilla J, Olive T, Diaz-Heredia C, Badell I, Estella J, Madero L, Guenechea G, Casado J, Segovia JC, Bueren JA (2009) Lentiviral-mediated genetic correction of hematopoietic and mesenchymal progenitor cells from Fanconi anemia patients. Mol Ther 17(6):1083–1092

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Rankin S (2012) Mesenchymal stem cells. Thorax 67(6):565–566

    PubMed  Google Scholar 

  118. Zhang H, Fang J, Su H, Yang M, Lai W, Mai Y, Wu Y (2012) Bone marrow mesenchymal stem cells attenuate lung inflammation of hyperoxic newborn rats. Pediatr Transplant 16(6):589–598

    CAS  PubMed  Google Scholar 

  119. Waszak P, Alphonse R, Vadivel A, Ionescu L, Eaton F, Thébaud B (2012) Preconditioning enhances the paracrine effect of mesenchymal stem cells in preventing oxygen-induced neonatal lung injury in rats. Stem Cells Dev 21(15):2789–2797

    CAS  PubMed  Google Scholar 

  120. Tropea KA, Leder E, Aslam M, Lau AN, Raiser DM, Lee JH, Balasubramaniam V, Fredenburgh LE, Alex Mitsialis S, Kourembanas S, Kim CF (2012) Bronchioalveolar stem cells increase after mesenchymal stromal cell treatment in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 302(9):L829–L837

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, Dodson A, Martorell J, Bellini S, Parnigotto PP, Dickinson SC, Hollander AP, Mantero S, Conconi MT, Birchall MA (2008) Clinical transplantation of a tissue-engineered airway. Lancet 372(9655):2023–2030. Erratum in Lancet 2009;373(9662):462

    Google Scholar 

  122. Kim ES, Ahn SY, Im GH, Sung DK, Park YR, Choi SH, Choi SJ, Chang YS, Oh W, Lee JH, Park WS (2012) Human umbilical cord blood-derived mesenchymal stem cell transplantation attenuates severe brain ınjury by permanent middle cerebral artery occlusion in newborn rats. Pediatr Res 72(3):277–284

    CAS  PubMed  Google Scholar 

  123. Bennet L, Tan S, Van den Heuij L, Derrick M, Groenendaal F, van Bel F, Juul S, Back SA, Northington F, Robertson NJ, Mallard C, Gunn AJ (2012) Cell therapy for neonatal hypoxia-ischemia and cerebral palsy. Ann Neurol 71(5):589–600

    PubMed  Google Scholar 

  124. Wang XL, Zhao YS, Yang YJ, Xie M, Yu XH (2008) Therapeutic window of hyperbaric oxygen therapy for hypoxic-ischemic brain damage in newborn rats. Brain Res 1222:87–94

    CAS  PubMed  Google Scholar 

  125. Zheng XR, Zhang SS, Yin F, Tang JL, Yang YJ, Wang X, Zhong L (2012) Neuroprotection of VEGF-expression neural stem cells in neonatal cerebral palsy rats. Behav Brain Res 230(1):108–115

    CAS  PubMed  Google Scholar 

  126. Mizuno K, Hida H, Masuda T, Nishino H, Togari H (2008) Pretreatment with low doses of erythropoietin ameliorates brain damage in periventricular leukomalacia by targeting late oligodendrocyte progenitors: a rat model. Neonatology 94(4):255–266

    CAS  PubMed  Google Scholar 

  127. Otero L, Zurita M, Bonilla C, Aguayo C, Rico MA, Rodríguez A, Vaquero J (2012) Allogeneic bone marrow stromal cell transplantation after cerebral hemorrhage achieves cell transdifferentiation and modulates endogenous neurogenesis. Cytotherapy 14(1):34–44

    CAS  PubMed  Google Scholar 

  128. Tayman C, Uckan D, Kilic E, Ulus AT, Tonbul A, Murat Hirfanoglu I, Helvacioglu F, Haltas H, Koseoglu B, Tatli MM (2011) Mesenchymal stem cell therapy in necrotizing enterocolitis: a rat study. Pediatr Res 70(5):489–494

    PubMed  Google Scholar 

  129. Chen CL, Yu X, James IO, Zhang HY, Yang J, Radulescu A, Zhou Y, Besner GE (2012) Heparin-binding EGF-like growth factor protects intestinal stem cells from injury in a newborn rat model of necrotizing enterocolitis. Lab Invest 92(3):331–344

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Wannemuehler TJ, Manukyan MC, Brewster BD, Rouch J, Poynter JA, Wang Y, Meldrum DR (2012) Advances in mesenchymal stem cell research in sepsis. J Surg Res 173(1):113–126

    PubMed  Google Scholar 

  131. Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezey E (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15(1):42–49. Erratum in Nat Med 2009;15(4):462

    Google Scholar 

  132. Krasnodembskaya A, Samarani G, Song Y, Zhuo H, Su X, Lee JW, Gupta N, Petrini M, Matthay MA (2012) Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes. Am J Physiol Lung Cell Mol Physiol 302(10):L1003–L1013

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Weil BR, Herrmann JL, Abarbanell AM, Manukyan MC, Poynter JA, Meldrum DR (2011) Intravenous infusion of mesenchymal stem cells is associated with improved myocardial function during endotoxemia. Shock 36(3):235–241

    PubMed  Google Scholar 

  134. Matthay MA, Goolaerts A, Howard JP, Lee JW (2010) Mesenchymal stem cells for acute lung injury: preclinical evidence. Crit Care Med 38(Suppl 10):S569–S573

    PubMed Central  PubMed  Google Scholar 

  135. Mei SH, Haitsma JJ, Dos Santos CC, Deng Y, Lai PF, Slutsky AS, Liles WC, Stewart DJ (2010) Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med 182(8):1047–1057

    CAS  PubMed  Google Scholar 

  136. Kim ES, Chang YS, Choi SJ, Kim JK, Yoo HS, Ahn SY, Sung DK, Kim SY, Park YR, Park WS (2011) Intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells attenuates Escherichia coli-induced acute lung injury in mice. Respir Res 12:108

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Beyth S, Schroeder J, Liebergall M (2011) Stem cells in bone diseases: current clinical practice. Br Med Bull 99:199–210

    PubMed  Google Scholar 

  138. Granero-Moltó F, Weis JA, Miga MI, Landis B, Myers TJ, O'Rear L, Longobardi L, Jansen ED, Mortlock DP, Spagnoli A (2009) Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells 27(8):1887–1898

    PubMed Central  PubMed  Google Scholar 

  139. Uckan D, Kilic E, Sharafi P, Kazik M, Kaya F, Erdemli E, Can A, Tezcaner A, Kocaefe C (2009) Adipocyte differentiation defect in mesenchymal stromal cells of patients with malignant infantile osteopetrosis. Cytotherapy 11(4):392–402

    CAS  PubMed  Google Scholar 

  140. Villa A, Guerrini MM, Cassani B, Pangrazio A, Sobacchi C (2009) Infantile malignant, autosomal recessive osteopetrosis: the rich and the poor. Calcif Tissue Int 84(1):1–12

    CAS  PubMed  Google Scholar 

  141. Collawn SS, Banerjee NS, de la Torre J, Vasconez L, Chow LT (2012) Adipose-derived stromal cells accelerate wound healing in an organotypic raft culture model. Ann Plast Surg 68(5):501–504

    CAS  PubMed Central  PubMed  Google Scholar 

  142. van der Veen VC, Vlig M, van Milligen FJ, de Vries SI, Middelkoop E, Ulrich MM (2012) Stem cells in burn eschar. Cell Transplant 21(5):933–942

    PubMed  Google Scholar 

  143. Wang X, Li C, Zheng Y, Xia W, Yu Y, Ma X (2012) Bone marrow mesenchymal stem cells increase skin regeneration efficiency in skin and soft tissueexpansion. Expert Opin Biol Ther 12(9):1129–1139

    PubMed  Google Scholar 

  144. Petrova A, Ilic D, McGrath JA (2010) Stem cell therapies for recessive dystrophic epidermolysis bullosa. Br J Dermatol 163(6):1149–1156

    CAS  PubMed  Google Scholar 

  145. Kiuru M, Itoh M, Cairo MS, Christiano AM (2010) Bone marrow stem cell therapy for recessive dystrophic epidermolysis bullosa. Dermatol Clin 28(2):371–382, xii–xiii

    CAS  PubMed  Google Scholar 

  146. Alexeev V, Uitto J, Igoucheva O (2011) Gene expression signatures of mouse bone marrow-derived mesenchymal stem cells in the cutaneous environment and therapeutic implications for blistering skin disorder. Cytotherapy 13(1):30–45

    CAS  PubMed  Google Scholar 

  147. Gache Y, Pin D, Gagnoux-Palacios L, Carozzo C, Meneguzzi G (2011) Correction of dog dystrophic epidermolysis bullosa by transplantation of genetically modified epidermal autografts. J Invest Dermatol 131(10):2069–2078

    CAS  PubMed  Google Scholar 

  148. Tolar J, Xia L, Riddle MJ, Lees CJ, Eide CR, McElmurry RT, Titeux M, Osborn MJ, Lund TC, Hovnanian A, Wagner JE, Blazar BR (2011) Induced pluripotent stem cells from individuals with recessive dystrophic epidermolysis bullosa. J Invest Dermatol 131(4):848–856

    CAS  PubMed  Google Scholar 

  149. Tatsumi K, Otani H, Sato D, Enoki C, Iwasaka T, Imamura H, Taniuchi S, Kaneko K, Adachi Y, Ikehara S (2008) Granulocyte-colony stimulating factor increases donor mesenchymal stem cells in bone marrow and their mobilization into peripheral circulation but does not repair dystrophic heart after bone marrow transplantation. Circ J 72(8):1351–1358

    PubMed  Google Scholar 

  150. Altun B, Korkusuz P, Piskinpasa S, Purali N, Aki T, Akoglu H, Uckan D, Yilmaz R, Zeybek D, Turgan C (2012) Use of mesenchymal stem cells and darbepoetin improve ischemia-induced acute kidney injury outcomes. Am J Nephrol 35(6):531–539

    CAS  PubMed  Google Scholar 

  151. Lin H, Xu R, Zhang Z, Chen L, Shi M, Wang FS (2011) Implications of the immunoregulatory functions of mesenchymal stem cells in the treatment of human liver diseases. Cell Mol Immunol 8(1):19–22

    CAS  PubMed  Google Scholar 

  152. Liska V, Slowik P, Eggenhofer E, Treska V, Renner P, Popp FC, Mirka H, Kobr J, Sykora R, Schlitt HJ, Holubec L, Chlumska A, Skalicky T, Matejovic M, Dahlke MH (2009) Intraportal injection of porcine multipotent mesenchymal stromal cells augments liver regeneration after portal vein embolization. In vivo 23(2):229–235

    CAS  PubMed  Google Scholar 

  153. Li J, Zhang L, Xin J, Jiang L, Li J, Zhang T, Jin L, Li J, Zhou P, Hao S, Cao H, Li L (2012) Immediate intraportal transplantation of human bone marrow mesenchymal stem cells prevents death from fulminant hepatic failure in pigs. Hepatology 56(3):1044–1052

    PubMed  Google Scholar 

  154. Ali G, Masoud MS (2012) Bone marrow cells ameliorate liver fibrosis and express albumin after transplantation in CCl 4-induced fibrotic liver. Saudi J Gastroenterol 18(4):263–267

    PubMed Central  PubMed  Google Scholar 

  155. de Freitas Souza BS, Nascimento RC, de Oliveira SA, Vasconcelos JF, Kaneto CM, de Carvalho LF, Ribeiro-Dos-Santos R, Soares MB, de Freitas LA (2012) Transplantation of bone marrow cells decreases tumor necrosis factor-α production and blood-brain barrier permeability and improves survival in a mouse model of acetaminophen-induced acute liver disease. Cytotherapy 14(8):1011–1021

    PubMed  Google Scholar 

  156. Okura H, Saga A, Fumimoto Y, Soeda M, Moriyama M, Moriyama H, Nagai K, Lee CM, Yamashita S, Ichinose A, Hayakawa T, Matsuyama A (2011) Transplantation of human adipose tissue-derived multilineage progenitor cells reduces serum cholesterol in hyperlipidemic Watanabe rabbits. Tissue Eng Part C Methods 17(2):145–154

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Jeong JO, Han JW, Kim JM, Cho HJ, Park C, Lee N, Kim DW, Yoon YS (2011) Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy. Circ Res 108(11):1340–1347

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Liu J, Zhang Y, Bai L, Cui X, Zhu J (2012) Rat bone marrow mesenchymal stem cells undergo malignant transformation via indirect co-cultured with tumour cells. Cell Biochem Funct 30(8):650–656

    CAS  PubMed  Google Scholar 

  159. Ma M, Ye JY, Deng R, Dee CM, Chan GC (2011) Mesenchymal stromal cells may enhance metastasis of neuroblastoma via SDF-1/CXCR4 and SDF-1/CXCR7 signaling. Cancer Lett 312(1):1–10

    CAS  PubMed  Google Scholar 

  160. Rountree CB, Mishra L, Willenbring H (2012) Stem cells in liver diseases and cancer: recent advances on the path to new therapies. Hepatology 55(1):298–306

    PubMed Central  PubMed  Google Scholar 

  161. Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, Straathof K, Liu E, Durett AG, Grilley B, Liu H, Cruz CR, Savoldo B, Gee AP, Schindler J, Krance RA, Heslop HE, Spencer DM, Rooney CM, Brenner MK (2011) Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 365(18):1673–1683

    PubMed Central  PubMed  Google Scholar 

  162. Moll G, Rasmusson-Duprez I, von Bahr L, Connolly-Andersen AM, Elgue G, Funke L, Hamad OA, Lönnies H, Magnusson PU, Sanchez J, Teramura Y, Nilsson-Ekdahl K, Ringdén O, Korsgren O, Nilsson B, Le Blanc K (2012) Are therapeutic human mesenchymal stromal cells compatible with human blood? Stem Cells 30(7):1565–1574

    CAS  PubMed  Google Scholar 

  163. Yamanaka S (2012) Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10(6):678–684

    CAS  PubMed  Google Scholar 

  164. Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu PQ, Paschon DE, Miranda E, Ordóñez A, Hannan NR, Rouhani FJ, Darche S, Alexander G, Marciniak SJ, Fusaki N, Hasegawa M, Holmes MC, Di Santo JP, Lomas DA, Bradley A, Vallier L (2011) Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478(7369):391–394

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Rashid ST, Lomas DA (2012) Stem cell-based therapy for α1-antitrypsin deficiency. Stem Cell Res Ther 3(1):4

    PubMed Central  PubMed  Google Scholar 

  166. Salani S, Donadoni C, Rizzo F, Bresolin N, Comi GP, Corti S (2012) Generation of skeletal muscle cells from embryonic and induced pluripotent stem cells as an in vitro model and for therapy of muscular dystrophies. J Cell Mol Med 16(7):1353–1364

    CAS  PubMed  Google Scholar 

  167. Tolar J, Park IH, Xia L, Lees CJ, Peacock B, Webber B, McElmurry RT, Eide CR, Orchard PJ, Kyba M, Osborn MJ, Lund TC, Wagner JE, Daley GQ, Blazar BR (2011) Hematopoietic differentiation of induced pluripotent stem cells from patients with mucopolysaccharidosis type I (Hurler syndrome). Blood 117(3):839–847

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Tedesco FS, Gerli MF, Perani L, Benedetti S, Ungaro F, Cassano M, Antonini S, Tagliafico E, Artusi V, Longa E, Tonlorenzi R, Ragazzi M, Calderazzi G, Hoshiya H, Cappellari O, Mora M, Schoser B, Schneiderat P, Oshimura M, Bottinelli R, Sampaolesi M, Torrente Y, Broccoli V, Cossu G (2012) Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy. Sci Transl Med 4(140):140ra89

    PubMed  Google Scholar 

  169. Quarto N, Leonard B, Li S, Marchand M, Anderson E, Behr B, Francke U, Reijo-Pera R, Chiao E, Longaker MT (2012) Skeletogenic phenotype of human Marfan embryonic stem cells faithfully phenocopied by patient-specific induced-pluripotent stem cells. Proc Natl Acad Sci USA 109(1):215–220

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Rashid ST, Corbineau S, Hannan N, Marciniak SJ, Miranda E, Alexander G, Huang-Doran I, Griffin J, Ahrlund-Richter L, Skepper J, Semple R, Weber A, Lomas DA, Vallier L (2010) Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J Clin Invest 120(9):3127–3136

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Choi SM, Kim Y, Liu H, Chaudhari P, Ye Z, Jang YY (2011) Liver engraftment potential of hepatic cells derived from patient-specific induced pluripotent stem cells. Cell Cycle 10(15):2423–2427

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Uccelli A, Benvenuto F, Laroni A, Giunti D (2011) Neuroprotective features of mesenchymal stem cells. Best Pract Res Clin Haematol 24(1):59–64

    CAS  PubMed  Google Scholar 

  173. Ozdemir M, Attar A, Kuzu I (2012) Regenerative treatment in spinal cord injury. Curr Stem Cell Res Ther 7(5):364–369

    CAS  PubMed  Google Scholar 

  174. Cartier N, Hacein-Bey-Abina S, Von Kalle C, Bougneres P, Fischer A, Cavazzana-Calvo M, Aubourg P (2010) Gene therapy of x-linked adreno-leukodystrophy using hematopoietic stem cells and a lentiviral vector. Bull Acad Natl Med 194(2):255–264

    CAS  PubMed  Google Scholar 

  175. Biffi A, Naldini L (2007) Novel candidate disease for gene therapy:metachromatic leukodystrophy. Expert Opin Biol Ther 7(8):1193–1205

    CAS  PubMed  Google Scholar 

  176. Miyake N, Miyake K, Karlsson S, Shimada T (2010) Successful treatment of metachromatic leukodystrophy using bone marrow transplantation of HoxB4 overexpressing cells. Mol Ther 18(7):1373–1378

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Hawkins-Salsbury JA, Reddy AS, Sands MS (2011) Combination therapies for lysosomal storage disease: is the whole greater than the sum of its parts? Hum Mol Genet 20(R1):R54–R60

    CAS  PubMed Central  PubMed  Google Scholar 

  178. de Filippis L (2011) Neural stem cell-mediated therapy for rare brain diseases: perspectives in the near future for LSDs and MNDs. Histol Histopathol 26(8):1093–1109

    PubMed  Google Scholar 

  179. Arthur JR, Lee JP, Snyder EY, Seyfried TN (2012) Therapeutic effects of stem cells and substrate reduction in juvenile sandhoff mice. Neurochem Res 37(6):1335–1343

    CAS  PubMed  Google Scholar 

  180. Tran KD, Ho A, Jandial R (2010) Stem cell transplantation methods. Adv Exp Med Biol 671:41–57

    PubMed  Google Scholar 

  181. Macauley SL, Roberts MS, Wong AM, McSloy F, Reddy AS, Cooper JD, Sands MS (2012) Synergistic effects of central nervous system-directed gene therapy and bone marrow transplantation in the murine model of infantile neuronal ceroid lipofuscinosis. Ann Neurol 71(6):797–804

    CAS  PubMed Central  PubMed  Google Scholar 

  182. Wong AM, Rahim AA, Waddington SN, Cooper JD (2010) Current therapies for the soluble lysosomal forms of neuronal ceroid lipofuscinosis. Biochem Soc Trans 38(6):1484–1488

    CAS  PubMed  Google Scholar 

  183. Meng J, Muntoni F, Morgan JE (2011) Stem cells to treat muscular dystrophies—here are we? Neuromuscul Disord 21(1):4–12

    PubMed  Google Scholar 

  184. Davies KE, Grounds MD (2006) Treating muscular dystrophy with stem cells? Cell 127(7):1304–1306

    CAS  PubMed  Google Scholar 

  185. Sampaolesi M, Blot S, D'Antona G, Granger N, Tonlorenzi R, Innocenzi A, Mognol P, Thibaud JL, Galvez BG, Barthélémy I, Perani L, Mantero S, Guttinger M, Pansarasa O, Rinaldi C, Cusella De Angelis MG, Torrente Y, Bordignon C, Bottinelli R, Cossu G (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444(7119):574–579

    CAS  PubMed  Google Scholar 

  186. Seto JT, Ramos JN, Muir L, Chamberlain JS, Odom GL (2012) Gene replacement therapies for duchenne muscular dystrophy using adeno-associated viral vectors. Curr Gene Ther 12(3):139–151

    CAS  PubMed  Google Scholar 

  187. Le Blanc K, Götherström C, Ringdén O, Hassan M, McMahon R, Horwitz E, Anneren G, Axelsson O, Nunn J, Ewald U, Nordén-Lindeberg S, Jansson M, Dalton A, Aström E, Westgren M (2005) Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 79(11):1607–1614

    PubMed  Google Scholar 

  188. Chong MS, Chan J (2010) Lentiviral vector transduction of fetal mesenchymal stem cells. Meth Mol Biol 614:135–147

    CAS  Google Scholar 

  189. David AL, Waddington SN (2012) Candidate diseases for prenatal gene therapy. Meth Mol Biol 891:9–39

    CAS  Google Scholar 

  190. Ben-Yehudah A, Malcov M, Frumkin T, Ben-Yosef D (2012) Mutated human embryonic stem cells for the study of human genetic disorders. Meth Mol Biol 873:179–207

    CAS  Google Scholar 

  191. Lee KY, Fong BS, Tsang KS, Lau TK, Ng PC, Lam AC, Chan KY, Wang CC, Kung HF, Li CK, Li K (2011) Fetal stromal niches enhance human embryonic stem cell-derived hematopoietic differentiation and globin switch. Stem Cells Dev 20(1):31–38

    CAS  PubMed  Google Scholar 

  192. Tolar J, Nauta AJ, Osborn MJ, Panoskaltsis Mortari A, McElmurry RT, Bell S, Xia L, Zhou N, Riddle M, Schroeder TM, Westendorf JJ, McIvor RS, Hogendoorn PC, Szuhai K, Oseth L, Hirsch B, Yant SR, Kay MA, Peister A, Prockop DJ, Fibbe WE, Blazar BR (2007) Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 25(2):371–379

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duygu Uçkan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Uçkan, D. (2013). Pediatric Diseases and Stem Cells: Recent Advances and Challenges. In: Turksen, K. (eds) Stem Cells: Current Challenges and New Directions. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-8066-2_7

Download citation

Publish with us

Policies and ethics