Skip to main content

Mass-Production Memories (DRAM and Flash)

  • Chapter
  • First Online:
Atomic Layer Deposition for Semiconductors

Abstract

Dynamic random access memory (DRAM) works as the main memory in every modern computer, from high-end server computers to simple hand-held devices. Computing in any computer requires two key information sets; programs, and the data to program with. Both sets are stored as a form of ‘bits’ in the core memory part of a computer. Any computed output that comes from these actions is also stored as a data set within different parts of the memories that comprise the computer. Up to now, the conventional hard disk has been the primary memory element for all data storage (program and user data).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ranganathan P (2011) Computer 44:39

    Google Scholar 

  2. Mayer M (2009) The Physics of Data. Xerox PARC Forum Distinguished Lecture. www.parc.com/event/936/innovation-at-google.html

  3. Waser R (2008) Nanotechnology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  4. Kim JY, Lee CS, Kim SE, Chung IB, Choi YM, Park BJ, Lee JW, Kim DI, Hwang YS, Hwang DS, Hwang HK, Park JM, Kim DH, Kang NJ, Cho MH, Jeong MY, Kim HJ, Han JN, Kim SY, Nam BY, Park HS, Chung SH, Lee JH, Park JS, Kim HS, Park YJ, Kim K (2003), Symposium on VLSI technology, Digest of Technical Papers, p 11

    Google Scholar 

  5. Kim K (2005) International electron devices meeting, IEDM Technical Digest, p 323

    Google Scholar 

  6. Kuesters KH, Beug MF, Schroeder U, Nagel N, Bewersdorff U, Dallmann G, Jakschik S, Knoefler R, Kudelka S, Ludwig C, Manger D, Mueller W, Tilke A (2009) Adv Eng Mater 11:241

    CAS  Google Scholar 

  7. Niinistö J, Kukli K, Heikkilä M, Ritala M, Leskelä M (2009) Adv Eng Mater 11:223

    Google Scholar 

  8. Kim SK, Lee SW, Han JH, Lee B, Han S, Hwang CS (2010) Adv Funct Mater 20:2989

    CAS  Google Scholar 

  9. International Technology Roadmap for Semiconductors (2009)

    Google Scholar 

  10. Räisänen PI, Ritala M, Leskelä M (2002) J Mater Chem 12:1415

    Google Scholar 

  11. Min Y-S, Cho Y-J, Hwang CS (2005) Chem Mater 17:626

    CAS  Google Scholar 

  12. Hiltunen L, Kattelus H, Leskelä M, Mäkelä M, Niinistö L, Nykänen E, Soininen P, Tiitta M (1991) Mater Chem Phys 28:379

    CAS  Google Scholar 

  13. Tiitta M, Nykänen E, Soininen P, Niinistö L, Leskelä M, Lappalainen R (1998) Mater Res Bull 33:1315

    CAS  Google Scholar 

  14. Puurunen RL (2005) J Appl Phys 97:121301

    Google Scholar 

  15. Kim SK, Lee SW, Hwang CS, Min Y-S, Won JY, Jeong J (2006) J Electrochem Soc 153:F69

    CAS  Google Scholar 

  16. Kim YK, Lee SH, Choi SJ, Park HB, Seo YD, Chin KH, Kim D, Lim JS, Kim WD, Nam KJ, Cho M-H, Hwang KH, Kim YS, Kim SS, Park YW, Moon JT, Lee SI, Lee MY (2000) International Electron Devices Meeting, IEDM Technical Digest, p 369

    Google Scholar 

  17. Seidl H, Gutsche M, Schroeder U, Bimer A, Hecht T, Jakschik S, Luetzen J, Kerber M, Kudelka S, Popp T, Orth A, Rekinger H, Saenger A, Schupke K, Sell B (2002) International Electron Devices Meeting, IEDM Technical Digest, p 839

    Google Scholar 

  18. Böscke T, Kudelka S, Sänger A, Müller J, Krautschneider W (2006) European solid-state device research conference, p 391

    Google Scholar 

  19. Kukli K, Ritala M, Leskelä M (1995) J Electrochem Soc 142:1670

    CAS  Google Scholar 

  20. Aarik J, Kukli K, Aidla A (1996) Appl Surf Sci 103:331

    CAS  Google Scholar 

  21. Hiratani M, Hamada T, Iijima S, Ohji Y, Asano I, Naknishi N, Kimura S (2001) Symposium on VLSI Technology, Digest of Technical Papers, p 41

    Google Scholar 

  22. Sun H-J, Kim K-M, Kim Y, Cho K-J, Park K-S, Lee J-M, Roh J-S (2003) Jpn J Appl Phys 42:582

    CAS  Google Scholar 

  23. Ma D, Park S, Seo B-S, Choi S, Lee N, Lee J-H (2005) J Vac Sci Technol B 23:80

    CAS  Google Scholar 

  24. Zhao X, Vanderbilt D (2002) Phys Rev B 65:075105

    Google Scholar 

  25. Kim SK, Hwang CS (2008) Electrochem Solid-State Lett 11:G9

    CAS  Google Scholar 

  26. Park PK, Kang S-W (2006) Appl Phys Lett 89:192905

    Google Scholar 

  27. Govindarajan S, Böscke TS, Sivasubramani P, Kirsch PD, Lee BH, Tseng H-H, Jammy R, Schröder U, Ramanathan S, Gnade BE (2007) Appl Phys Lett 91:062906

    Google Scholar 

  28. Lee C-K, Cho E, Lee H-S, Hwang CS, Han S (2008) Phys Rev B 78:012102

    Google Scholar 

  29. Kukli K, Ritala M, Leskelä M, Sundqvist J, Oberbeck L, Heitmann J, Schröder U, Aarik J, Aidla A (2007) Thin Solid Films 515:6447

    CAS  Google Scholar 

  30. Schroeder U, Jakschik S, Erben E, Avellan A, Kudelka SP, Kerber M, Link A, Kersch A (2006) ECS Trans 1:125

    CAS  Google Scholar 

  31. Kim Y, Koo J, Han J, Choi S, Jeon H, Park C-G (2002) J Appl Phys 92:5443

    CAS  Google Scholar 

  32. Kukli K, Ritala M, Leskelä M (2000) Chem Vap Deposition 6:297

    CAS  Google Scholar 

  33. Endo K, Tatsumi T (2003) Jpn J Appl Phys 42:L685

    CAS  Google Scholar 

  34. Putkonen M, Niinistö L (2001) J Mater Chem 11:3141

    CAS  Google Scholar 

  35. Hausmann DM, Kim E, Becker J, Gordon RG (2002) Chem Mater 14:4350

    CAS  Google Scholar 

  36. Niinistö J, Kukli K, Kariniemi M, Ritala M, Leskelä M, Blasco N, Pinchart A, Lachaud C, Laaroussi N, Wang Z, Dussarrat C (2008) J Mater Chem 18:5243

    Google Scholar 

  37. Granneman E, Fischer P, Pierreux D, Terhorst H, Zagwijn P (2007) Surf Coat Technol 201:8899

    CAS  Google Scholar 

  38. Seo M, Min Y-S, Kim SK, Park TJ, Kim JH, Na KD, Hwang CS (2008) J Mater Chem 18:4324

    CAS  Google Scholar 

  39. Putkonen M, Niinistö J, Kukli K, Sajavaara T, Karppinen M, Yamauchi H, Niinistö L (2003) Chem Vap Deposition 9:207

    CAS  Google Scholar 

  40. Putkonen M, Niinistö L (2001) J Mater Chem 11:3141

    CAS  Google Scholar 

  41. Dezelah CL, Niinistö J, Kukli K, Munnik F, Lu J, Ritala M, Leskelä M, Niinistö L (2008) Chem Vap Deposition 14:358

    CAS  Google Scholar 

  42. Niinistö J, Kukli K, Tamm A, Putkonen M, Dezelah CL, Niinistö L, Lu J, Song F, Williams PA, Heys PN, Ritala M, Leskelä M (2008) J Mater Chem 28:3385

    Google Scholar 

  43. Aoki Y, Ueda T, Shirai H, Sakoh T, Kitamura T, Arai S (2002) International electron devices meeting, IEDM technical digest, p 831

    Google Scholar 

  44. Oh S-H, Chung J-H, Choi J-H, Yoo C-Y, Kim YS, Kim ST, Chung U-I, Moon JT (2003) Symposium on VLSI technology, Digest of technical papers, p 73

    Google Scholar 

  45. Seo M, Kim SK, Han JH, Hwang CS (2010) Chem Mater 22:4419

    CAS  Google Scholar 

  46. Seo M, Rha SH, Kim SK, Han JH, Lee W, Han S, Hwang CS (2011) J Appl Phys 110:024105

    Google Scholar 

  47. Yoon KR et al (2005) European solid-state device research conference, p 188

    Google Scholar 

  48. Cho HJ, Kim YD, Park DS, Lee E, Park CH, Jang JS, Lee KB, Kim HW, Chae SJ, Ki YJ, Han IK, Song YW (2006) European solid-state device research conference, p 146

    Google Scholar 

  49. Parker RA (1961) Phys Rev 124:1719

    CAS  Google Scholar 

  50. Sammelselg V, Rosental A, Tarre A, Niinistö L, Heiskanen K, Ilmonen K, Johansson L-S, Uustare T (1998) Appl Surf Sci 134:78

    CAS  Google Scholar 

  51. King JS, Graugnard E, Summmers CJ (2005) Adv Mater 17:1010

    CAS  Google Scholar 

  52. Mitchell DRG, Attard DJ, Triani G (2003) Thin Solid Films 441:85

    CAS  Google Scholar 

  53. Aarik J, Aidla A, Kiisler A-A, Uustare T, Sammelselg V (1997) Thin Solid Films 305:270

    CAS  Google Scholar 

  54. Aarik J, Aidla A, Sammelselg V, Siimon H, Uustare T (1996) J Cryst Growth 169:496

    CAS  Google Scholar 

  55. Ritala M, Leskelä M, Nykänen E, Soininen P, Niinistö L (1993) Thin Solid Films 225:288

    CAS  Google Scholar 

  56. Kim WD, Hwang GW, Kwon OS, Kim SK, Cho M, Jeong DS, Lee SW, Seo MH, Hwang CS, Min Y, Cho YJ (2005) J Electrochem Soc 152:C552

    CAS  Google Scholar 

  57. Ritala M, Leskelä M, Niinistö L, Haussalo P (1993) Chem Mater 5:1174

    CAS  Google Scholar 

  58. Aarik J, Aidla A, Uustare T, Ritala M, Leskelä M (2000) Appl Surf Sci 161:385

    CAS  Google Scholar 

  59. Aarik J, Karlis J, Mändar H, Uustare T, Sammelselg V (2001) Appl Surf Sci 181:339

    CAS  Google Scholar 

  60. Ritala M, Leskelä M, Rauhala E (1994) Chem Mater 6:556

    CAS  Google Scholar 

  61. Rahtu A, Ritala M (2002) Chem Vap Deposition 8:21

    CAS  Google Scholar 

  62. Kim SK, Kim W-D, Kim K-M, Hwang CS, Jeong J (2004) Appl Phys Lett 85:4112

    CAS  Google Scholar 

  63. Pheamhom R, Sunwoo C, Kim D-H (2006) J Vac Sci Technol A 24:1535

    CAS  Google Scholar 

  64. Kim SK, Hoffmann-Eifert S, Mi S, Waser R (2009) J Electrochem Soc 156:D296

    CAS  Google Scholar 

  65. Byun C, Jang JW, Kim IT, Hong KS, Lee BW (1997) Mater Res Bull 32:431

    CAS  Google Scholar 

  66. Kadoshima M, Hiratani M, Shimamoto Y, Torii K, Miki H, Kimura S, Nabatame T (2003) Thin Solid Films 424:224

    CAS  Google Scholar 

  67. Hiratani M, Kadoshima M, Hirano T, Shimamoto Y, Matsui Y, Nabatame T, Torii K, Kimura S (2003) Appl Surf Sci 207:13

    CAS  Google Scholar 

  68. Kim SK, Han S, Han JH, Lee W, Hwang CS (2011) Phys Status Solidi RRL 5:262

    CAS  Google Scholar 

  69. Choi G-J, Kim SK, Won S-J, Kim HJ, Hwang CS (2009) J Electrochem Soc 156:G138

    CAS  Google Scholar 

  70. Fröhlich K, Ťapajna M, Rosová A, Dobročka E, Hušeková K, Aarik J, Aidla A (2008) Electrochem Solid-State Lett 11:G19

    Google Scholar 

  71. Kim SK, Choi G-J, Lee SY, Seo M, Lee SW, Han JH, Ahn H-S, Han S, Hwang CS (2008) Adv Mater 20:1429

    CAS  Google Scholar 

  72. Kim SK, Choi GJ, Kim JH, Hwang CS (2008) Chem Mater 20:3723

    CAS  Google Scholar 

  73. Han JH, Han S, Lee W, Lee SW, Kim SK, Gatineau J, Dussarrat C, Hwang CS (2011) Appl Phys Lett 99:022901

    Google Scholar 

  74. R. Wyckoff, Crystal structures, 2nd ed, Vol. 2, Interscience, New York, 1964

    Google Scholar 

  75. Deak DS (2007) Mater Sci Technol 23:127

    CAS  Google Scholar 

  76. Cardona M (1965) Phys Rev 140:A651

    Google Scholar 

  77. Henrich V, Dresselhaus G, Zeiger H (1978) Phys Rev B 17B:4908

    Google Scholar 

  78. Reihl B, Bednorz JG, Müller KA, Jugnet Y, Landgren G, Morar JF (1984) Phys Rev B 30B:803

    Google Scholar 

  79. Møller P, Komolov S, Lazneva E (2000) J Phys: Condens Matter 12:7705

    Google Scholar 

  80. Lines ME, Glass AM (1977) Principles and application of ferroelectrics and related materials. Clarendon Press, Oxford

    Google Scholar 

  81. Hwang CS, Park SO, Cho H-J, Kang CS, Kang H-K, Lee SI, Lee MY (1995) Appl Phys Lett 67:2821

    Google Scholar 

  82. Hwang CS (2002) J Appl Phys 92:432

    CAS  Google Scholar 

  83. Black CT, Welser JJ (1999) IEEE Trans Electron Devices 46:776

    CAS  Google Scholar 

  84. Natori K, Otani D, Sano N (1998) Appl Phys Lett 73:632

    CAS  Google Scholar 

  85. No SY, Oh JH, Jeon CB, Schindler M, Hwang CS, Kim HJ (2005) J Electrochem Soc 152:C435

    CAS  Google Scholar 

  86. Lesaicherre PY, Yamaguchi H, Miyasaka Y, Watanabe H, Ono H, Yoshida M (1995) Integr Ferroelectr 8:201

    CAS  Google Scholar 

  87. Menou N, Popovici M, Clima S, Opsomer K, Polspoel W, Kaczer B, Rampelberg G, Tomida K, Pawlak MA, Detavernier C, Pierreux D, Swerts J, Maes JW, Manger D, Badylevich M, Afanasiev V, Conard T, Favia P, Bender H, Brijs B, Vandervorst W, Van Elshocht S, Pourtois G, Wouters DJ, Biesemans S, Kittl JA (2009) J Appl Phys 106:094101

    Google Scholar 

  88. Popovici M, Van Elshocht S, Menou N, Swerts J, Pierreux D, Delabie A, Brijs B, Conard T, Opsomer K, Maes JW, Wouters DJ, Kittl JA (2010) J Electrochem Soc 157:G1

    CAS  Google Scholar 

  89. Kosola A, Putkonen M, Johansson L-S, Niinistö L (2003) Appl Surf Sci 11:102

    Google Scholar 

  90. Langereis E, Roijmans R, Roozeboom F, van de Sanden MCM, Kessels WMM (2011) J Electrochem Soc 158:G34

    CAS  Google Scholar 

  91. Vehkamäki M, Hänninen T, Ritala M, Leskelä M, Sajavaara T, Rauhala E, Keinonen J (2001) Chem Vap Deposition 7:75

    Google Scholar 

  92. Ahn JH, Kim JY, Kang SW, Kim JH, Roh JS (2007) Appl Phys Lett 91:062910

    Google Scholar 

  93. Kwon OS, Lee SW, Han JH, Hwang CS (2007) J Electrochem Soc 154:G127

    CAS  Google Scholar 

  94. Kwon OS, Kim SK, Cho M, Hwang CS, Jeong J (2005) J Electrochem Soc 152:C229

    CAS  Google Scholar 

  95. Lee SW, Kwon OS, Han JH, Hwang CS (2008) Appl Phys Lett 92:222903

    Google Scholar 

  96. Lee SW, Han JH, Kwon OS, Hwang CS (2008) J Electrochem Soc 155:G253

    CAS  Google Scholar 

  97. Vehkamäki M, Hatanpää T, Hänninen T, Ritala M, Leskelä M (1999) Electrochem Solid-State Lett 2:504

    Google Scholar 

  98. Holme TP, Prinz FB (2007) J Phys Chem A 111:8147

    CAS  Google Scholar 

  99. García H, Castán H, Gómez A, Dueñas S, Bailón L, Kukli K, Kariniemi M, Kemell M, Niinistö J, Ritala M, Leskelä M (2011) J Vac Sci Technol B 29:01AC04

    Google Scholar 

  100. Lee SW, Han JH, Han S, Lee W, Jang JH, Seo M, Kim SK, Dussarrat C, Gatineau J, Min Y-S, Hwang CS (2011) Chem Mater 23:2227

    CAS  Google Scholar 

  101. Menou N, Wang XP, Kaczer B, Polspoel W, Popovici M, Opsomer K, Pawlak MA, Knaepen W, Detavernier C, Blomberg T, Pierreux D, Swerts J, Maes JW, Favia P, Bender H, Brijs B, Vandervorst W, Van Elshocht S, Wouters DJ, Biesemans S, Kittl JA (2008) International electron devices meeting, IEDM technical digest, p 929

    Google Scholar 

  102. Pawlak MA, Kaczer B, Kim M-S, Popovici M, Tomida K, Swerts J, Opsomer K, Polspoel W, Favia P, Vrancken C, Demeurisse C, Wang W-C, Afanas’ev VV, Vandervorst W, Bender H, Debusschere I, Altimime L, Kittl JA (2010) Appl Phys Lett 97:162906

    Google Scholar 

  103. Pawlak MA, Kaczer B, Kim M-S, Popovici M, Swerts J, Wang W-C, Opsomer K, Favia P, Tomida K, Belmonte A, Govoreanu B, Vrancken C, Demeurisse C, Bender H, Afanas’ev VV, Debusschere I, Altimime L, Kittl JA (2011) Appl Phys Lett 98:182902

    Google Scholar 

  104. Riedel S, Neidhardt J, Jansen S, Wilde L, Sundqvist J, Erben E, Teichert S, Michaelis A (2011) J Appl Phys 109:094101

    Google Scholar 

  105. Huang CC, Cheng CH, Lin CW, Chang LM (2010) J Electrochem Soc 157:H624

    CAS  Google Scholar 

  106. Chen TL, Li XM, Wu WB (2005) J Appl Phys 98:064109

    Google Scholar 

  107. Kang SY, Hwang CS, Kim HJ (2005) J Electrochem Soc 152:C15

    CAS  Google Scholar 

  108. Aaltonen T, Rahtu A, Ritala M, Leskelä M (2003) Electrochem Solid-State Lett 6:C130

    CAS  Google Scholar 

  109. Aaltonen T, Ritala M, Arstila K, Keinonen J, Leskelä M (2004) Chem Vap Deposition 10:215

    CAS  Google Scholar 

  110. Kim SK, Hoffmann-Eifert S, Waser R (2009) J Phys Chem C 113:11329

    CAS  Google Scholar 

  111. Aaltonen T, Alen P, Ritala M, Leskelä M (2003) Chem Vap Deposition 9:45

    CAS  Google Scholar 

  112. Kim W-H, Park S-J, Son J-Y, Kim H (2008) Nanotechology 19:045302

    Google Scholar 

  113. Kim SK, Lee SY, Lee SW, Hwang GW, Hwang CS, Lee JW, Jeong J (2007) J Electrochem Soc 154:D95

    CAS  Google Scholar 

  114. Kim SK, Han JH, Kim GH, Hwang CS (2010) Chem Mater 22:2850

    CAS  Google Scholar 

  115. Kwon O-K, Kwon S-H, Park H-S, Kang S-W (2004) J Electrochem Soc 151:C753

    CAS  Google Scholar 

  116. Park S-J, Kim W-H, Lee H-B-R, Maeng WJ, Kim H (2008) Microelectron Eng 85:39

    CAS  Google Scholar 

  117. Yim S-S, Lee D-J, Kim K-S, Kim S-H, Yoon T-S, Kim K-B (2008) J Appl Phys 103:113509

    Google Scholar 

  118. Kukli K, Ritala M, Kemell M, Leskelä M (2010) J Electrochem Soc 157:D35

    CAS  Google Scholar 

  119. Kukli K, Kemell M, Puukilainen E, Aarik J, Aidla A, Sajavaara T, Laitinen M, Tallarida M, Sundqvist J, Ritala M, Leskelä M (2011) J Electrochem Soc 158:D158

    CAS  Google Scholar 

  120. Gregorczyk K, Henn-Lecordier L, Gatineau J, Dussarrat C, Rubloff G (2011) Chem Mater 23:2650

    CAS  Google Scholar 

  121. Leick N, Verkuijlen ROF, Lamagna L, Langereis E, Rushworth S, Roozeboom F, van de Sanden MCM, Kessels WMM (2011) J Vac Sci Technol A 29:021016

    Google Scholar 

  122. Eom T-K, Sari W, Choi K-J, Shin W-C, Kim JH, Lee D-J, Kim K-B, Sohn H, Kim S-H (2009) Electrochem Solid-State Lett 12:D85

    CAS  Google Scholar 

  123. Wang H, Gordon RG, Alvis R, Ulfig RM (2009) Chem Vap Deposition 15:312

    CAS  Google Scholar 

  124. Han JH, Lee SW, Choi GJ, Lee SY, Hwang CS, Dussarrat C, Gatineau J (2009) Chem Mater 21:207

    CAS  Google Scholar 

  125. Gatineau J, Yanagita K, Dussarrat C (2006) Microelectron Eng 83:2248

    CAS  Google Scholar 

  126. Aaltonen T, Ritala M, Sajavaara T, Keinonen J, Leskelä M (2003) Chem Mater 15:1924

    CAS  Google Scholar 

  127. Aaltonen T, Ritala M, Sammelselg V, Leskelä M (2004) J Electrochem Soc 151:G489

    Google Scholar 

  128. Hämäläinen J, Puukilainen E, Kemell M, Costelle L, Ritala M, Leskelä M (2009) Chem Mater 21:4868

    Google Scholar 

  129. Kwon S-H, Kwon O-K, Kim J-H, Jeong S-J, Kim S-W, Kang S-W (2007) J Electrochem Soc 154:H773

    CAS  Google Scholar 

  130. Kim J-H, Kil D-S, Yeom S-J, Roh J-S, Kwak N-J, Kim J-W (2007) Appl Phys Lett 91:052908

    Google Scholar 

  131. Hämäläinen J, Kemell M, Munnik F, Kreissig U, Ritala M, Leskelä M (2008) Chem Mater 20:2903

    Google Scholar 

  132. Han JH, Lee SW, Kim SK, Han S, Hwang CS, Dussarrat C, Gatineau J (2010) Chem Mater 22:5700

    CAS  Google Scholar 

  133. Pinna N, Knez M (2012) Atomic layer deposition of nanostructured materials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  134. Unpublished; courtesy of Samsung

    Google Scholar 

  135. Lee CH, Choi KI, Cho MK, Song YH, Park KC, Kim K (2003) International electron devices meeting, IEDM technical digest, p 26

    Google Scholar 

  136. Jeon S, Han JH, Lee JH, Choi S, Hwang H, Kim C (2005) IEEE Trans Electron Devices 52:2654

    CAS  Google Scholar 

  137. Sung S-K, Lee S-H, Choi BY, Lee JJ, Choe J-D, Cho ES, Ahn YJ, Choi D, Lee C-H, Kim DH, Lee Y-S, Kim SB, Park D, Ryu B-I (2006) Symposium on VLSI technology digest of technical papers, p 86

    Google Scholar 

  138. Lue H-T, Lai S-C, Hsu T-H, Du P-Y, Wang S-Y, Hsieh K-Y, Liu R, Lu C-Y (2009) IEEE International reliability physics symposium, p 847

    Google Scholar 

  139. Kamiyama S, Miura T, Nara Y (2006) Thin Solid Films 515:1517

    CAS  Google Scholar 

  140. Katamreddy R, Feist B, Takoudisb C (2008) J Electrochem Soc 155:G163

    CAS  Google Scholar 

  141. Tanaka H, Kido M, Yahashi K, Oomura M, Katsumata R, Kito M, Fukuzumi Y, Sato M, Nagata Y, Matsuoka Y, Iwata Y, Aochi H, Nitayama A (2007) Symposium on VLSI technology digest of technical papers, p 14

    Google Scholar 

  142. Kim W, Choi S, Sung J, Lee T, Park C, Ko H, Jung J, Yoo I, Park Y (2009) Symposium on VLSI technology digest of technical papers, p 188

    Google Scholar 

  143. Kim J, Hong AJ, Kim SM, Song EB, Park JH, Han J, Choi S, Jang D, Moon J-T, Wang KL (2009) Symposium on VLSI technology digest of technical papers, p 186

    Google Scholar 

  144. Huo ZL, Yang J, Lim S, Baik S, Lee J, Han JH, Yeo I-S, Chung U-I, Moon JT, Ryu B-I (2007) Symposium on VLSI technology digest of technical papers, p 138

    Google Scholar 

  145. Hong SH, Jang JH, Park TJ, Jeong DS, Kim M, Won JY, Hwang CS (2005) Appl Phys Lett 87:152106

    Google Scholar 

  146. Hoffman RL, Norris BJ, Wager JF (2003) Appl Phys Lett 82:733

    CAS  Google Scholar 

  147. Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H (2004) Nature 432:488

    CAS  Google Scholar 

  148. Hubert A, Nowak E, Tachi K, Maffini-Alvaro V, Vizioz C, Arvet C, Colonna J-P, Hartmann J-M, Loup V, Baud L, Pauliac S, Delaye V, Carabasse C, Molas G, Ghibaudo G, De Salvo B, Faynot O, Ernst T (2009) International electron devices meeting, IEDM technical digest, p 637

    Google Scholar 

  149. Yun J-G, Kim G, Lee J-E, Kim Y, Shim WB, Lee J-H, Shin H, Lee JD, Park B-G (2011) IEEE Trans Electron Devices 58:1006

    CAS  Google Scholar 

  150. Motoyoshi M (2009) Proceedings of the IEEE, p 43

    Google Scholar 

Download references

Acknowledgments

The author acknowledges support of the IT R&D program of MKE/IITA, “Capacitor technology for next generation DRAMs having mass-production compatibility” 2009-F-013-01, and the Converging Research Center Program through the National Research Foundation of Korea (2012K001299) funded by the Ministry of Education, Science and Technology, Korea. CSH greatly appreciates the crucial help from postdoctoral fellows and graduate students in his group at Seoul National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol Seong Hwang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hwang, C.S., Kim, S.K., Lee, S.W. (2014). Mass-Production Memories (DRAM and Flash). In: Hwang, C. (eds) Atomic Layer Deposition for Semiconductors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-8054-9_4

Download citation

Publish with us

Policies and ethics