Skip to main content

Null-Space Precoder for Dense 4G and Beyond Networks

  • Chapter
  • First Online:
  • 1353 Accesses

Abstract

In the last decade, cellular networks have been characterized by an ever-growing user data demand that pushed for more and more network capacity to be satisfied. This caused increasing capacity shortfall and coverage issues, aggravated by inefficient fixed spectrum management policies and obsolete network structures. The development of new technologies and spectrum management policies is seen as a necessary step to take, in order to cope with these issues. A significant research effort has been made since the beginning of the century, to investigate the advantages brought by the introduction of flexible management paradigms and new hierarchical approaches to network planning. The resulting tiered network layout may improve the capacity of current networks in several ways. In this chapter, we focus on the challenging problem arising when the two tiers share the transmit band, to capitalize on the available spectrum and avoiding possible inefficiencies. In this case, the coexistence of the two tiers is not feasible, if suitable interference management techniques are not designed to mitigate/cancel the mutual interference generated by the active transmitters in the network. We show that by intelligently designing the transmit waveform by means of an especial precoder, the two tier coexistence problem is solved for several different network configurations. Such configurations range from single to multiuser, the latter being also possible for centralized and distributed cases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Small-cells are sometimes referred to as femtocells. In this work small-cells refer to any kind of small access points similar to Wireless Fidelity (WIFI) access points (in terms of shape and usage), that employ advanced techniques to allow cooperation with macrocells.

  2. 2.

    The impact of ICI on the performance of a general macro-cell based network has been widely studied in the literature. The reader is directed to [29] and references therein for more details.

  3. 3.

    The extension to a multi-SUEs per SBS model could be seamlessly obtained by means of any multiuser scheduling technique [8], once the solution for single SUE case has been identified.

  4. 4.

    The frequency selective channels considered throughout the chapter, always have a number of taps \(l \le L\), to avoid Inter-Block Interference issues.

  5. 5.

    Some thoughts about the synchonization assumption (and lack thereof) are developed in Sect. 11.6.

  6. 6.

    We have explicitly dropped the “\({\text {s}}{\text {p}}\)” subscript to improve the readability.

  7. 7.

    We note that, for the semi-unitary precoder, the water-filling strategy forms an integral part of the optimal design, thus is needed to guarantee its optimality.

  8. 8.

    We recall that an orthonormalized precoder is always semi-unitary by construction.

  9. 9.

    This is an ideal assumption, never achievable in practice. However, it is usually considered in similar scenarios to focus on the ultimate bounds of proposed solutions and achieve a better understanding of their potential [29, 41].

  10. 10.

    We remark that this is only a simplification in the notation, thus we are not assuming absence of cross-tier interference from the MBS to SUEs.

  11. 11.

    Note that, the overall spectral efficiency of the second tier can be computed as \(R_{{\text {s}}}=\displaystyle \sum _{k=1}^K R_{{\text {s}}}^{(k)}\).

  12. 12.

    We note that, the cross-tier interference cancelation precoder, i.e., \(\mathbf{E}\), is the same for both the proposed strategy and the TDMA approach.

  13. 13.

    We depart from the assumption that a synchronization scheme is already employed at the first tier.

References

  1. 3GPP: TR 25.814, physical layer aspects for Evolved UTRA, v. 2.0.0. Technical report 3GPP (2006)

    Google Scholar 

  2. 3GPP: TR 36.902, evolved universal terrestrial radio access network (E-UTRAN): self-configuring and self-optimizing network (SON) use cases and solutions, v. 9.3.1. Technical report, 3GPP (2011)

    Google Scholar 

  3. 3GPP: TR 36.300, evolved universal terrestrial radio access (E-UTRA) and evolved universal terrestrial radio access network (E-UTRAN), overall description, stage 2, v. 10.8.0. Technical report, 3GPP (2012)

    Google Scholar 

  4. Akoum, S., Zwingelstein-Colin, M., Heath Jr., R.W., Debbah, M.: Cognitive cooperation for the downlink of frequency reuse small cells. EURASIP J. Adv. Signal Process. 2011(1), 525271 (2011). http://asp.eurasipjournals.com/content/2011/1/525271

  5. Akyildiz, I., Lee, W.Y., Vuran, M., Mohanty, S.: A survey on spectrum management in cognitive radio networks. IEEE Commun. Mag. 46(4), 40–48 (2008). doi:10.1109/MCOM.2008.4481339

    Article  Google Scholar 

  6. Amir, M., El-Keyi, A., Nafie, M.: Constrained interference alignment and the spatial degrees of freedom of MIMO cognitive networks. IEEE Trans. Inf. Theory 57(5), 2994–3004 (2011). doi:10.1109/TIT.2011.2119770

    Article  Google Scholar 

  7. Andrews, M., Capdevielle, V., Feki, A., Gupta, P.: Autonomous spectrum sharing for mixed LTE femto and macro cells deployments. In: IEEE Conference on Computer Communications (INFOCOM) Workshops, pp. 1–5 (2010). doi:10.1109/INFCOMW.2010.5466611

  8. Andrews, M., Kumaran, K., Ramanan, K., Stolyar, A., Whiting, P., Vijayakumar, R.: Providing quality of service over a shared wireless link. IEEE Commun. Mag. 39(2), 150–154 (2001). doi:10.1109/35.900644

    Article  Google Scholar 

  9. ANSI/IEEE: Ansi/ieee standard 802.11. Technical report, ANSI/IEEE (1999)

    Google Scholar 

  10. ARTIST4G: Innovative advanced signal processing algorithms for interference avoidance. https://ict-artist4g.eu/projet/work-packages/wp1/documents/d1.2/d1.2.pdf/at_download/file (2010). Accessed 28 Nov 2012

  11. Ayres, J.: Theory and Problems of Matrices: Including 340 Solved Problems Completely Solved in Detail (Schaum’s Outline Series). McGraw-Hill, New York (1962)

    Google Scholar 

  12. Bernaschi, M., Cacace, F., Iannello, G.: Vertical handoff performance in heterogeneous networks. In: Proceedings of 2004 International Conference on Parallel Processing (ICCP) Workshops, pp. 100–107 (2004). doi:10.1109/ICPPW.2004.1328002

  13. Bertrand, P.: Channel cain estimation from sounding reference signal in LTE. In: IEEE 73rd Vehicular Technology Conference (VTC Spring), pp. 1–5 (2011). doi:10.1109/VETECS.2011.5956571

  14. Biguesh, M., Gershman, A.B.: Training-based MIMO channel estimation: a study of estimator tradeoffs and optimal training signals. IEEE Trans. Signal Process. 54(3), 884–893 (2006). doi:10.1109/TSP.2005.863008

    Article  Google Scholar 

  15. Cadambe, V.R., Jafar, S.A.: Interference alignment and degrees of freedom of the K-user interference channel. IEEE Trans. Inf. Theory 54(8), 3425–3441 (2008). doi:10.1109/TIT.2008.926344

    Article  MathSciNet  Google Scholar 

  16. Caire, G., Shamai, S.: On the achievable throughput of a multi-antenna gaussian broadcast channel. IEEE Trans. Inf. Theory 49, 1691–1706 (2003)

    Article  MathSciNet  Google Scholar 

  17. Cardoso, L.S.: Orthogonal precoder for dynamic spectrum access in wireless networks. Ph.D. thesis, Supélec (2011)

    Google Scholar 

  18. Cardoso, L.S., Kobayashi, M., Cavalcanti, F.R.P., Debbah, M.: Vandermonde-subspace frequency division multiplexing for two-tiered cognitive radio networks. IEEE Trans. Commun. (2013) (to appear)

    Google Scholar 

  19. Chandrasekhar, V., Andrews, J., Gatherer, A.: Femtocell networks: a survey. IEEE Commun. Mag. 46(9), 59–67 (2008). doi:10.1109/MCOM.2008.4623708

    Article  Google Scholar 

  20. Chandrasekhar, V., Andrews, J.G., Muharemovic, T., Zukang, S., Gatherer, A.: Power control in two-tier femtocell networks. IEEE Trans. Wireless Commun. 8(8), 4316–4328 (2009). doi:10.1109/TWC.2009.081386

    Article  Google Scholar 

  21. Costa, M.: Writing on dirty paper. IEEE Trans. Inf. Theory 29(3), 439–441 (1983). doi:10.1109/TIT.1983.1056659

    Article  MATH  Google Scholar 

  22. Da, B., Zhang, R.: Exploiting interference alignment in multi-cell cooperative OFDMA resource allocation. In: IEEE Global Telecommunications Conference (GLOBECOM), pp. 1–5 (2011). doi:10.1109/GLOCOM.2011.6133870

  23. Dahrouj, H., Yu, W.: Coordinated beamforming for the multicell multi-antenna wireless system. IEEE Trans. Wireless Commun. 9(5), 1748–1759 (2010). doi:10.1109/TWC.2010.05.090936

    Article  Google Scholar 

  24. Debbah, M.: Short introduction to OFDM. http://flexible-radio.org/sites/default/files/media/1/tutorial_ofdmtutorial.pdf. Accessed 31 Dec 2012

  25. Devroye, N., Mitran, P., Tarokh, V.: Achievable rates in cognitive radio channels. IEEE Trans. Inf. Theory 52(5), 1813–1827 (2006). doi:10.1109/TIT.2006.872971

    Article  MathSciNet  Google Scholar 

  26. Ericsson: Ericsson mobility report: on the pulse of the networked society. Whitepaper (2012)

    Google Scholar 

  27. FCC: In the matter of unlicensed operation in the tv broadcast bands docket 04–186 incremental reform towards a boradcast underlay, and the radio traffic signal. Technical report, FCC (2008)

    Google Scholar 

  28. Gastpar, M.: On capacity under receive and spatial spectrum-sharing constraints. IEEE Trans. Inf. Theory 53(2), 471–487 (2007). doi:10.1109/TIT.2006.889016

    Article  MathSciNet  Google Scholar 

  29. Gesbert, D., Hanly, S., Huang, H., Shamai Shitz, S., Simeone, O., Yu, W.: Multi-cell MIMO cooperative networks: a new look at interference. IEEE J. Sel. Areas Commun. 28(9), 1380–1408 (2010). doi:10.1109/JSAC.2010.101202

    Article  Google Scholar 

  30. Ghasemi, A., Motahari, A., Khandani, A.: Interference alignment for the K user MIMO interference channel. In: IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 360–364 (2010). doi: 10.1109/ISIT.2010.5513347

  31. Goldsmith, A.: Wireless Communications. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  32. Goldsmith, A., Jafar, S., Maric, I., Srinivasa, S.: Breaking spectrum gridlock with cognitive radios: an information theoretic perspective. Proc. IEEE 97(5), 894–914 (2009). doi:10.1109/JPROC.2009.2015717

    Article  Google Scholar 

  33. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  34. Ho, W., Quek, T., Sun, S., Heath, R.: Decentralized precoding for multicell MIMO downlink. IEEE Trans. Wireless Commun. 10(6), 1798–1809 (2011). doi:10.1109/TWC.2011.040511.100519

    Article  Google Scholar 

  35. Hobby, J.D., Claussen, H.: Deployment options for femtocells and their impact on existing macrocellular networks. Bell Labs Tech. J. 13(4), 145–160 (2009)

    Article  Google Scholar 

  36. Holma, H., Toskala, A.: LTE for UMTS-OFDMA and SC-FDMA Based Radio Access. Wiley, New York (2009)

    Google Scholar 

  37. Hoydis, J., Kobayashi, M., Debbah, M.: Green small-cell networks. EEE Veh. Technol. Mag. 6, 37–43 (2011). doi:10.1109/MVT.2010.939904

    Article  Google Scholar 

  38. Hoydis, J., Kobayashi, M., Debbah, M.: Optimal channel training in uplink network MIMO systems. IEEE Trans. Signal Process. 59(6), 2824–2833 (2011). doi:10.1109/TSP.2011.2129513

    Article  MathSciNet  Google Scholar 

  39. Huh, H., Caire, G., Papadopoulos, H., Ramprashad, S.: Achieving “Massive MIMO” spectral efficiency with a not-so-large number of antennas. IEEE Trans. Wireless Commun. 11(9), 3226–3239 (2012). doi:10.1109/TWC.2012.070912.111383

    Article  Google Scholar 

  40. IEEE: IEEE 802.16: broadband metropolitan area networks (MANs) (2009)

    Google Scholar 

  41. Karakayali, M.K., Foschini, G.J., Valenzuela, R.A.: Network coordination for spectrally efficient communications in cellular systems. IEEE Wireless Commun. 13(4), 56–61 (2006). doi:10.1109/MWC.2006.1678166

    Article  Google Scholar 

  42. Li, Y.: Optimum training sequences for OFDM systems with multiple transmit antennas. In: IEEE Global Telecommunications Conference (GLOBECOM), vol. 3, pp. 1478–1482 (2000). doi:10.1109/GLOCOM.2000.891886

  43. Liang, Y., Somekh-Baruch, A., Poor, H.V., Shamai, S., Verdu, S.: Capacity of cognitive interference channels with and without secrecy. IEEE Trans. Inf. Theory 55(2), 604–619 (2009). doi:10.1109/TIT.2008.2009584

    Article  MathSciNet  Google Scholar 

  44. de Lima, C.H.M., Bennis, M., Latva-aho, M.: Coordination mechanisms for self-organizing femtocells in two-tier coexistence scenarios. IEEE Trans. Wireless Commun. 11(6), 2212–2223 (2012). doi:10.1109/TWC.2012.041912.110965

    Article  Google Scholar 

  45. Lopez-Perez, D., Valcarce, A., de la Roche, G., Zhang, J.: Ofdma femtocells: a roadmap on interference avoidance. IEEE Commun. Mag. 47(9), 41–48 (2009). doi:10.1109/MCOM.2009.5277454

    Article  Google Scholar 

  46. Marzetta, T.L.: Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wireless Commun. 9(11), 3590–3600 (2010). doi:10.1109/TWC.2010.092810.091092

    Article  Google Scholar 

  47. Maso, M.: Flexible cognitive small-cells for next generation two-tiered networks. Ph.D. thesis, Supélec (2013). http://paduaresearch.cab.unipd.it/5339/

  48. Maso, M., Cardoso, L.S., Baştğ, E., Linh-Trung, N., Debbah, M., Özdemir, O.: On the practical implementation of vfdm-based opportunistic systems: issues and challenges. REV J. Electron. Commun. 2(1–2), 1–18 (2012)

    Google Scholar 

  49. Maso, M., Cardoso, L.S., Debbah, M., Vangelista, L.: Cognitive interference alignment for OFDM two-tiered networks. In: IEEE 13th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 244–248 (2012). doi: 10.1109/SPAWC.2012.6292902

  50. Maso, M., Cardoso, L.S., Debbah, M., Vangelista, L.: Cognitive orthogonal precoder for two-tiered networks deployment. IEEE J. Sel. Areas Commun. Cogn. Radio Ser. (2013) (to appear)

    Google Scholar 

  51. Maso, M., Debbah, M., Vangelista, L.: A distributed approach to interference alignment in ofdm-based two-tiered networks. IEEE Trans. Veh. Technol. Spec. Sect.: Self-Organizing Radio, Networks (2013)

    Google Scholar 

  52. Meyer, C.: Matrix Analysis and Applied Linear Algebra Book and Solutions Manual (Miscellaneous Titles in Applied Mathematics Series). Society for Industrial and Applied Mathematics (2000)

    Google Scholar 

  53. de Miguel, R., Muller, R.R.: Vector precoding for a single-user MIMO channel: Matched filter vs. distributed antenna detection. In: First International Symposium on Applied Sciences on Biomedical and Communication Technologies (ISABEL), pp. 1–4 (2008). doi: 10.1109/ISABEL.2008.4712589

  54. Mitola, J.I., Maguire, G.Q.J.: Cognitive radio: making software radios more personal. IEEE Pers. Commun. 6(4), 13–18 (1999)

    Article  Google Scholar 

  55. Peel, C., Hochwald, B., Swindlehurst, A.: A vector-perturbation technique for near-capacity multiantenna multiuser communication (part I): channel inversion and regularization. IEEE Trans. Commun. 53(1), 195–202 (2005)

    Article  Google Scholar 

  56. Perlaza, S., Fawaz, N., Lasaulce, S., Debbah, M.: From spectrum pooling to space pooling: opportunistic interference alignment in MIMO cognitive networks. IEEE Trans. Signal Process. 58(7), 3728–3741 (2010). doi:10.1109/TSP.2010.2046084

    Article  MathSciNet  Google Scholar 

  57. Rhee, I., Warrier, A., Min, J., Xu, L.: DRAND: distributed randomized TDMA scheduling for wireless ad hoc networks. IEEE Trans. Mob. Comput. 8(10), 1384–1396 (2009). doi:10.1109/TMC.2009.59

    Article  Google Scholar 

  58. Sason, I.: On achievable rate regions for the Gaussian interference channel. IEEE Trans. Inf. Theory 50(6), 1345–1356 (2004). doi:10.1109/TIT.2004.828151

    Article  MathSciNet  Google Scholar 

  59. Sharif, M., Hassibi, B.: On the capacity of MIMO broadcast channels with partial side information. IEEE Trans. Inf. Theory 51(2), 506–522 (2005). doi:10.1109/TIT.2004.840897

    Article  MathSciNet  Google Scholar 

  60. Shen, C., Fitz, M.P.: Opportunistic spatial orthogonalization and its application in fading cognitive radio networks. IEEE J. Sel. Top. Signal Process. 5(1), 182–189 (2011). doi:10.1109/JSTSP.2010.2056671

    Article  Google Scholar 

  61. Spencer, Q.H., Swindlehurst, A.L., Haardt, M.: Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels. IEEE Trans. Signal Process. 52(2), 461–471 (2004). doi:10.1109/TSP.2003.821107

    Article  MathSciNet  Google Scholar 

  62. Srinivasa, S., Jafar, S.A.: Cognitive radios for dynamic spectrum access: the throughput potential of cognitive radio—a theoretical perspective. IEEE Commun. Mag. 45(5), 73–79 (2007). doi:10.1109/MCOM.2007.358852

    Article  Google Scholar 

  63. Srinivasan, D., Dey, J., Kumar M, S., Mukherjee, R.N.: http://www.wipro.com/Documents/resource-center/Data_Offload_Approaches_for_Mobile_Operators.pdf (2012). Accessed 31 Dec 2012

  64. Stankovic, V., Haardt, M.: Multi-user MIMO downlink precoding for users with multiple antennas. In: Proceedings of the 12th Meeting of the Wireless World Research, Forum (2004)

    Google Scholar 

  65. Stankovic, V., Haardt, M.: Generalized design of multi-user MIMO precoding matrices. IEEE Trans. Wireless Commun. 7(3), 953–961 (2008). doi:10.1109/LCOMM.2008.060709

    Article  Google Scholar 

  66. Tse, D., Viswanath, P.: Fundamentals of Wireless Communication. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  67. Weingarten, H., Steinberg, Y., Shamai, S.: The capacity region of the gaussian multiple-input multiple-output broadcast channel. IEEE Trans. Inf. Theory 52(9), 3936–3964 (2006). doi:10.1109/TIT.2006.880064

    Article  MathSciNet  Google Scholar 

  68. Zhang, W., Mitra, U.: Spectrum shaping: a new perspective on cognitive radio-part I: coexistence with coded legacy transmission. IEEE Trans. Commun. 58(6), 1857–1867 (2010). doi:10.1109/TCOMM.2010.06.090289

    Article  Google Scholar 

  69. Zhao, Q., Sadler, B.: A survey of dynamic spectrum access. IEEE Signal Process. Mag. 24(3), 79–89 (2007). doi:10.1109/MSP.2007.361604

    Article  Google Scholar 

  70. Zhou, H., Ratnarajah, T.: A novel interference draining scheme for cognitive radio based on interference alignment. In: IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), pp. 1–6 (2010). doi:10.1109/DYSPAN.2010.5457891

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo S. Cardoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

S. Cardoso, L., Maso, M., Debbah, M. (2014). Null-Space Precoder for Dense 4G and Beyond Networks. In: Cavalcanti, F. (eds) Resource Allocation and MIMO for 4G and Beyond. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8057-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8057-0_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8056-3

  • Online ISBN: 978-1-4614-8057-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics