Advertisement

Turbo Codes

Chapter

Abstract

A major step towards the Shannon limit was done in 1993 by introducing the so called turbo code (TC).

Keywords

Clock Cycle Code Rate Communication Performance Turbo Code Convolutional Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit error-correcting coding and decoding: turbo-codes. In: Proceedings of 1993 International Conference on Communications (ICC ’93), pp. 1064–1070, Geneva, Switzerland (1993)Google Scholar
  2. 2.
    ten Brink, S.: Convergence behavior of iteratively decoded parallel concatenated codes. IEEE Trans. Commun. 49(10), 1727–1737 (2001). doi: 10.1109/26.957394 Google Scholar
  3. 3.
    ten Brink, S., Kramer, G., Ashikhmin, A.: Design of low-density parity-check codes for modulation and detection. IEEE Trans. Commun. 52(4), 670–678 (2004). doi: 10.1109/TCOMM.2004.826370 Google Scholar
  4. 4.
    May, M.: Dissertation in preparation: Architectures for High-throughput and Reliable Iterative Channel Decoders. Ph.D. Thesis, Department of Electrical Engineering and Information Technology, University of Kaiserslautern (2012)Google Scholar
  5. 5.
    Vogt, J., Finger, A.: Improving the Max-Log-MAP turbo decoder. IEEE Electron. Lett. 36, 1937–1939 (2000)CrossRefGoogle Scholar
  6. 6.
    Michel, H., Wehn, N.: Turbo-decoder quantization for UMTS. IEEE Commun. Lett. 5(2), 55–57 (2001)CrossRefGoogle Scholar
  7. 7.
    Wu, Y., Woerner, B.D.: The influence of quantization and fixed point arithmetic upon the BER performance of turbo codes. In: Proceedings of 1999 International Conference on Vehicular Technology (VTC ’99), pp. 1683–1687 (1999)Google Scholar
  8. 8.
    Worm, A., Hoeher, P., Wehn, N.: Turbo-decoding without SNR estimation. IEEE Commun. Lett. 4(6), 193–195 (2000)CrossRefGoogle Scholar
  9. 9.
    Vogt, T.: A Reconfigurable Application-specific Instruction-set Processor for Trellis-based Channel Decoding. Ph.D. Thesis, University of Kaiserslautern (2008)Google Scholar
  10. 10.
    Worm, A.: Implementation Issues of Turbo-Decoders. Ph.D. Thesis, University of Kaiserslautern (2001). ISBN 3-925178-72-4Google Scholar
  11. 11.
    Alles, M.: Implementation Aspects of Advanced Channel Decoding. Ph.D. Thesis, University of Kaiserslautern (2010)Google Scholar
  12. 12.
    Hekstra, A.P.: An alternative to metric rescaling in Viterbi decoders. IEEE Trans. Commun. 37(11), 1220–1222 (1989). doi: 10.1109/26.46516 Google Scholar
  13. 13.
    Worm, A., Michel, H., Gilbert, F., Kreiselmaier, G., Thul, M.J., Wehn, N.: Advanced implementation issues of turbo-decoders. In: Proceedings of 2nd International Symposium on Turbo Codes & Related Topics, pp. 351–354, Brest, France (2000)Google Scholar
  14. 14.
    Dielissen, J., Huiskens, J.: State vector reduction for initialization of sliding windows MAP. In: Proceedings of 2nd International Symposium on Turbo Codes & Related Topics, pp. 387–390, Brest, France (2000)Google Scholar
  15. 15.
    Mansour, M.M., Shanbhag, N.R.: VLSI architectures for SISO-APP decoders. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 11(4), 627–650 (2003)Google Scholar
  16. 16.
    Schurgers, C., Engels, M., Catthoor, F.: Energy efficient data transfer and storage organization for a MAP turbo decoder module. In: Proceedings of 1999 International Symposium on Low Power Electronics and Design (ISLPED ’99), pp. 76–81, San Diego, California, USA (1999)Google Scholar
  17. 17.
    Dawid, H., Meyr, H.: Real-time algorithms and VLSI architectures for soft output MAP convolutional decoding. In: Proceedings of 1995 International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC ’95), pp. 193–197, Toronto, Canada (1995)Google Scholar
  18. 18.
    Worm, A., Lamm, H., Wehn, N.: VLSI architectures for high-speed MAP decoders. In: Proceedings of Fourteenth International Conference on VLSI Design, pp. 446–453, Bangalore, India (2001)Google Scholar
  19. 19.
    Dawid, H., Gehnen, G., Meyr, H.: MAP channel decoding: algorithm and VLSI architecture. In: VLSI Signal Processing VI, pp. 141–149. IEEE (1993)Google Scholar
  20. 20.
    Fettweis, G., Meyr, H.: High-speed parallel Viterbi decoding: algorithm and VLSI-architecture. IEEE Commun. Mag. 29, 46–55 (1991)CrossRefGoogle Scholar
  21. 21.
    Bickerstaff, M., Davis, L., Thomas, C., Garrett, D., Nicol, C.: A 24 Mb/s radix-4 LogMAP turbo decoder for 3GPP-HSDPA mobile wireless. In: Proceedings of 2003 IEEE International Solid-State Circuits Conference (ISSCC ’03), pp. 150–151, 484, San Francisco, CA, USA (2003)Google Scholar
  22. 22.
    Black, P.J., Meng, T.H.: A 140-Mb/s, 32-state, radix-4 Viterbi decoder. IEEE J. Solid-State Circ. 27(12), 1877–1885 (1992)CrossRefGoogle Scholar
  23. 23.
    Tarable, A., Benedetto, S., Montorsi, G.: Mapping interleaving laws to parallel turbo and LDPC decoder architectures. IEEE Trans. Inf. Theory 50(9), 2002–2009 (2004). doi: 10.1109/TIT.2004.833353 Google Scholar
  24. 24.
    Gilbert, F., Kienle, F., Wehn, N.: Low complexity stopping criteria for UMTS turbo-decoders. In: Proceedings of VTC 2003-Spring. The 57th IEEE Semiannual Vehicular Technology Conference, pp. 2376–2380, Jeju, Korea (2003)Google Scholar
  25. 25.
    May, M., Ilnseher, T., Wehn, N., Raab, W.: A 150 Mbit/s 3GPP LTE turbo code decoder. In: Proceedings of Design, Automation and Test in Europe, 2010 (DATE ’10), pp. 1420–1425 (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Electrical EngineeringTU KaiserslauternKaiserslauternGermany

Personalised recommendations