Skip to main content

Recurrent Gene Mutations in CLL

  • Chapter
  • First Online:
Book cover Advances in Chronic Lymphocytic Leukemia

Abstract

Next-generation sequencing of whole genomes and exomes in chronic lymphocytic leukemia (CLL) has provided the first comprehensive view of somatic mutations in this disease. Subsequent studies have characterized the oncogenic pathways and clinical implications of a number of these mutations. The global number of somatic mutations per case is lower than those described in solid tumors but is in agreement with previous estimates of less than one mutation per megabase in hematological neoplasms. The number and pattern of somatic mutations differ in tumors with unmutated and mutated IGHV, extending at the genomic level the clinical differences observed in these two CLL subtypes. One of the striking conclusions of these studies has been the marked genetic heterogeneity of the disease, with a relatively large number of genes recurrently mutated at low frequency and only a few genes mutated in up to 10–15 % of the patients. The mutated genes tend to cluster in different pathways that include NOTCH1 signaling, RNA splicing and processing machinery, innate inflammatory response, Wnt signaling, and DNA damage and cell cycle control, among others. These results highlight the molecular heterogeneity of CLL and may provide new biomarkers and potential therapeutic targets for the diagnosis and management of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zenz T, Mertens D, Kuppers R, et al. From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer. 2010;10:37–50.

    PubMed  CAS  Google Scholar 

  2. Gaidano G, Foa R, Dalla-Favera R. Molecular pathogenesis of chronic lymphocytic leukemia. J Clin Invest. 2012;122:3432–8.

    Article  PubMed  CAS  Google Scholar 

  3. Tsimberidou AM, Keating MJ. Richter syndrome: biology, incidence, and therapeutic strategies. Cancer. 2005;103:216–28.

    Article  PubMed  CAS  Google Scholar 

  4. Kulis M, Heath S, Bibikova M, et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet. 2012;44:1236–42.

    Article  PubMed  CAS  Google Scholar 

  5. Meyerson M, Gabriel S, Getz G. Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet. 2010;11:685–96.

    Article  PubMed  CAS  Google Scholar 

  6. International Cancer Genome Consortium, Hudson TJ, Anderson W, et al. International network of cancer genome projects. Nature. 2010;464:993–8.

    Article  PubMed  CAS  Google Scholar 

  7. Puente XS, Pinyol M, Quesada V, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 2011;475:101–5.

    Article  PubMed  CAS  Google Scholar 

  8. Fabbri G, Rasi S, Rossi D, et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med. 2011;208:1389–401.

    Article  PubMed  CAS  Google Scholar 

  9. Quesada V, Conde L, Villamor N, et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet. 2012;44:47–52.

    Article  CAS  Google Scholar 

  10. Wang L, Lawrence MS, Wan Y, et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med. 2011;365:2497–506.

    Article  PubMed  CAS  Google Scholar 

  11. Tiacci E, Schiavoni G, Forconi F, et al. Simple genetic diagnosis of hairy cell leukemia by sensitive detection of the BRAF-V600E mutation. Blood. 2012;119:192–5.

    Article  PubMed  CAS  Google Scholar 

  12. Morin RD, Mendez-Lago M, Mungall AJ, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature. 2011;476:298–303.

    Article  PubMed  CAS  Google Scholar 

  13. Pasqualucci L, Trifonov V, Fabbri G, et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet. 2011;43:830–7.

    Article  PubMed  CAS  Google Scholar 

  14. Lohr JG, Stojanov P, Lawrence MS, et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci U S A. 2012;109:3879–84.

    Article  PubMed  CAS  Google Scholar 

  15. Schmitz R, Young RM, Ceribelli M, et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature. 2012;490:116–20.

    Article  PubMed  CAS  Google Scholar 

  16. ICGC MMML-Seq Project, Richter J, Schlesner M, et al. Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing. Nat Genet. 2012;44:1316–20.

    Article  PubMed  CAS  Google Scholar 

  17. Love C, Sun Z, Jima D, et al. The genetic landscape of mutations in Burkitt lymphoma. Nat Genet. 2012;44:1321–5.

    Article  PubMed  CAS  Google Scholar 

  18. Chapman MA, Lawrence MS, Keats JJ, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;471:467–72.

    Article  PubMed  CAS  Google Scholar 

  19. Nik-Zainal S, Alexandrov LB, Wedge DC, et al. Mutational processes molding the genomes of 21 breast cancers. Cell. 2012;149:979–93.

    Article  PubMed  CAS  Google Scholar 

  20. Nik-Zainal S, Van Loo P, Wedge DC, et al. The life history of 21 breast cancers. Cell. 2012;149:994–1007.

    Article  PubMed  CAS  Google Scholar 

  21. Pleasance ED, Stephens PJ, O’Meara S, et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature. 2010;463:184–90.

    Article  PubMed  CAS  Google Scholar 

  22. Schuster-Bockler B, Lehner B. Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature. 2012;488:504–7.

    Article  PubMed  Google Scholar 

  23. Tadmor T, Tiacci E, Falini B, Polliack A. The BRAF-V600E mutation in hematological malignancies: a new player in hairy cell leukemia and Langerhans cell histiocytosis. Leuk Lymphoma. 2012;53:2339–40.

    Article  PubMed  CAS  Google Scholar 

  24. Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med. 2012;367:826–33.

    Article  PubMed  CAS  Google Scholar 

  25. Ngo VN, Young RM, Schmitz R, et al. Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011;470:115–9.

    Article  PubMed  CAS  Google Scholar 

  26. Allman D, Punt JA, Izon DJ, et al. An invitation to T and more: notch signaling in lymphopoiesis. Cell. 2002;109(Suppl):S1–11.

    Article  PubMed  CAS  Google Scholar 

  27. Ferrando AA. The role of NOTCH1 signaling in T-ALL. Hematology Am Soc Hematol Educ Program. 2009;353–61.

    Google Scholar 

  28. Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306:269–71.

    Article  PubMed  CAS  Google Scholar 

  29. De Keersmaecker K, Michaux L, Bosly A, et al. Rearrangement of NOTCH1 or BCL3 can independently trigger progression of CLL. Blood. 2012;119:3864–6.

    Article  PubMed  Google Scholar 

  30. O’Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol. 2007;7:353–64.

    Article  PubMed  Google Scholar 

  31. Rosati E, Sabatini R, Rampino G, et al. Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood. 2009;113:856–65.

    Article  PubMed  CAS  Google Scholar 

  32. Mansouri L, Cahill N, Gunnarsson R, et al. NOTCH1 and SF3B1 mutations can be added to the hierarchical prognostic classification in chronic lymphocytic leukemia. Leukemia. 2012;27(2):512–4.

    PubMed  Google Scholar 

  33. Zainuddin N, Murray F, Kanduri M, et al. TP53 Mutations are infrequent in newly diagnosed chronic lymphocytic leukemia. Leuk Res. 2011;35:272–4.

    Article  PubMed  CAS  Google Scholar 

  34. Balatti V, Bottoni A, Palamarchuk A, et al. NOTCH1 mutations in CLL associated with trisomy 12. Blood. 2012;119:329–31.

    Article  PubMed  CAS  Google Scholar 

  35. Rossi D, Rasi S, Fabbri G, et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood. 2012;119:521–9.

    Article  PubMed  CAS  Google Scholar 

  36. Oscier DG, Rose-Zerilli MJ, Winkelmann N, et al. The clinical significance of NOTCH1 and SF3B1 mutations in the UK LRF CLL4 trial. Blood. 2012;121(3):468–75.

    Article  PubMed  Google Scholar 

  37. Villamor N, Conde L, Martinez-trillos A, et al. NOTCH1 mutations identify a genetic subgroup of chronic lymphocytic leukemia patients with high risk of transformation and poor outcome. Leukemia. 2013;27(5):1100–6. doi:10.1038/leu.2012.357.

    Article  PubMed  CAS  Google Scholar 

  38. Lopez C, Delgado J, Costa D, et al. Different distribution of NOTCH1 mutations in chronic lymphocytic leukemia with isolated trisomy 12 or associated with other chromosomal alterations. Genes Chromosomes Cancer. 2012;51:881–9.

    Article  PubMed  CAS  Google Scholar 

  39. Rossi D, Rasi S, Spina V, et al. Different impact of NOTCH1 and SF3B1 mutations on the risk of chronic lymphocytic leukemia transformation to Richter syndrome. Br J Haematol. 2012;158:426–9.

    Article  PubMed  CAS  Google Scholar 

  40. Shedden K, Li Y, Ouillette P, Malek SN. Characteristics of chronic lymphocytic leukemia with somatically acquired mutations in NOTCH1 exon 34. Leukemia. 2012;26:1108–10.

    Article  PubMed  CAS  Google Scholar 

  41. Rasi S, Monti S, Spina V, et al. Analysis of NOTCH1 mutations in monoclonal B-cell lymphocytosis. Haematologica. 2012;97:153–4.

    Article  PubMed  CAS  Google Scholar 

  42. Orlandi EM, Rossi M. NOTCH1 mutations in chronic lymphocytic leukemia with trisomy 12. Genes Chromosomes Cancer. 2012;51:1063–5.

    Article  PubMed  CAS  Google Scholar 

  43. Schuh A, Becq J, Humphray S, et al. Monitoring chronic lymphocytic leukemia progression by whole genome sequencing reveals heterogeneous clonal evolution patterns. Blood. 2012;120:4191–6.

    Article  PubMed  CAS  Google Scholar 

  44. Kridel R, Meissner B, Rogic S, et al. Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood. 2012;119:1963–71.

    Article  PubMed  CAS  Google Scholar 

  45. Kiel MJ, Velusamy T, Betz BL, et al. Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma. J Exp Med. 2012;209:1553–65.

    Article  PubMed  CAS  Google Scholar 

  46. Rossi D, Trifonov V, Fangazio M, et al. The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development. J Exp Med. 2012;209:1537–51.

    Article  PubMed  CAS  Google Scholar 

  47. Yoshida K, Sanada M, Shiraishi Y, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478:64–9.

    Article  PubMed  CAS  Google Scholar 

  48. Papaemmanuil E, Cazzola M, Boultwood J, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 2011;365:1384–95.

    Article  PubMed  CAS  Google Scholar 

  49. Visconte V, Makishima H, Jankowska A, et al. SF3B1, a splicing factor is frequently mutated in refractory anemia with ring sideroblasts. Leukemia. 2012;26:542–5.

    Article  PubMed  CAS  Google Scholar 

  50. David CJ, Manley JL. Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev. 2010;24:2343–64.

    Article  PubMed  CAS  Google Scholar 

  51. Folco EG, Coil KE, Reed R. The anti-tumor drug E7107 reveals an essential role for SF3b in remodeling U2 snRNP to expose the branch point-binding region. Genes Dev. 2011;25:440–4.

    Article  PubMed  CAS  Google Scholar 

  52. Corrionero A, Minana B, Valcarcel J. Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev. 2011;25:445–59.

    Article  PubMed  CAS  Google Scholar 

  53. Brown PJ, Ashe SL, Leich E, et al. Potentially oncogenic B-cell activation-induced smaller isoforms of FOXP1 are highly expressed in the activated B cell-like subtype of DLBCL. Blood. 2008;111:2816–24.

    Article  PubMed  CAS  Google Scholar 

  54. Rossi D, Bruscaggin A, Spina V, et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood. 2011;118:6904–8.

    Article  PubMed  CAS  Google Scholar 

  55. Ramsay AJ, Rodriguez D, Villamor N, et al. Frequent somatic mutations in components of the RNA processing machinery in chronic lymphocytic leukemia. Leukemia. 2012.

    Google Scholar 

  56. Quiroga MP, Balakrishnan K, Kurtova AV, et al. B-cell antigen receptor signaling enhances chronic lymphocytic leukemia cell migration and survival: specific targeting with a novel spleen tyrosine kinase inhibitor, R406. Blood. 2009;114:1029–37.

    Article  PubMed  CAS  Google Scholar 

  57. Schulz A, Toedt G, Zenz T, et al. Inflammatory cytokines and signaling pathways are associated with survival of primary chronic lymphocytic leukemia cells in vitro: a dominant role of CCL2. Haematologica. 2011;96:408–16.

    Article  PubMed  CAS  Google Scholar 

  58. Burger JA, Quiroga MP, Hartmann E, et al. High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation. Blood. 2009;113:3050–8.

    Article  PubMed  CAS  Google Scholar 

  59. Zenz T, Mertens D, Stilgenbauer S. Biological diversity and risk-adapted treatment of chronic lymphocytic leukemia. Haematologica. 2010;95:1441–3.

    Article  PubMed  CAS  Google Scholar 

  60. Rossi D, Fangazio M, Rasi S, et al. Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia. Blood. 2012;119:2854–62.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The ICGC CLL-Genome Project is funded by Spanish Ministerio de Economía y Competitividad (MINECO) through the Instituto de Salud Carlos III (ISCIII) and Red Temática de Investigación del Cáncer (RTICC) del ISCIII. We are grateful to the members of our groups for their contribution to the studies of the consortium and N. Villahoz and M.C. Muro for their excellent work in the coordination of the CLL Spanish Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elías Campo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martínez-Trillos, A., Quesada, V., Villamor, N., Puente, X.S., López-Otín, C., Campo, E. (2013). Recurrent Gene Mutations in CLL. In: Malek, S. (eds) Advances in Chronic Lymphocytic Leukemia. Advances in Experimental Medicine and Biology, vol 792. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8051-8_4

Download citation

Publish with us

Policies and ethics