Skip to main content

The Potential of Targeting Splicing for Cancer Therapy

  • Chapter
  • First Online:
Nuclear Signaling Pathways and Targeting Transcription in Cancer

Abstract

Many molecules currently used to treat cancer patients target proteins encoded by transcripts that are alternatively spliced. As a consequence, the treatment may simultaneously block isoforms with different and sometimes opposing biological activity, thus reducing its efficacy. Recent studies highlight the role of splicing regulation in cancer progression and the importance of the splicing machinery as a therapeutic target. In reviewing this emerging field of cancer biology, we describe very exciting novel findings that illustrate the range of scenarios in which alternative splicing can contribute to all cancer hallmarks, from avoidance of apoptosis to angiogenesis, invasion and acquired resistance to drug therapy. Finally, we address cancer-selective approaches that are being developed to interfere with the splicing machinery and modulate splicing decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10(8):789–799

    Article  PubMed  CAS  Google Scholar 

  2. Berget SM, Moore C, Sharp PA (1977) Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci USA 74(8):3171–3175

    Article  PubMed  CAS  Google Scholar 

  3. Chow LT et al (1977) An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 12(1):1–8

    Article  PubMed  CAS  Google Scholar 

  4. Jeffreys AJ, Flavell RA (1977) A physical map of the DNA regions flanking the rabbit beta-globin gene. Cell 12(2):429–439

    Article  PubMed  CAS  Google Scholar 

  5. Tilghman SM et al (1978) The intervening sequence of a mouse beta-globin gene is transcribed within the 15S beta-globin mRNA precursor. Proc Natl Acad Sci USA 75(3): 1309–1313

    Article  PubMed  CAS  Google Scholar 

  6. Breathnach R, Mandel JL, Chambon P (1977) Ovalbumin gene is split in chicken DNA. Nature 270(5635):314–319

    Article  PubMed  CAS  Google Scholar 

  7. Tonegawa S et al (1978) Sequence of a mouse germ-line gene for a variable region of an immunoglobulin light chain. Proc Natl Acad Sci USA 75(3):1485–1489

    Article  PubMed  CAS  Google Scholar 

  8. Breathnach R, Chambon P (1981) Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem 50:349–383

    Article  PubMed  CAS  Google Scholar 

  9. Padgett RA et al (1986) Splicing of messenger RNA precursors. Annu Rev Biochem 55:1119–1150

    Article  PubMed  CAS  Google Scholar 

  10. Nilsen TW (2003) The spliceosome: the most complex macromolecular machine in the cell? Bioessays 25(12):1147–1149

    Article  PubMed  Google Scholar 

  11. Wahl MC, Will CL, Luhrmann R (2009) The spliceosome: design principles of a dynamic RNP machine. Cell 136(4):701–718

    Article  PubMed  CAS  Google Scholar 

  12. Hall SL, Padgett RA (1996) Requirement of U12 snRNA for in vivo splicing of a minor class of eukaryotic nuclear pre-mRNA introns. Science 271(5256):1716–1718

    Article  PubMed  CAS  Google Scholar 

  13. Tarn WY, Steitz JA (1996) A novel spliceosome containing U11, U12, and U5 snRNPs excises a minor class (AT-AC) intron in vitro. Cell 84(5):801–811

    Article  PubMed  CAS  Google Scholar 

  14. Levine A, Durbin R (2001) A computational scan for U12-dependent introns in the human genome sequence. Nucleic Acids Res 29(19):4006–4013

    PubMed  CAS  Google Scholar 

  15. Lerner MR, Steitz JA (1979) Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus. Proc Natl Acad Sci USA 76(11):5495–5499

    Article  PubMed  CAS  Google Scholar 

  16. Hoskins AA et al (2011) Ordered and dynamic assembly of single spliceosomes. Science 331(6022):1289–1295

    Article  PubMed  CAS  Google Scholar 

  17. Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291–336

    Article  PubMed  CAS  Google Scholar 

  18. Alt FW et al (1980) Synthesis of secreted and membrane-bound immunoglobulin mu heavy chains is directed by mRNAs that differ at their 3′ ends. Cell 20(2):293–301

    Article  PubMed  CAS  Google Scholar 

  19. Early P et al (1980) Two mRNAs can be produced from a single immunoglobulin mu gene by alternative RNA processing pathways. Cell 20(2):313–319

    Article  PubMed  CAS  Google Scholar 

  20. Pan Q et al (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40(12):1413–1415

    Article  PubMed  CAS  Google Scholar 

  21. Wang ET et al (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456(7221):470–476

    Article  PubMed  CAS  Google Scholar 

  22. Meyer LR et al (2013) The UCSC genome browser database: extensions and updates 2013. Nucleic Acids Res 41(D1):D64–D69

    Article  PubMed  CAS  Google Scholar 

  23. Lynch KW (2007) Regulation of alternative splicing by signal transduction pathways. Adv Exp Med Biol 623:161–174

    Article  PubMed  Google Scholar 

  24. Shin C, Manley JL (2004) Cell signalling and the control of pre-mRNA splicing. Nat Rev Mol Cell Biol 5(9):727–738

    Article  PubMed  CAS  Google Scholar 

  25. Xie J, Black DL (2001) A CaMK IV responsive RNA element mediates depolarization-induced alternative splicing of ion channels. Nature 410(6831):936–939

    Article  PubMed  CAS  Google Scholar 

  26. Wu JQ et al (2010) Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing. Proc Natl Acad Sci USA 107(11):5254–5259

    Article  PubMed  CAS  Google Scholar 

  27. Rao S et al (2010) Differential roles of Sall4 isoforms in embryonic stem cell pluripotency. Mol Cell Biol 30(22):5364–5380

    Article  PubMed  CAS  Google Scholar 

  28. Salomonis N et al (2010) Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc Natl Acad Sci USA 107(23):10514–10519

    Article  PubMed  CAS  Google Scholar 

  29. Mayshar Y et al (2008) Fibroblast growth factor 4 and its novel splice isoform have opposing effects on the maintenance of human embryonic stem cell self-renewal. Stem Cells 26(3):767–774

    Article  PubMed  CAS  Google Scholar 

  30. Gabut M et al (2011) An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell 147(1):132–146

    Article  PubMed  CAS  Google Scholar 

  31. Barbosa-Morais NL et al (2012) The evolutionary landscape of alternative splicing in vertebrate species. Science 338(6114):1587–1593

    Article  PubMed  CAS  Google Scholar 

  32. Gracheva EO et al (2011) Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats. Nature 476(7358):88–91

    Article  PubMed  CAS  Google Scholar 

  33. Kalsotra A, Cooper TA (2011) Functional consequences of developmentally regulated alternative splicing. Nat Rev Genet 12(10):715–729

    Article  PubMed  CAS  Google Scholar 

  34. Buljan M et al (2012) Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks. Mol Cell 46(6):871–883

    Article  PubMed  CAS  Google Scholar 

  35. Ellis JD et al (2012) Tissue-specific alternative splicing remodels protein-protein interaction networks. Mol Cell 46(6):884–892

    Article  PubMed  CAS  Google Scholar 

  36. Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463(7280):457–463

    Article  PubMed  CAS  Google Scholar 

  37. Luco RF et al (2010) Regulation of alternative splicing by histone modifications. Science 327(5968):996–1000

    Article  PubMed  CAS  Google Scholar 

  38. Grosso AR et al (2008) Tissue-specific splicing factor gene expression signatures. Nucleic Acids Res 36(15):4823–4832

    Article  PubMed  CAS  Google Scholar 

  39. Buckanovich RJ, Posner JB, Darnell RB (1993) Nova, the paraneoplastic Ri antigen, is homologous to an RNA-binding protein and is specifically expressed in the developing motor system. Neuron 11(4):657–672

    Article  PubMed  CAS  Google Scholar 

  40. Polydorides AD et al (2000) A brain-enriched polypyrimidine tract-binding protein antagonizes the ability of Nova to regulate neuron-specific alternative splicing. Proc Natl Acad Sci USA 97(12):6350–6355

    Article  PubMed  CAS  Google Scholar 

  41. Markovtsov V et al (2000) Cooperative assembly of an hnRNP complex induced by a tissue-specific homolog of polypyrimidine tract binding protein. Mol Cell Biol 20(20):7463–7479

    Article  PubMed  CAS  Google Scholar 

  42. Underwood JG et al (2005) Homologues of the Caenorhabditis elegans Fox-1 protein are neuronal splicing regulators in mammals. Mol Cell Biol 25(22):10005–10016

    Article  PubMed  CAS  Google Scholar 

  43. Jin Y et al (2003) A vertebrate RNA-binding protein Fox-1 regulates tissue-specific splicing via the pentanucleotide GCAUG. EMBO J 22(4):905–912

    Article  PubMed  CAS  Google Scholar 

  44. Warzecha CC et al (2009) ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol Cell 33(5):591–601

    Article  PubMed  CAS  Google Scholar 

  45. Calarco JA et al (2009) Regulation of vertebrate nervous system alternative splicing and development by an SR-related protein. Cell 138(5):898–910

    Article  PubMed  CAS  Google Scholar 

  46. Witten JT, Ule J (2011) Understanding splicing regulation through RNA splicing maps. Trends Genet 27(3):89–97

    Article  PubMed  CAS  Google Scholar 

  47. Venables JP et al (2008) Identification of alternative splicing markers for breast cancer. Cancer Res 68(22):9525–9531

    Article  PubMed  CAS  Google Scholar 

  48. Klinck R et al (2008) Multiple alternative splicing markers for ovarian cancer. Cancer Res 68(3):657–663

    Article  PubMed  CAS  Google Scholar 

  49. Zhang C et al (2006) Profiling alternatively spliced mRNA isoforms for prostate cancer classification. BMC Bioinforma 7:202

    Article  CAS  Google Scholar 

  50. Lenos K et al (2012) Alternate splicing of the p53 inhibitor HDMX offers a superior prognostic biomarker than p53 mutation in human cancer. Cancer Res 72(16):4074–4084

    Article  PubMed  CAS  Google Scholar 

  51. Tammaro C et al (2012) BRCA1 exon 11 alternative splicing, multiple functions and the association with cancer. Biochem Soc Trans 40(4):768–772

    Article  PubMed  CAS  Google Scholar 

  52. Hofstetter G et al (2010) Alternative splicing of p53 and p73: the novel p53 splice variant p53delta is an independent prognostic marker in ovarian cancer. Oncogene 29(13): 1997–2004

    Article  PubMed  CAS  Google Scholar 

  53. Uckun FM et al (2010) CD22 EXON 12 deletion as a pathogenic mechanism of human B-precursor leukemia. Proc Natl Acad Sci USA 107(39):16852–16857

    Article  PubMed  CAS  Google Scholar 

  54. Liu J et al (2012) Genome and transcriptome sequencing of lung cancers reveal diverse mutational and splicing events. Genome Res 22(12):2315–2327

    Article  PubMed  CAS  Google Scholar 

  55. Stephens PJ et al (2012) The landscape of cancer genes and mutational processes in breast cancer. Nature 486(7403):400–404

    PubMed  CAS  Google Scholar 

  56. Faber K et al (2011) Genome-wide prediction of splice-modifying SNPs in human genes using a new analysis pipeline called AASsites. BMC Bioinformatics 12(Suppl 4):S2

    Article  PubMed  Google Scholar 

  57. Ng KP et al (2012) A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat Med 18(4):521–528

    Article  PubMed  CAS  Google Scholar 

  58. Karni R et al (2007) The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol 14(3):185–193

    Article  PubMed  CAS  Google Scholar 

  59. Das S et al (2012) Oncogenic splicing factor SRSF1 is a critical transcriptional target of MYC. Cell Rep 1(2):110–117

    Article  PubMed  CAS  Google Scholar 

  60. David CJ et al (2010) HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463(7279):364–368

    Article  PubMed  CAS  Google Scholar 

  61. Amin EM et al (2011) WT1 mutants reveal SRPK1 to be a downstream angiogenesis target by altering VEGF splicing. Cancer Cell 20(6):768–780

    Article  PubMed  CAS  Google Scholar 

  62. Reinke LM, Xu Y, Cheng C (2012) Snail represses the splicing regulator epithelial splicing regulatory protein 1 to promote epithelial-mesenchymal transition. J Biol Chem 287(43): 36435–36442

    Article  PubMed  CAS  Google Scholar 

  63. Graubert TA et al (2012) Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet 44(1):53–57

    Article  CAS  Google Scholar 

  64. Yoshida K et al (2011) Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478(7367):64–69

    Article  PubMed  CAS  Google Scholar 

  65. Zhang SJ et al (2012) Genetic analysis of patients with leukemic transformation of myeloproliferative neoplasms shows recurrent SRSF2 mutations that are associated with adverse outcome. Blood 119(19):4480–4485

    Article  PubMed  CAS  Google Scholar 

  66. Papaemmanuil E et al (2011) Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 365(15):1384–1395

    Article  PubMed  CAS  Google Scholar 

  67. Imielinski M et al (2012) Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150(6):1107–1120

    Article  PubMed  CAS  Google Scholar 

  68. Ponthier JL et al (2006) Fox-2 splicing factor binds to a conserved intron motif to promote inclusion of protein 4.1R alternative exon 16. J Biol Chem 281(18):12468–12474

    Article  PubMed  CAS  Google Scholar 

  69. Venables JP et al (2009) Cancer-associated regulation of alternative splicing. Nat Struct Mol Biol 16(6):670–676

    Article  PubMed  CAS  Google Scholar 

  70. Luco RF, Misteli T (2011) More than a splicing code: integrating the role of RNA, chromatin and non-coding RNA in alternative splicing regulation. Curr Opin Genet Dev 21(4):366–372

    Article  PubMed  CAS  Google Scholar 

  71. Elsasser SJ, Allis CD, Lewis PW (2011) Cancer. New epigenetic drivers of cancers. Science 331(6021):1145–1146

    Article  PubMed  CAS  Google Scholar 

  72. Angeloni D et al (2007) Hypermethylation of Ron proximal promoter associates with lack of full-length Ron and transcription of oncogenic short-Ron from an internal promoter. Oncogene 26(31):4499–4512

    Article  PubMed  CAS  Google Scholar 

  73. David CJ, Manley JL (2010) Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev 24(21):2343–2364

    Article  PubMed  CAS  Google Scholar 

  74. Paronetto MP, Minana B, Valcarcel J (2011) The Ewing sarcoma protein regulates DNA damage-induced alternative splicing. Mol Cell 43(3):353–368

    Article  PubMed  CAS  Google Scholar 

  75. Choi JW et al (2011) Cancer-associated splicing variant of tumor suppressor AIMP2/p38: pathological implication in tumorigenesis. PLoS Genet 7(3):e1001351

    Article  PubMed  CAS  Google Scholar 

  76. Taylor JK et al (1999) Induction of endogenous Bcl-xS through the control of Bcl-x pre-mRNA splicing by antisense oligonucleotides. Nat Biotechnol 17(11):1097–1100

    Article  PubMed  CAS  Google Scholar 

  77. Anczukow O et al (2012) The splicing factor SRSF1 regulates apoptosis and proliferation to promote mammary epithelial cell transformation. Nat Struct Mol Biol 19(2):220–228

    Article  PubMed  CAS  Google Scholar 

  78. Wang L et al (1994) Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell 78(5):739–750

    Article  PubMed  CAS  Google Scholar 

  79. Goehe RW et al (2010) hnRNP L regulates the tumorigenic capacity of lung cancer xenografts in mice via caspase-9 pre-mRNA processing. J Clin Invest 120(11):3923–3939

    Article  PubMed  CAS  Google Scholar 

  80. Irmler M et al (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388(6638):190–195

    Article  PubMed  CAS  Google Scholar 

  81. Izquierdo JM et al (2005) Regulation of Fas alternative splicing by antagonistic effects of TIA-1 and PTB on exon definition. Mol Cell 19(4):475–484

    Article  PubMed  CAS  Google Scholar 

  82. Zammarchi F et al (2011) Antitumorigenic potential of STAT3 alternative splicing modulation. Proc Natl Acad Sci USA 108(43):17779–17784

    Article  PubMed  CAS  Google Scholar 

  83. Slatter TL et al (2011) Hyperproliferation, cancer, and inflammation in mice expressing a Delta133p53-like isoform. Blood 117(19):5166–5177

    Article  PubMed  CAS  Google Scholar 

  84. Muller M et al (2005) TAp73/Delta Np73 influences apoptotic response, chemosensitivity and prognosis in hepatocellular carcinoma. Cell Death Differ 12(12):1564–1577

    Article  PubMed  CAS  Google Scholar 

  85. Hirschfeld M et al (2009) Alternative splicing of Cyr61 is regulated by hypoxia and significantly changed in breast cancer. Cancer Res 69(5):2082–2090

    Article  PubMed  CAS  Google Scholar 

  86. Boeckel JN et al (2011) Jumonji domain-containing protein 6 (Jmjd6) is required for angiogenic sprouting and regulates splicing of VEGF-receptor 1. Proc Natl Acad Sci USA 108(8):3276–3281

    Article  PubMed  CAS  Google Scholar 

  87. Vorlova S et al (2011) Induction of antagonistic soluble decoy receptor tyrosine kinases by intronic poly A activation. Mol Cell 43(6):927–939

    Article  PubMed  CAS  Google Scholar 

  88. Nowak DG et al (2010) Regulation of vascular endothelial growth factor (VEGF) splicing from pro-angiogenic to anti-angiogenic isoforms: a novel therapeutic strategy for angiogenesis. J Biol Chem 285(8):5532–5540

    Article  PubMed  CAS  Google Scholar 

  89. Sanchez G et al (2008) Alteration of cyclin D1 transcript elongation by a mutated transcription factor up-regulates the oncogenic D1b splice isoform in cancer. Proc Natl Acad Sci USA 105(16):6004–6009

    Article  PubMed  CAS  Google Scholar 

  90. Olshavsky NA et al (2010) Identification of ASF/SF2 as a critical, allele-specific effector of the cyclin D1b oncogene. Cancer Res 70(10):3975–3984

    Article  PubMed  CAS  Google Scholar 

  91. Yae T et al (2012) Alternative splicing of CD44 mRNA by ESRP1 enhances lung colonization of metastatic cancer cell. Nat Commun 3:883

    Article  PubMed  CAS  Google Scholar 

  92. Harada N, Utsumi T, Takagi Y (1993) Tissue-specific expression of the human aromatase cytochrome P-450 gene by alternative use of multiple exons 1 and promoters, and switching of tissue-specific exons 1 in carcinogenesis. Proc Natl Acad Sci USA 90(23):11312–11316

    Article  PubMed  CAS  Google Scholar 

  93. Kwong KY, Hung MC (1998) A novel splice variant of HER2 with increased transformation activity. Mol Carcinog 23(2):62–68

    Article  PubMed  CAS  Google Scholar 

  94. Muraoka-Cook RS et al (2009) ErbB4 splice variants Cyt1 and Cyt2 differ by 16 amino acids and exert opposing effects on the mammary epithelium in vivo. Mol Cell Biol 29(18):4935–4948

    Article  PubMed  CAS  Google Scholar 

  95. Brignatz C et al (2009) Alternative splicing modulates autoinhibition and SH3 accessibility in the Src kinase Fyn. Mol Cell Biol 29(24):6438–6448

    Article  PubMed  CAS  Google Scholar 

  96. Novikov L et al (2011) QKI-mediated alternative splicing of the histone variant MacroH2A1 regulates cancer cell proliferation. Mol Cell Biol 31(20):4244–4255

    Article  PubMed  CAS  Google Scholar 

  97. Munoz U et al (2012) Hepatocyte growth factor enhances alternative splicing of the Kruppel-like factor 6 (KLF6) tumor suppressor to promote growth through SRSF1. Mol Cancer Res 10(9):1216–1227

    Article  PubMed  CAS  Google Scholar 

  98. Dutertre M et al (2010) Cotranscriptional exon skipping in the genotoxic stress response. Nat Struct Mol Biol 17(11):1358–1366

    Article  PubMed  CAS  Google Scholar 

  99. Lee JH et al (2006) An alternatively spliced form of Met receptor is tumorigenic. Exp Mol Med 38(5):565–573

    Article  PubMed  CAS  Google Scholar 

  100. Panasyuk G et al (2009) mTORbeta splicing isoform promotes cell proliferation and tumorigenesis. J Biol Chem 284(45):30807–30814

    Article  PubMed  CAS  Google Scholar 

  101. Li TW et al (2006) Wnt activation and alternative promoter repression of LEF1 in colon cancer. Mol Cell Biol 26(14):5284–5299

    Article  PubMed  CAS  Google Scholar 

  102. Amaar YG et al (2006) Ras association domain family 1C protein stimulates human lung cancer cell proliferation. Am J Physiol Lung Cell Mol Physiol 291(6):L1185–L1190

    Article  PubMed  CAS  Google Scholar 

  103. Hibi K et al (2000) AIS is an oncogene amplified in squamous cell carcinoma. Proc Natl Acad Sci USA 97(10):5462–5467

    Article  PubMed  CAS  Google Scholar 

  104. Babaei-Jadidi R et al (2011) FBXW7 influences murine intestinal homeostasis and cancer, targeting Notch, Jun, and DEK for degradation. J Exp Med 208(2):295–312

    Article  PubMed  CAS  Google Scholar 

  105. Hernandez I et al (2010) Novel alternatively spliced ADAM8 isoforms contribute to the aggressive bone metastatic phenotype of lung cancer. Oncogene 29(26):3758–3769

    Article  PubMed  CAS  Google Scholar 

  106. Cheng C, Sharp PA (2006) Regulation of CD44 alternative splicing by SRm160 and its potential role in tumor cell invasion. Mol Cell Biol 26(1):362–370

    Article  PubMed  CAS  Google Scholar 

  107. Brown RL et al (2011) CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. J Clin Invest 121(3):1064–1074

    Article  PubMed  CAS  Google Scholar 

  108. Lee TK et al (2011) An N-terminal truncated carboxypeptidase E splice isoform induces tumor growth and is a biomarker for predicting future metastasis in human cancers. J Clin Invest 121(3):880–892

    Article  PubMed  CAS  Google Scholar 

  109. Yanagisawa M et al (2008) A p120 catenin isoform switch affects Rho activity, induces tumor cell invasion, and predicts metastatic disease. J Biol Chem 283(26):18344–18354

    Article  PubMed  CAS  Google Scholar 

  110. Goswami S et al (2009) Identification of invasion specific splice variants of the cytoskeletal protein Mena present in mammary tumor cells during invasion in vivo. Clin Exp Metastasis 26(2):153–159

    Article  PubMed  CAS  Google Scholar 

  111. Lo HW et al (2009) A novel splice variant of GLI1 that promotes glioblastoma cell migration and invasion. Cancer Res 69(17):6790–6798

    Article  PubMed  CAS  Google Scholar 

  112. Golan-Gerstl R et al (2011) Splicing factor hnRNP A2/B1 regulates tumor suppressor gene splicing and is an oncogenic driver in glioblastoma. Cancer Res 71(13):4464–4472

    Article  PubMed  CAS  Google Scholar 

  113. Ghigna C et al (2005) Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene. Mol Cell 20(6):881–890

    Article  PubMed  CAS  Google Scholar 

  114. Lefave CV et al (2011) Splicing factor hnRNPH drives an oncogenic splicing switch in gliomas. EMBO J 30(19):4084–4097

    Article  PubMed  CAS  Google Scholar 

  115. Reiter R, Wellstein A, Riegel AT (2001) An isoform of the coactivator AIB1 that increases hormone and growth factor sensitivity is overexpressed in breast cancer. J Biol Chem 276(43):39736–39741

    Article  PubMed  CAS  Google Scholar 

  116. Goncalves V, Matos P, Jordan P (2009) Antagonistic SR proteins regulate alternative splicing of tumor-related Rac1b downstream of the PI3-kinase and Wnt pathways. Hum Mol Genet 18(19):3696–3707

    Article  PubMed  CAS  Google Scholar 

  117. Bawa-Khalfe T et al (2012) Differential expression of SUMO-specific protease 7 variants regulates epithelial-mesenchymal transition. Proc Natl Acad Sci USA 109(43):17466–17471

    Article  PubMed  CAS  Google Scholar 

  118. Moran-Jones K et al (2009) hnRNP A2 regulates alternative mRNA splicing of TP53INP2 to control invasive cell migration. Cancer Res 69(24):9219–9227

    Article  PubMed  CAS  Google Scholar 

  119. Sun S et al (2010) Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest 120(8):2715–2730

    Article  PubMed  CAS  Google Scholar 

  120. Laudadio J et al (2008) An intron-derived insertion/truncation mutation in the BCR-ABL kinase domain in chronic myeloid leukemia patients undergoing kinase inhibitor therapy. J Mol Diagn 10(2):177–180

    Article  PubMed  CAS  Google Scholar 

  121. Poulikakos PI et al (2011) RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480(7377):387–390

    Article  PubMed  CAS  Google Scholar 

  122. Adesso L et al (2013) Gemcitabine triggers a pro-survival response in pancreatic cancer cells through activation of the MNK2/eIF4E pathway. Oncogene 32:2848–2857

    Google Scholar 

  123. Henry C et al (2010) Identification of an alternative CD20 transcript variant in B-cell malignancies coding for a novel protein associated to rituximab resistance. Blood 115(12): 2420–2429

    Article  PubMed  CAS  Google Scholar 

  124. Harper SJ, Bates DO (2008) VEGF-A splicing: the key to anti-angiogenic therapeutics? Nat Rev Cancer 8(11):880–887

    Article  PubMed  CAS  Google Scholar 

  125. Hilmi C, Guyot M, Pages G (2012) VEGF spliced variants: possible role of anti-angiogenesis therapy. J Nucleic Acids 2012:162692

    Article  PubMed  CAS  Google Scholar 

  126. Chen M, Zhang J, Manley JL (2010) Turning on a fuel switch of cancer: hnRNP proteins regulate alternative splicing of pyruvate kinase mRNA. Cancer Res 70(22):8977–8980

    Article  PubMed  CAS  Google Scholar 

  127. Witzel II, Koh LF, Perkins ND (2010) Regulation of cyclin D1 gene expression. Biochem Soc Trans 38(Pt 1):217–222

    Article  PubMed  CAS  Google Scholar 

  128. Warzecha CC, Carstens RP (2012) Complex changes in alternative pre-mRNA splicing play a central role in the epithelial-to-mesenchymal transition (EMT). Semin Cancer Biol 22(5–6):417–427

    Article  PubMed  CAS  Google Scholar 

  129. Biamonti G et al (2012) Making alternative splicing decisions during epithelial-to-mesenchymal transition (EMT). Cell Mol Life Sci 69(15):2515–2526

    Article  PubMed  CAS  Google Scholar 

  130. Gunthert U et al (1991) A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65(1):13–24

    Article  PubMed  CAS  Google Scholar 

  131. Klingbeil P et al (2009) CD44 variant isoforms promote metastasis formation by a tumor cell-matrix cross-talk that supports adhesion and apoptosis resistance. Mol Cancer Res 7(2):168–179

    Article  PubMed  CAS  Google Scholar 

  132. Wallach-Dayan SB et al (2001) CD44-dependent lymphoma cell dissemination: a cell surface CD44 variant, rather than standard CD44, supports in vitro lymphoma cell rolling on hyaluronic acid substrate and its in vivo accumulation in the peripheral lymph nodes. J Cell Sci 114(Pt 19):3463–3477

    PubMed  CAS  Google Scholar 

  133. Ishimoto T et al (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell 19(3):387–400

    Article  PubMed  CAS  Google Scholar 

  134. Cao X et al (2012) Upregulation of VEGF-A and CD24 gene expression by the tGLI1 transcription factor contributes to the aggressive behavior of breast cancer cells. Oncogene 31(1):104–115

    Article  PubMed  CAS  Google Scholar 

  135. Long W et al (2010) SRC-3Delta4 mediates the interaction of EGFR with FAK to promote cell migration. Mol Cell 37(3):321–332

    Article  PubMed  CAS  Google Scholar 

  136. Lewis BP, Green RE, Brenner SE (2003) Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci USA 100(1):189–192

    Article  PubMed  CAS  Google Scholar 

  137. Germann S et al (2012) Dual role of the ddx5/ddx17 RNA helicases in the control of the pro-migratory NFAT5 transcription factor. Oncogene 31(42):4536–4549

    Article  PubMed  CAS  Google Scholar 

  138. Sharma S, Lichtenstein A (2009) Aberrant splicing of the E-cadherin transcript is a novel mechanism of gene silencing in chronic lymphocytic leukemia cells. Blood 114(19):4179–4185

    Article  PubMed  CAS  Google Scholar 

  139. Ma W et al (2011) Three novel alternative splicing mutations in BCR-ABL1 detected in CML patients with resistance to kinase inhibitors. Int J Lab Hematol 33(3):326–331

    Article  PubMed  CAS  Google Scholar 

  140. Prinos P et al (2011) Alternative splicing of SYK regulates mitosis and cell survival. Nat Struct Mol Biol 18(6):673–679

    Article  PubMed  CAS  Google Scholar 

  141. Sumanasekera C, Watt DS, Stamm S (2008) Substances that can change alternative splice-site selection. Biochem Soc Trans 36(Pt 3):483–490

    Article  PubMed  CAS  Google Scholar 

  142. Chang JG et al (2011) Small molecule amiloride modulates oncogenic RNA alternative splicing to devitalize human cancer cells. PLoS One 6(6):e18643

    Article  PubMed  CAS  Google Scholar 

  143. Chang WH et al (2011) Amiloride modulates alternative splicing in leukemic cells and resensitizes Bcr-AblT315I mutant cells to Imatinib. Cancer Res 71(2):383–392

    Article  PubMed  CAS  Google Scholar 

  144. Mimura N et al (2012) Blockade of XBP1 splicing by inhibition of IRE1alpha is a promising therapeutic option in multiple myeloma. Blood 119(24):5772–5781

    Article  PubMed  CAS  Google Scholar 

  145. Webb TR, Joyner AS, Potter PM (2013) The development and application of small molecule modulators of SF3b as therapeutic agents for cancer. Drug Discov Today 18(1–2):43–49

    Article  PubMed  CAS  Google Scholar 

  146. Ahn EY et al (2011) SON controls cell-cycle progression by coordinated regulation of RNA splicing. Mol Cell 42(2):185–198

    Article  PubMed  CAS  Google Scholar 

  147. Allende-Vega N et al (2013) p53 is activated in response to disruption of the pre-mRNA splicing machinery. Oncogene 32(1):1–14

    Article  PubMed  CAS  Google Scholar 

  148. Tang Y et al (2013) Downregulation of splicing factor SRSF3 induces p53beta, an alternatively spliced isoform of p53 that promotes cellular senescence. Oncogene 32:2792–2798

    Google Scholar 

  149. Masuko K et al (2012) Anti-tumor effect against human cancer xenografts by a fully human monoclonal antibody to a variant 8-epitope of CD44R1 expressed on cancer stem cells. PLoS One 7(1):e29728

    Article  PubMed  CAS  Google Scholar 

  150. Goldberg MS, Sharp PA (2012) Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression. J Exp Med 209(2):217–224

    Article  PubMed  CAS  Google Scholar 

  151. Spitali P, Aartsma-Rus A (2012) Splice modulating therapies for human disease. Cell 148(6):1085–1088

    Article  PubMed  CAS  Google Scholar 

  152. Bauman JA et al (2010) Anti-tumor activity of splice-switching oligonucleotides. Nucleic Acids Res 38(22):8348–8356

    Article  PubMed  CAS  Google Scholar 

  153. Kotula JW et al (2012) Aptamer-mediated delivery of splice-switching oligonucleotides to the nuclei of cancer cells. Nucleic Acid Ther 22(3):187–195

    PubMed  CAS  Google Scholar 

  154. Wang Y et al (2009) Engineering splicing factors with designed specificities. Nat Methods 6(11):825–830

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Carmo-Fonseca M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grosso, A.R., Carmo-Fonseca, M. (2014). The Potential of Targeting Splicing for Cancer Therapy. In: Kumar, R. (eds) Nuclear Signaling Pathways and Targeting Transcription in Cancer. Cancer Drug Discovery and Development. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-8039-6_13

Download citation

Publish with us

Policies and ethics