Skip to main content

Multiantenna Multicarrier Transceiver Architectures

  • Chapter
  • First Online:
Resource Allocation and MIMO for 4G and Beyond

Abstract

In wireless communications, increased spectral efficiency and low error rates can be achieved by means of space-time-frequency coded MIMO-OFDM systems. In this work, we illustrate tensor-based approaches for MIMO-OFDM systems combining space-frequency and time domain processing allowing iterative joint blind channel estimation and symbol decoding. First, we consider the case of MLSFC with an extended LCP. Then, space-time-frequency signaling technique that combines space-frequency modulation with a time-varying linear precoding is developed. We show that both systems satisfy PARAllel FACtor (PARAFAC)-based models, which allow a blind joint channel and symbol estimation using iterative or closed-form receiver algorithms. For this system, we propose two closed-form semi-blind receivers that exploit differently the multilinear structure of the received signal, which is formulated as a nested PARAFAC model. For the first system, ALS and LS-KRF receivers are proposed and compared. For the later system, and aiming at reducing pilot overhead, we develop a S-CFP receiver coupled with a pairing algorithm that yields an unambiguous estimation of the transmitted symbols without the need of a pilot frame. Simulation results are shown to evaluate the performance of the proposed transceivers in terms of bit error rate and channel estimation accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, D., Tarokh, V., Naguib, A., Seshadri, N.: Space-time coded OFDM for high data-rate wireless communications over wideband channels. In: 1998 48th IEEE Vehicular Technology Conference (VTC 98), vol. 3, pp. 2232–2236. Ottawa, Canada (1998). doi:10.1109/VETEC.1998.686154.

  2. Alamouti, S.: A simple transmit diversity technique for wireless communications. IEEE J. Sel. Areas Commun. 16(8), 1451–1458 (1998)

    Article  Google Scholar 

  3. Bolcskei, H., Paulraj, A.: Space-frequency coded broadband OFDM systems. In: 2000 IEEE Wireless Communications and Networking Confernce, (WCNC.), vol. 1, pp. 1–6 (2000). doi:10.1109/WCNC.2000.904589

  4. Shao, L., Roy, S.: Rate-one space-frequency block codes with maximum diversity for MIMO-OFDM. IEEE Trans. Wireless Comm., 4(4), 1674–1687 (2005). doi:10.1109/TWC.2005.850374

    Google Scholar 

  5. Su, W., Safar, Z., Liu, K.: Full-rate full-diversity space-frequency codes with optimum coding advantage. IEEE Trans. Inf. Theory 51(1), 229–249 (2005). doi:10.1109/TIT.2004.839496

    Article  MathSciNet  Google Scholar 

  6. Tarokh, V., Jafarkhani, H., Calderbank, A.: Space-time block codes from orthogonal designs. IEEE Trans. Inf. Theory 45(5), 1456–1467 (1999). doi:10.1109/18.771146

    Article  MATH  MathSciNet  Google Scholar 

  7. de Almeida, A.L.F., Favier, G., Mota, JaCM: Parafac-based unified tensor modeling for wireless communication systems with application to blind multiuser equalization. Signal Process. 87(2), 337–351 (2007)

    Article  MATH  Google Scholar 

  8. de Almeida, A.L.F., Favier, G., Mota, J.C.M.: PARAFAC models for wireless communication systems. In: Int. Conf. on Physics in Signal and Image Processing (PSIP), vol. 31 (2005)

    Google Scholar 

  9. de Almeida, A., Favier, G., Mota, J.: A constrained factor decomposition with application to mimo antenna systems. IEEE Trans. on Signal Process. 56(6), 2429–2442 (2008). doi:10.1109/TSP.2008.917026. http://dx.doi.org/10.1109/TSP.2008.917026

    Google Scholar 

  10. de Almeida, A.L.F., Favier, G., Mota, JaCM: Space-time spreading-multiplexing for mimo wireless communication systems using the paratuck-2 tensor model. Signal Process 9(11), 2103–2116 (2009). doi:0.1016/j.sigpro.2009.04.028

    Article  Google Scholar 

  11. Budampati, R.S., Sidiropoulos, N.D.: Khatri-Rao space-time codes with maximum diversity gains over frequency-selective channels. In: Proc. Sensor Array and Multichannel Signal Processing Workshop, pp. 432–436 (2002). doi:10.1109/SAM.2002.1191076

  12. de Almeida, A.L.F., Favier, G., Cavalcante, C., Mota, J.C.M.: Tensor-based space-time multiplexing codes for mimo-ofdm systems with blind detection. In: IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications, 2006 , pp. 1–5. Helsinki, Finland (2006). doi:10.1109/PIMRC.2006.253943

  13. de Almeida, A.L.F., Favier, G., Mota, J.C.M.: Space-time multiplexing codes: A tensor modeling approach. In: IEEE 7th Workshop on Signal Processing Advances in Wireless Communications, 2006. SPAWC ’06. , pp. 1–5. Cannes, France (2006). doi:10.1109/SPAWC.2006.346486

  14. Favier, G., Da Costa, M.N., de Almeida, A.L.F., Romano, J.a.M.T.: Tensor space-time (tst) coding for mimo wireless communication systems. Signal Process. 92(4), 1079–1092 (2012). doi:10.1016/j.sigpro.2011.10.021. http://dx.doi.org/10.1016/j.sigpro.2011.10.021

  15. Sidiropoulos, N., Budampati, R.: Khatri-Rao space-time codes. IEEE Trans. Signal Process., 50(10), 2396–2407 (2002). doi:10.1109/TSP.2002.803341

    Google Scholar 

  16. Carroll, J., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an n-way generalization of ‘Eckart-Young’ decomposition. Psychometrika 35(3), 283–319 (1970). doi:10.1007/BF02310791. http://dx.doi.org/10.1007/BF02310791

    Google Scholar 

  17. Harshman, R.A.: Foundations of the PARAFAC procedure: Model and conditions for an ’explanatory’ multi-mode factor analysis. UCLA Working Papers Phonetics 16 (1970)

    Google Scholar 

  18. de Almeida, A.L.F., Favier, G., Fernandes, C., Mota, J.C.M.: A trilinear decomposition approach for space-time-frequency multiple-access wireless systems. In: IEEE 6th Int. Workshop on Sig. Proc. Advances in Wireless Commun. (SPAWC), pp. 1–5. Helsinki, Finland (2007). doi:10.1109/SPAWC.2007.4401406

  19. De Almeida, A.L.F., Freitas, W.: Blind receiver for multi-layered space-frequency coded mimo schemes based on temporally extended linear constellation precoding. In: 2011 IEEE Vehicular Technology Conference (VTC Fall), pp. 1–5 (2011). doi:10.1109/VETECF.2011.6093278

  20. de Lathauwer, L., de Moor, B., Vanderwalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Harshman, R.A.: Foundations of the PARAFAC procedure: Model and conditions for an “explanatory" multi-mode factor analysis. UCLA Working Papers in Phonetics 16, 1–84 (1970)

    Google Scholar 

  22. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika 35(3), 283–319 (1970). http://link.springer.com/article/10.1007/BF02310791

    Google Scholar 

  23. Bro, R.: PARAFAC: Tutorial and applications. Chemometrics Intell. Lab. Syst. 38, 149–171 (1997)

    Article  Google Scholar 

  24. Bro, R.: Multi-way analysis in the food industry: Models, algorithms and applications. Ph.D. thesis, University of Amsterdam, Amsterdam (1998)

    Google Scholar 

  25. Smilde, A., Bro, R., Geladi, P.: Multi-way Analysis. Applications in the Chemical Sciences. John Wiley and Sons, Chichester, U.K. (2004)

    Google Scholar 

  26. Kruskal, J.B.: Three-way arrays: Rank and uniqueness or trilinear decompositions, with applications to arithmetic complexity and statistics. Linear Algebra Appl. 18(2), 95–138 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  27. Stegeman, A., Sidiropoulos, N.D.: On Kruskal’s uniqueness condition for the Candecomp/Parafac decomposition. Linear Algebra appl. 420(2), 540–552 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Harshman, R.A., Lundy, M.E.: The PARAFAC model for three-way factor analysis and multidimensional scaling. In: H. G. Law, C. W. Snyder Jr., J. Hattie, and R. P. McDonald (eds.), New York: Praeger (1984)

    Google Scholar 

  29. Sidiropoulos, N.D.: Low-rank decomposition of multi-way arrays: A signal processing perspective. In: Invited plenary lecture at IEEE SAM. Barcelona, Spain (2004)

    Google Scholar 

  30. Sidiropoulos, N.D., Liu, X.: Cramer-Rao bounds for low-rank decomposition of multidimensional arrays. IEEE Trans. Signal Process. 49(9), 2074–2086 (2001)

    Article  MathSciNet  Google Scholar 

  31. Sidiropoulos, N.D., Giannakis, G.B., Bro, R.: Blind PARAFAC receivers for DS-CDMA systems. IEEE Trans. Signal Process. 48(3), 810–823 (2000)

    Article  Google Scholar 

  32. Jiang, T., Sidiropoulos, N.D.: Kruskal’s permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models with constant modulus constraints. IEEE Trans. Signal Process. 52(9), 2625–2636 (2004)

    Article  MathSciNet  Google Scholar 

  33. De Lathauwer, L.: A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM J. Matrix Anal. Appl. 28(3), 642–666 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kruskal, J.B.: Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl. 18, 95–138 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  35. Xin, Y., Wang, Z., Giannakis, G.: Space-time diversity systems based on linear constellation precoding. IEEE Trans. Wireless Commun. 2(2), 294–309 (2003). doi:10.1109/TWC.2003.808970

    Article  Google Scholar 

  36. Zheng, L., Tse, D.: Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels. IEEE Trans. Inf. Theory 49(5), 1073–1096 (2003). doi:10.1109/TIT.2003.810646

    Article  MATH  Google Scholar 

  37. Freitas W.C., J., Cavalcanti, F., de Almeida, A., Lopes, R.: Exploiting dimensions of the mimo wireless channel: multidimensional link adaptation. In: 2005 IEEE 61st Vehicular Technology Conference, (VTC 2005-Spring), vol. 2, pp. 924–928 (2005). doi:10.1109/VETECS.2005.1543441

  38. da Costa, J.P.C.L., Roemer, F., Haardt, M., de Sousa RafaelTimóteo, J.: Multi-dimensional model order selection on Advances in Signal Processing. EURASIP J. 2011(1), 1–13 (2011). doi:10.1186/1687-6180-2011-26. http://dx.doi.org/10.1186/1687-6180-2011-26

  39. Smilde, A., Bro, R., Geladi, P.: Multi-way analysis: application in chemical sciences. Wiley (2004)

    Google Scholar 

  40. da Costa, J., Roemer, F., Weis, M., Haardt, M.: Robust r-d parameter estimation via closed-form parafac. In: International ITG Workshop on Smart Antennas (WSA), 2010, pp. 99–106 (2010). doi:10.1109/WSA.2010.5456382

  41. Liu, K., da Costa, J., De Almeida, A.L.F., So, H.: A closed form solution to semi-blind joint symbol and channel estimation in mimo-ofdm systems. In: 2012 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC), pp. 191–196 (2012). doi:10.1109/ICSPCC.2012.6335653.

  42. Roemer, F., Haardt, M.: Tensor-based channel estimation (tence) for two-way relaying with multiple antennas and spatial reuse. In: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2009), pp. 3641–3644 (2009). doi:10.1109/ICASSP.2009.4960415

  43. da Costa, J.P.C.L.: Parameter Estimation Techniques for Multi-Dimensional Array Signal Processing. Shaker Publisher, Aachen, Germany (2010)

    MATH  Google Scholar 

  44. Vishwanath, R., Bhatnagar, M.R.: Optimum linear constellation precoding for space time wireless systems. Wirel. Pers. Commun. 40(4), 511–521 (2007)

    Article  Google Scholar 

  45. de Almeida, A.L.F.: Blind joint detection and channel estimation in space-frequency diversity systems using time-varying linear constellation precoding. In: Brazilian Telecommunications Symposium (SBrT’11). Curitiba, Paraná, Brazil (2011)

    Google Scholar 

  46. Roemer, F., Haardt, M.: A closed-form solution for multilinear PARAFAC decompositions. In: Proc. 5th IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM’2008), pp. 487–491. Darmstadt, Germany (2008)

    Google Scholar 

  47. Cardoso, J.F., Souloumiac, A.: Jacobi angles for simultaneous diagonalization. SIAM J. Matrix Anal. Appl. 17(1), 161–164 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  48. Fu, T., Gao, X.: Simultaneous diagonalization with similarity transformation for non-defective matrices. In: Proc. IEEE Int Acoustics, Speech and Signal Processing Conf. ICASSP 2006, vol. 4, pp. 1137–1140. Toulouse, France (2006)

    Google Scholar 

  49. Haardt, M., Nossek, J.A.: Simultaneous Schur decomposition of several non-symmetric matrices to achieve automatic pairing in multidimensional harmonic retrieval problems. IEEE Trans. Signal Process. 46(1), 161–169 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter C. Freitas Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Freitas, W.C., de Almeida, A.L.F., da Costa, J.P.C.L., Liu, K., Cheung, H. (2014). Multiantenna Multicarrier Transceiver Architectures. In: Cavalcanti, F. (eds) Resource Allocation and MIMO for 4G and Beyond. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8057-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8057-0_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8056-3

  • Online ISBN: 978-1-4614-8057-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics