Skip to main content

TP53 Aberrations in Chronic Lymphocytic Leukemia

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 792))

Abstract

CLL patients harboring TP53 defects remain the most challenging group in terms of designing rational and effective therapy. Irrespective of the treatment employed—chemotherapy, chemoimmunotherapy, or pure biological drugs—median survival of these patients does not exceed 3–4 years. This adverse outcome is caused by a less effective response to therapeutics acting through DNA damage induction and relying on the subsequent initiation of apoptosis as well as by virtually inevitable aggressive relapse. Patient proportions with TP53 defects at diagnosis or before first therapy were reported within the range 5–15 %, but they increase dramatically in pretreated cohorts (reported up to 44 %), and also in patients with Richter transformation (50 % harbor TP53 defects). Currently, most laboratories monitor TP53 defect as presence of 17p deletion using I-FISH, but 23–45 % of TP53-affected patients were shown to harbor only mutation(s). In other patients with intact TP53, the p53 pathway may be impaired by mutations in ATM gene coding for the p53-regulatory kinase; however, prognosis of ATM-defective patients is not as poor as those with TP53 abnormalities. Though many novel agents are under development, the monoclonal antibody alemtuzumab and allogeneic stem cell transplantation remain the basic treatment options for TP53-affected CLL patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lane DP, Crawford LV. T antigen is bound to a host protein in SV40-transformed cells. Nature. 1979;278:261–3.

    PubMed  CAS  Google Scholar 

  2. Linzer DI, Levine AJ. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell. 1979;17:43–52.

    PubMed  CAS  Google Scholar 

  3. Soussi T. The history of p53. A perfect example of the drawbacks of scientific paradigms. EMBO Rep. 2010;11:822–6.

    PubMed  CAS  Google Scholar 

  4. Finlay CA, Hinds PW, Levine AJ. The p53 proto-oncogene can act as a suppressor of transformation. Cell. 1989;57:1083–93.

    PubMed  CAS  Google Scholar 

  5. Eliyahu D, Michalovitz D, Eliyahu S, et al. Wild-type p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci U S A. 1989;86:8763–7.

    PubMed  CAS  Google Scholar 

  6. Lane D. Cancer. p53, guardian of the genome. Nature. 1992;358:15–6.

    PubMed  CAS  Google Scholar 

  7. Kenzelmann Broz D, Attardi LD. In vivo analysis of p53 tumor suppressor function using genetically engineered mouse models. Carcinogenesis. 2010;31:1311–8.

    PubMed  CAS  Google Scholar 

  8. Malkin D, Li FP, Strong LC, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250:1233–8.

    PubMed  CAS  Google Scholar 

  9. Petitjean A, Mathe E, Kato S, et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat. 2007;28:622–9.

    PubMed  CAS  Google Scholar 

  10. Bartkova J, Rezaei N, Liontos M, et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 2006;444:633–7.

    PubMed  CAS  Google Scholar 

  11. Bartek J, Bartkova J, Lukas J. DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene. 2007;26:7773–9.

    PubMed  CAS  Google Scholar 

  12. Bartkova J, Horejsi Z, Koed K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005;434:864–70.

    PubMed  CAS  Google Scholar 

  13. Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010;2:a001008.

    PubMed  Google Scholar 

  14. Scheffner M, Werness BA, Huibregtse JM, et al. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990;63:1129–36.

    PubMed  CAS  Google Scholar 

  15. Mestre-Escorihuela C, Rubio-Moscardo F, Richter JA, et al. Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas. Blood. 2007;109:271–80.

    PubMed  CAS  Google Scholar 

  16. Robles A, Harris C. Clinical outcomes and correlates of TP53 mutations and cancer. Cold Spring Harb Perspect Biol. 2010;2:a001016.

    PubMed  Google Scholar 

  17. Khoury MP, Bourdon JC. p53 isoforms: an intracellular microprocessor? Genes Cancer. 2011;2:453–65.

    PubMed  CAS  Google Scholar 

  18. Flaman JM, Waridel F, Estreicher A, et al. The human tumour suppressor gene p53 is alternatively spliced in normal cells. Oncogene. 1996;12:813–8.

    PubMed  CAS  Google Scholar 

  19. Whibley C, Pharoah PD, Hollstein M. p53 polymorphisms: cancer implications. Nat Rev Cancer. 2009;9:95–107.

    PubMed  CAS  Google Scholar 

  20. Sturm I, Bosanquet AG, Hummel M, et al. In B-CLL, the codon 72 polymorphic variants of p53 are not related to drug resistance and disease prognosis. BMC Cancer. 2005;5:105.

    PubMed  Google Scholar 

  21. Kochethu G, Delgado J, Pepper C, et al. Two germ line polymorphisms of the tumour suppressor gene p53 may influence the biology of chronic lymphocytic leukaemia. Leuk Res. 2006;30:1113–8.

    PubMed  CAS  Google Scholar 

  22. Majid A, Richards T, Dusanjh P, et al. TP53 codon 72 polymorphism in patients with chronic lymphocytic leukaemia: identification of a subgroup with mutated IGHV genes and poor clinical outcome. Br J Haematol. 2011;153:533–5.

    PubMed  Google Scholar 

  23. Lavin MF, Gueven N. The complexity of p53 stabilization and activation. Cell Death Differ. 2006;13:941–50.

    PubMed  CAS  Google Scholar 

  24. Banin S, Moyal L, Shieh S, et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science. 1998;281:1674–7.

    PubMed  CAS  Google Scholar 

  25. Canman CE, Lim DS, Cimprich KA, et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 1998;281:1677–9.

    PubMed  CAS  Google Scholar 

  26. Pomerantz J, Schreiber-Agus N, Liégeois N, et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell. 1998;92:713–23.

    PubMed  CAS  Google Scholar 

  27. el-Deiry WS, Kern SE, Pietenpol JA, et al. Definition of a consensus binding site for p53. Nat Genet. 1992;1:45–9.

    PubMed  CAS  Google Scholar 

  28. Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell. 2009;137:413–31.

    PubMed  CAS  Google Scholar 

  29. Burns TF, El-Deiry WS. Microarray analysis of p53 target gene expression patterns in the spleen and thymus in response to ionizing radiation. Cancer Biol Ther. 2003;2:431–43.

    PubMed  CAS  Google Scholar 

  30. Amundson SA, Do KT, Vinikoor LC, et al. Integrating global gene expression and radiation survival parameters across the 60 cell lines of the National Cancer Institute Anticancer Drug Screen. Cancer Res. 2008;68:415–24.

    PubMed  CAS  Google Scholar 

  31. Zenz T, Häbe S, Denzel T, et al. Detailed analysis of p53 pathway defects in fludarabine-refractory chronic lymphocytic leukemia (CLL): dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a prospective clinical trial. Blood. 2009;114:2589–97.

    PubMed  CAS  Google Scholar 

  32. Mraz M, Malinova K, Kotaskova J, et al. miR-34a, miR-29c and miR-17-5p are downregulated in CLL patients with TP53 abnormalities. Leukemia. 2009;23:1159–63.

    PubMed  CAS  Google Scholar 

  33. Suzuki H, Yamagata K, Sugimoto K, et al. Modulation of microRNA processing by p53. Nature. 2009;460:529–33.

    PubMed  CAS  Google Scholar 

  34. Lane DP, Goh AM. How p53 wields the scales of fate: arrest or death? Transcription. 2012;3.

    Google Scholar 

  35. Speidel D. Transcription-independent p53 apoptosis: an alternative route to death. Trends Cell Biol. 2010;20:14–24.

    PubMed  CAS  Google Scholar 

  36. Steele AJ, Prentice AG, Hoffbrand AV, et al. p53-mediated apoptosis of CLL cells: evidence for a transcription-independent mechanism. Blood. 2008;112:3827–34.

    PubMed  CAS  Google Scholar 

  37. Maiuri MC, Galluzzi L, Morselli E, et al. Autophagy regulation by p53. Curr Opin Cell Biol. 2010;22:181–5.

    PubMed  CAS  Google Scholar 

  38. Mahoney E, Lucas DM, Gupta SV, et al. ER stress and autophagy: new discoveries in the mechanism of action and drug resistance of the cyclin-dependent kinase inhibitor flavopiridol. Blood. 2012;120:1262–73.

    PubMed  CAS  Google Scholar 

  39. Amrein L, Soulières D, Johnston JB, et al. p53 and autophagy contribute to dasatinib resistance in primary CLL lymphocytes. Leuk Res. 2011;35:99–102.

    PubMed  CAS  Google Scholar 

  40. Donehower LA, Harvey M, Slagle BL, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992;356:215–21.

    PubMed  CAS  Google Scholar 

  41. Aramayo R, Sherman MB, Brownless K, et al. Quaternary structure of the specific p53-DNA complex reveals the mechanism of p53 mutant dominance. Nucleic Acids Res. 2011;39:8960–71.

    PubMed  CAS  Google Scholar 

  42. Malcikova J, Smardova J, Rocnova L, et al. Monoallelic and biallelic inactivation of TP53 gene in chronic lymphocytic leukemia: selection, impact on survival, and response to DNA damage. Blood. 2009;114:5307–14.

    PubMed  CAS  Google Scholar 

  43. Dittmer D, Pati S, Zambetti G, et al. Gain of function mutations in p53. Nat Genet. 1993;4:42–6.

    PubMed  CAS  Google Scholar 

  44. Oren M, Rotter V. Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol. 2010;2:a001107.

    PubMed  Google Scholar 

  45. Chin KV, Ueda K, Pastan I, et al. Modulation of activity of the promoter of the human MDR1 gene by Ras and p53. Science. 1992;255:459–62.

    PubMed  CAS  Google Scholar 

  46. Solomon H, Madar S, Rotter V. Mutant p53 gain of function is interwoven into the hallmarks of cancer. J Pathol. 2011;225:475–8.

    PubMed  CAS  Google Scholar 

  47. Solomon H, Buganim Y, Kogan-Sakin I, et al. Various p53 mutant proteins differently regulate the Ras circuit to induce a cancer-related gene signature. J Cell Sci. 2012;125:3144–52.

    PubMed  CAS  Google Scholar 

  48. Song H, Hollstein M, Xu Y. p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol. 2007;9:573–80.

    PubMed  CAS  Google Scholar 

  49. Gualberto A, Aldape K, Kozakiewicz K, et al. An oncogenic form of p53 confers a dominant, gain-of-function phenotype that disrupts spindle checkpoint control. Proc Natl Acad Sci U S A. 1998;95:5166–71.

    PubMed  CAS  Google Scholar 

  50. Trbusek M, Smardova J, Malcikova J, et al. Missense mutations located in structural p53 DNA-binding motifs are associated with extremely poor survival in chronic lymphocytic leukemia. J Clin Oncol. 2011;29:2703–8.

    PubMed  CAS  Google Scholar 

  51. Berns A. Cancer biology: can less be more for p53? Nature. 2006;443:153–4.

    PubMed  CAS  Google Scholar 

  52. Kato S, Han SY, Liu W, et al. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci U S A. 2003;100:8424–9.

    PubMed  CAS  Google Scholar 

  53. Stilgenbauer S, Zenz T. Understanding and managing ultra high-risk chronic lymphocytic leukemia. Hematology Am Soc Hematol Educ Program. 2010;2010:481–8.

    PubMed  Google Scholar 

  54. Gaidano G, Ballerini P, Gong JZ, et al. p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 1991;88:5413–7.

    PubMed  CAS  Google Scholar 

  55. Fenaux P, Preudhomme C, Lai JL, et al. Mutations of the p53 gene in B-cell chronic lymphocytic leukemia: a report on 39 cases with cytogenetic analysis. Leukemia. 1992;6:246–50.

    PubMed  CAS  Google Scholar 

  56. el Rouby S, Thomas A, Costin D, et al. p53 gene mutation in B-cell chronic lymphocytic leukemia is associated with drug resistance and is independent of MDR1/MDR3 gene expression. Blood. 1993;82:3452–9.

    PubMed  Google Scholar 

  57. Juliusson G, Oscier DG, Fitchett M, et al. Prognostic subgroups in B-cell chronic lymphocytic leukemia defined by specific chromosomal abnormalities. N Engl J Med. 1990;323:720–4.

    PubMed  CAS  Google Scholar 

  58. Pittman S, Catovsky D. Prognostic significance of chromosome abnormalities in chronic lymphocytic leukaemia. Br J Haematol. 1984;58:649–60.

    PubMed  CAS  Google Scholar 

  59. Dohner H, Fischer K, Bentz M, et al. p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias. Blood. 1995;85:1580–9.

    PubMed  CAS  Google Scholar 

  60. Dohner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343:1910–6.

    PubMed  CAS  Google Scholar 

  61. Hallek M, Cheson BD, Catovsky D, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111:5446–56.

    PubMed  CAS  Google Scholar 

  62. Oscier D, Wade R, Orchard JA, et al. Prognostic factors in the UK LRF CLL4 trial. Blood. 2006;108:299.

    Google Scholar 

  63. Baker SJ, Preisinger AC, Jessup JM, et al. p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res. 1990;50:7717–22.

    PubMed  CAS  Google Scholar 

  64. Nigro JM, Baker SJ, Preisinger AC, et al. Mutations in the p53 gene occur in diverse human tumour types. Nature. 1989;342:705–8.

    PubMed  CAS  Google Scholar 

  65. Zenz T, Krober A, Scherer K, et al. Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up. Blood. 2008;112:3322–9.

    PubMed  CAS  Google Scholar 

  66. Zenz T, Eichhorst B, Busch R, et al. TP53 mutation and survival in chronic lymphocytic leukemia. J Clin Oncol. 2010;28:4473–9.

    PubMed  Google Scholar 

  67. Dicker F, Herholz H, Schnittger S, et al. The detection of TP53 mutations in chronic lymphocytic leukemia independently predicts rapid disease progression and is highly correlated with a complex aberrant karyotype. Leukemia. 2009;23:117–24.

    PubMed  CAS  Google Scholar 

  68. Rossi D, Cerri M, Deambrogi C, et al. The prognostic value of TP53 mutations in chronic lymphocytic leukemia is independent of Del17p13: implications for overall survival and chemorefractoriness. Clin Cancer Res. 2009;15:995–1004.

    PubMed  CAS  Google Scholar 

  69. Gonzalez D, Martinez P, Wade R, et al. Mutational status of the TP53 gene as a predictor of response and survival in patients with chronic lymphocytic leukemia: results from the LRF CLL4 trial. J Clin Oncol. 2011;29:2223–9.

    PubMed  Google Scholar 

  70. Pospisilova S, Gonzalez D, Malcikova J, et al. ERIC recommendations on TP53 mutation analysis in chronic lymphocytic leukemia. Leukemia. 2012;26:1458–61.

    PubMed  CAS  Google Scholar 

  71. Tam C, Shanafelt T, Wierda W, et al. De novo deletion 17p13.1 chronic lymphocytic leukemia shows significant clinical heterogeneity: the M. D. Anderson and Mayo Clinic experience. Blood. 2009;114:957–64.

    PubMed  CAS  Google Scholar 

  72. Best OG, Gardiner AC, Davis ZA, et al. A subset of Binet stage A CLL patients with TP53 abnormalities and mutated IGHV genes have stable disease. Leukemia. 2009;23:212–4.

    PubMed  CAS  Google Scholar 

  73. Krober A, Seiler T, Benner A, et al. V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood. 2002;100:1410–6.

    PubMed  CAS  Google Scholar 

  74. Oscier DG, Gardiner AC, Mould SJ, et al. Multivariate analysis of prognostic factors in CLL: clinical stage, IGVH gene mutational status, and loss or mutation of the p53 gene are independent prognostic factors. Blood. 2002;100:1177–84.

    PubMed  CAS  Google Scholar 

  75. Catovsky D, Richards S, Matutes E, et al. Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 Trial): a randomised controlled trial. Lancet. 2007;370:230–9.

    PubMed  CAS  Google Scholar 

  76. Grever MR, Lucas DM, Dewald GW, et al. Comprehensive assessment of genetic and molecular features predicting outcome in patients with chronic lymphocytic leukemia: results from the US Intergroup Phase III Trial E2997. J Clin Oncol. 2007;25:799–804.

    PubMed  CAS  Google Scholar 

  77. Bosch F, Ferrer A, Villamor N, et al. Fludarabine, cyclophosphamide, and mitoxantrone as initial therapy of chronic lymphocytic leukemia: high response rate and disease eradication. Clin Cancer Res. 2008;14:155–61.

    PubMed  CAS  Google Scholar 

  78. Stilgenbauer S, Kröber A, Busch R, et al. 17p deletion predicts for inferior overall survival after fludarabine-based first line therapy in chronic lymphocytic leukemia: first analysis of genetics in the CLL4 trial of the GCLLSG. Blood. 2005;106:715a.

    Google Scholar 

  79. Byrd JC, Gribben JG, Peterson BL, et al. Select high-risk genetic features predict earlier progression following chemoimmunotherapy with fludarabine and rituximab in chronic lymphocytic leukemia: justification for risk-adapted therapy. J Clin Oncol. 2006;24:437–43.

    PubMed  CAS  Google Scholar 

  80. Bosch F, Abrisqueta P, Villamor N, et al. Rituximab, fludarabine, cyclophosphamide, and mitoxantrone: a new, highly active chemoimmunotherapy regimen for chronic lymphocytic leukemia. J Clin Oncol. 2009;27:4578–84.

    PubMed  CAS  Google Scholar 

  81. Hallek M, Fischer K, Fingerle-Rowson G, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet. 2010;376:1164–74.

    PubMed  CAS  Google Scholar 

  82. Saddler C, Ouillette P, Kujawski L, et al. Comprehensive biomarker and genomic analysis identifies p53 status as the major determinant of response to MDM2 inhibitors in chronic lymphocytic leukemia. Blood. 2008;111:1584–93.

    PubMed  CAS  Google Scholar 

  83. Dicker F, Herholz H, Schnittger S, et al. Screening for TP53 mutations identifies chronic lymphocytic leukemia patients with rapid disease progression. Blood. 2007;110:490.

    Google Scholar 

  84. Zenz T, Hoth P, Busch R, et al. TP53 mutations and outcome after fludarabine and cyclophosphamide (FC) or FC plus rituximab (FCR) in the CLL8 Trial of the GCLLSG. Blood. 2009;114:1267a.

    Google Scholar 

  85. Newcomb EW, el Rouby S, Thomas A. A unique spectrum of p53 mutations in B-cell chronic lymphocytic leukemia distinct from that of other lymphoid malignancies. Mol Carcinog. 1995;14:227–32.

    PubMed  CAS  Google Scholar 

  86. Zenz T, Vollmer D, Trbusek M, et al. TP53 mutation profile in chronic lymphocytic leukemia: evidence for a disease specific profile from a comprehensive analysis of 268 mutations. Leukemia. 2010;24:2072–9.

    PubMed  CAS  Google Scholar 

  87. Rodin SN, Rodin AS. Strand asymmetry of CpG transitions as indicator of G1 phase-dependent origin of multiple tumorigenic p53 mutations in stem cells. Proc Natl Acad Sci U S A. 1998;95:11927–32.

    PubMed  CAS  Google Scholar 

  88. Olivier M, Langerod A, Carrieri P, et al. The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res. 2006;12:1157–67.

    PubMed  CAS  Google Scholar 

  89. Young KH, Leroy K, Moller MB, et al. Structural profiles of TP53 gene mutations predict clinical outcome in diffuse large B-cell lymphoma: an international collaborative study. Blood. 2008;112:3088–98.

    PubMed  CAS  Google Scholar 

  90. Peltonen JK, Vähäkangas KH, Helppi HM, et al. Specific TP53 mutations predict aggressive phenotype in head and neck squamous cell carcinoma: a retrospective archival study. Head Neck Oncol. 2011;3:20.

    PubMed  CAS  Google Scholar 

  91. Lindenbergh-van der Plas M, Brakenhoff RH, Kuik DJ, et al. Prognostic significance of truncating TP53 mutations in head and neck squamous cell carcinoma. Clin Cancer Res. 2011;17:3733–41.

    PubMed  CAS  Google Scholar 

  92. Xu-Monette ZY, Wu L, Visco C, et al. Mutational profile and prognostic significance of TP53 in diffuse large B-cell lymphoma patients treated with rituximab-CHOP: a report from an International DLBCL Rituximab-CHOP Consortium Program study. Blood. 2012;120:3986–96.

    PubMed  CAS  Google Scholar 

  93. Dicker F, Kater AP, Prada CE, et al. CD154 induces p73 to overcome the resistance to apoptosis of chronic lymphocytic leukemia cells lacking functional p53. Blood. 2006;108:3450–7.

    PubMed  CAS  Google Scholar 

  94. Wierda WG, Castro JE, Aguillon R, et al. A phase I study of immune gene therapy for patients with CLL using a membrane-stable, humanized CD154. Leukemia. 2010;24:1893–900.

    PubMed  CAS  Google Scholar 

  95. Alonso R, López-Guerra M, Upshaw R, et al. Forodesine has high antitumor activity in chronic lymphocytic leukemia and activates p53-independent mitochondrial apoptosis by induction of p73 and BIM. Blood. 2009;114:1563–75.

    PubMed  CAS  Google Scholar 

  96. Zainuddin N, Murray F, Kanduri M, et al. TP53 Mutations are infrequent in newly diagnosed chronic lymphocytic leukemia. Leuk Res. 2011;35:272–4.

    PubMed  CAS  Google Scholar 

  97. Rossi D, Spina V, Deambrogi C, et al. The genetics of Richter syndrome reveals disease heterogeneity and predicts survival after transformation. Blood. 2011;117:3391–401.

    PubMed  CAS  Google Scholar 

  98. Lens D, Dyer MJ, Garcia-Marco JM, et al. p53 abnormalities in CLL are associated with excess of prolymphocytes and poor prognosis. Br J Haematol. 1997;99:848–57.

    PubMed  CAS  Google Scholar 

  99. Shanafelt TD, Witzig TE, Fink SR, et al. Prospective evaluation of clonal evolution during long-term follow-up of patients with untreated early-stage chronic lymphocytic leukemia. J Clin Oncol. 2006;24:4634–41.

    PubMed  Google Scholar 

  100. Stilgenbauer S, Sander S, Bullinger L, et al. Clonal evolution in chronic lymphocytic leukemia: acquisition of high-risk genomic aberrations associated with unmutated VH, resistance to therapy, and short survival. Haematologica. 2007;92:1242–5.

    PubMed  Google Scholar 

  101. Trbusek M, Malcikova J, Mayer J. Selection of new TP53 mutations by therapy in chronic lymphocytic leukemia. Leuk Res. 2011;35:981–2.

    PubMed  Google Scholar 

  102. Sturm I, Bosanquet AG, Hermann S, et al. Mutation of p53 and consecutive selective drug resistance in B-CLL occurs as a consequence of prior DNA-damaging chemotherapy. Cell Death Differ. 2003;10:477–84.

    PubMed  CAS  Google Scholar 

  103. Hernandez-Boussard TM, Hainaut P. A specific spectrum of p53 mutations in lung cancer from smokers: review of mutations compiled in the IARC p53 database. Environ Health Perspect. 1998;106:385–91.

    PubMed  CAS  Google Scholar 

  104. Hussain SP, Schwank J, Staib F, et al. TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene. 2007;26:2166–76.

    PubMed  CAS  Google Scholar 

  105. Trbusek M, Stano Kozubik K, Malcikova J, et al. Deep sequencing identifies TP53 mutations before their clonal selection by therapy in chronic lymphocytic leukemia. Haematologica. 2012;97:234.

    Google Scholar 

  106. Ouillette P, Fossum S, Parkin B, et al. Aggressive chronic lymphocytic leukemia with elevated genomic complexity is associated with multiple gene defects in the response to DNA double-strand breaks. Clin Cancer Res. 2010;16:835–47.

    PubMed  CAS  Google Scholar 

  107. Ouillette P, Collins R, Shakhan S, et al. Acquired genomic copy number aberrations and survival in chronic lymphocytic leukemia. Blood. 2011;118:3051–61.

    PubMed  CAS  Google Scholar 

  108. Pettitt AR, Sherrington PD, Stewart G, et al. p53 dysfunction in B-cell chronic lymphocytic leukemia: inactivation of ATM as an alternative to TP53 mutation. Blood. 2001;98:814–22.

    PubMed  CAS  Google Scholar 

  109. Carter A, Lin K, Sherrington P, et al. Detection of p53 dysfunction by flow cytometry in chronic lymphocytic leukaemia. Br J Haematol. 2004;127:425–8.

    PubMed  CAS  Google Scholar 

  110. Johnson G, Sherrington P, Carter A, et al. A novel type of p53 pathway dysfunction in chronic lymphocytic leukemia resulting from two interacting single nucleotide polymorphisms within the p21 gene. Cancer Res. 2009;69:5210–7.

    PubMed  CAS  Google Scholar 

  111. Lin K, Adamson J, Johnson GG, et al. Functional analysis of the ATM-p53-p21 pathway in the LRF CLL4 trial: blockade at the level of p21 is associated with short response duration. Clin Cancer Res. 2012;18:4191–200.

    PubMed  CAS  Google Scholar 

  112. Rossi D, Fangazio M, Rasi S, et al. Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia. Blood. 2012;119:2854–62.

    PubMed  CAS  Google Scholar 

  113. Badoux XC, Keating MJ, Wierda WG. What is the best frontline therapy for patients with CLL and 17p deletion? Curr Hematol Malig Rep. 2011;6:36–46.

    PubMed  Google Scholar 

  114. Lozanski G, Heerema NA, Flinn IW, et al. Alemtuzumab is an effective therapy for chronic lymphocytic leukemia with p53 mutations and deletions. Blood. 2004;103:3278–81.

    PubMed  CAS  Google Scholar 

  115. Osuji N, Del Giudice I, Matutes E, et al. The efficacy of alemtuzumab for refractory chronic lymphocytic leukemia in relation to cytogenetic abnormalities of p53. Haematologica. 2005;90:1435–6.

    PubMed  CAS  Google Scholar 

  116. Stilgenbauer S, Zenz T, Winkler D, et al. Subcutaneous alemtuzumab in fludarabine-refractory chronic lymphocytic leukemia: clinical results and prognostic marker analyses from the CLL2H study of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol. 2009;27:3994–4001.

    PubMed  CAS  Google Scholar 

  117. Doubek M, Trbušek M, Malčíková J, et al. Specific p53 mutations do not impact results of alemtuzumab therapy among patients with chronic lymphocytic leukemia. Leuk Lymphoma. 2012;53:1817–9.

    PubMed  CAS  Google Scholar 

  118. Hillmen P, Skotnicki AB, Robak T, et al. Alemtuzumab compared with chlorambucil as first-line therapy for chronic lymphocytic leukemia. J Clin Oncol. 2007;25:5616–23.

    PubMed  CAS  Google Scholar 

  119. Cencini E, Sozzi E, Sicuranza A, et al. A pilot monocentric analysis of efficacy and safety of Fludarabine-Campath combination (Flucam) as first line treatment in elderly patients with chronic lymphocytic leukaemia and Tp53 disfunction. Br J Haematol. 2011;154:271–4.

    PubMed  Google Scholar 

  120. Elter T, Gercheva-Kyuchukova L, Pylylpenko H, et al. Fludarabine plus alemtuzumab versus fludarabine alone in patients with previously treated chronic lymphocytic leukaemia: a randomised phase 3 trial. Lancet Oncol. 2011;12:1204–13.

    PubMed  CAS  Google Scholar 

  121. Montillo M, Tedeschi A, Petrizzi VB, et al. An open-label, pilot study of fludarabine, cyclophosphamide, and alemtuzumab in relapsed/refractory patients with B-cell chronic lymphocytic leukemia. Blood. 2011;118:4079–85.

    PubMed  CAS  Google Scholar 

  122. Elter T, James R, Busch R, et al. Fludarabine and cyclophosphamide in combination with alemtuzumab in patients with primary high-risk, relapsed or refractory chronic lymphocytic leukemia. Leukemia. 2012;26:2549–2552.

    Google Scholar 

  123. Parikh SA, Keating MJ, O’Brien S, et al. Frontline chemoimmunotherapy with fludarabine, cyclophosphamide, alemtuzumab, and rituximab for high-risk chronic lymphocytic leukemia. Blood. 2011;118:2062–8.

    PubMed  CAS  Google Scholar 

  124. Thornton PD, Matutes E, Bosanquet AG, et al. High dose methylprednisolone can induce remissions in CLL patients with p53 abnormalities. Ann Hematol. 2003;82:759–65.

    PubMed  CAS  Google Scholar 

  125. Pettitt AR, Jackson R, Carruthers S, et al. Alemtuzumab in combination with methylprednisolone is a highly effective induction regimen for patients with chronic lymphocytic leukemia and deletion of TP53: final results of the national cancer research institute CLL206 trial. J Clin Oncol. 2012;30:1647–55.

    PubMed  CAS  Google Scholar 

  126. Stilgenbauer S, Cymbalista F, Leblond V, et al. Subcutaneous alemtuzumab combined with oral dexamethasone, followed by alemtuzumab maintenance or allo-SCT in CLL with 17p- or refractory to fludarabine—interim analysis of the CLL2O trial of the GCLLSG and FCGCLL/MW. Blood. 2010;116:920.

    Google Scholar 

  127. Bowen DA, Call TG, Jenkins GD, et al. Methylprednisolone-rituximab is an effective salvage therapy for patients with relapsed chronic lymphocytic leukemia including those with unfavorable cytogenetic features. Leuk Lymphoma. 2007;48:2412–7.

    PubMed  CAS  Google Scholar 

  128. Pileckyte R, Jurgutis M, Valceckiene V, et al. Dose-dense high-dose methylprednisolone and rituximab in the treatment of relapsed or refractory high-risk chronic lymphocytic leukemia. Leuk Lymphoma. 2011;52:1055–65.

    PubMed  CAS  Google Scholar 

  129. Smolej L, Doubek M, Panovská A, et al. Rituximab in combination with high-dose dexamethasone for the treatment of relapsed/refractory chronic lymphocytic leukemia. Leuk Res. 2012;36:1278–82.

    PubMed  CAS  Google Scholar 

  130. Schetelig J, van Biezen A, Brand R, et al. Allogeneic hematopoietic stem-cell transplantation for chronic lymphocytic leukemia with 17p deletion: a retrospective European Group for Blood and Marrow Transplantation analysis. J Clin Oncol. 2008;26:5094–100.

    PubMed  Google Scholar 

  131. Dreger P, Döhner H, Ritgen M, et al. Allogeneic stem cell transplantation provides durable disease control in poor-risk chronic lymphocytic leukemia: long-term clinical and MRD results of the German CLL Study Group CLL3X trial. Blood. 2010;116:2438–47.

    PubMed  CAS  Google Scholar 

  132. Furman RR, Andritsos L, Flinn IW, et al. Phase 1 Dose Escalation Study of TRU-016, an anti-CD37 SMIPTM protein in relapsed and refractory CLL. Blood. 2010;116:56.

    Google Scholar 

  133. Carballido E, Veliz M, Komrokji R, et al. Immunomodulatory drugs and active immunotherapy for chronic lymphocytic leukemia. Cancer Control. 2012;19:54–67.

    PubMed  Google Scholar 

  134. Capitani N, Baldari CT. The Bcl-2 family as a rational target for the treatment of B-cell chronic lymphocytic leukaemia. Curr Med Chem. 2010;17:801–11.

    PubMed  CAS  Google Scholar 

  135. Pérez-Perarnau A, Coll-Mulet L, Rubio-Patiño C, et al. Analysis of apoptosis regulatory genes altered by histone deacetylase inhibitors in chronic lymphocytic leukemia cells. Epigenetics. 2011;6:1228–35.

    PubMed  Google Scholar 

  136. Lin T, Ruppert A, Johnson A, et al. Phase II study of flavopiridol in relapsed chronic lymphocytic leukemia demonstrating high response rates in genetically high-risk disease. J Clin Oncol. 2009;27:6012–8.

    PubMed  CAS  Google Scholar 

  137. Woyach JA, Johnson AJ, Byrd JC. The B-cell receptor signaling pathway as a therapeutic target in CLL. Blood. 2012;120:1175–84.

    PubMed  CAS  Google Scholar 

  138. Lanasa MC, Davis PH, Datto M, et al. Phase II study of cenersen, an antisense inhibitor of p53, in combination with fludarabine, cyclophosphamide and rituximab for high-risk chronic lymphocytic leukemia. Leuk Lymphoma. 2012;53:218–24.

    PubMed  CAS  Google Scholar 

  139. Nahi H, Selivanova G, Lehmann S, et al. Mutated and non-mutated TP53 as targets in the treatment of leukaemia. Br J Haematol. 2008;141:445–53.

    PubMed  CAS  Google Scholar 

  140. Muller P, Hrstka R, Coomber D, et al. Chaperone-dependent stabilization and degradation of p53 mutants. Oncogene. 2008;27:3371–83.

    PubMed  CAS  Google Scholar 

  141. Best OG, Mulligan SP. Heat shock protein-90 inhibitor, NVP-AUY922, is effective in combination with fludarabine against chronic lymphocytic leukemia cells cultured on CD40L-stromal layer and inhibits their activated/proliferative phenotype. Leuk Lymphoma. 2012;53:2314–20.

    PubMed  CAS  Google Scholar 

  142. Silva AL, Romao L. The mammalian nonsense-mediated mRNA decay pathway: to decay or not to decay! Which players make the decision? FEBS Lett. 2009;583:499–505.

    PubMed  CAS  Google Scholar 

  143. Flaman JM, Frebourg T, Moreau V, et al. A simple p53 functional assay for screening cell lines, blood, and tumors. Proc Natl Acad Sci U S A. 1995;92:3963–7.

    PubMed  CAS  Google Scholar 

  144. Smardova J, Pavlova S, Koukalova H. Determination of optimal conditions for analysis of p53 status in leukemic cells using functional analysis of separated alleles in yeast. Pathol Oncol Res. 2002;8:245–51.

    PubMed  CAS  Google Scholar 

  145. Chiaretti S, Tavolaro S, Marinelli M, et al. Evaluation of TP53 mutations with the AmpliChip p53 research test in chronic lymphocytic leukemia: correlation with clinical outcome and gene expression profiling. Genes Chromosomes Cancer. 2011;50:263–74.

    PubMed  CAS  Google Scholar 

  146. Mohr J, Helfrich H, Fuge M, et al. DNA damage-induced transcriptional program in CLL: biological and diagnostic implications for functional p53 testing. Blood. 2011;117:1622–32.

    PubMed  CAS  Google Scholar 

  147. Le Garff-Tavernier M, Blons H, Nguyen-Khac F, et al. Functional assessment of p53 in chronic lymphocytic leukemia. Blood Cancer J. 2011;1:e5.

    PubMed  Google Scholar 

  148. Mous R, Jaspers A, Luijks D, et al. Detection of p53 dysfunction in chronic lymphocytic leukaemia cells through multiplex quantification of p53 target gene induction. Leukemia. 2009;23:1352–5.

    PubMed  CAS  Google Scholar 

  149. Best O, Gardiner A, Majid A, et al. A novel functional assay using etoposide plus nutlin-3a detects and distinguishes between ATM and TP53 mutations in CLL. Leukemia. 2008;22:1456–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Trbusek Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Trbusek, M., Malcikova, J. (2013). TP53 Aberrations in Chronic Lymphocytic Leukemia. In: Malek, S. (eds) Advances in Chronic Lymphocytic Leukemia. Advances in Experimental Medicine and Biology, vol 792. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8051-8_5

Download citation

Publish with us

Policies and ethics