Skip to main content

Nanoelectronic Applications of Molecular Junctions

  • Chapter
  • First Online:
Book cover Transport Properties of Molecular Junctions

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 254))

  • 1243 Accesses

Abstract

It is a common knowledge that the first functioning transistor was invented in the late 1940s by Bardeen, Brattain, and Shockley, and this invention had marked the starting point for the microelectronic revolution. The metal-oxide-silicon field-effect transistors (MOSFET) appeared in the 1960s, and they dominated the development of microelectronics in the following forty years. Computer industry and digital communication systems give two examples of MOSFET applications. One of the most important characteristics of the progress in microelectronics is the process of miniaturization of electronic devices. As early as 1965, Gordon Moore has made his famous prediction that the number of transistors placed on a single silicon chip would double every one and one half year [472]. This prediction became the roadmap of the semiconductor industry. The increase in the number of transistors situated on a sole chip requires their miniaturization. Actually, the size of MOSFET produced by the microelectronic industry during the last thirty years has shrunken a factor of more than one hundred, and presently it reaches a few tens of nanometer [472]. However, there are grounds to expect increasing difficulties slowing down the MOSFET miniaturization beyond the 10 nm mode. These problems mostly originate from the fact that a nanometer-sized MOSFET no longer behaves as a device with a long channel, that is, a device where the electrostatics and the current flow in the channel between the source and drain are effectively controlled by the gate. When the channel length becomes too short, the gate ability to control the channel deteriorates, and the so-called short-channel effects appear. These effects increase the MOSFET “off” current and render the current dependence of the bias voltage, so the device performance worsens. To improve the electrostatic control of the channel by the gate, new device structures are being explored, where the gate electrode is wrapped around the channel region. These devices are called multi-gate MOSFETs, and their size could be made smaller than that of usual planar devices. Functional multi-gate transistors made in a silicon nanowire with the diameter of 3 nm were reported in 2006 [473].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Aviram, M.A. Ratner, Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974)

    Article  CAS  Google Scholar 

  2. A.W. Ghosh, Electronics with molecules, in Comprehensive Semiconductor Science and Technology, vol. 5, ed. by P. Brattacharya, R. Fornari, H. Kamimura (Elsevier, Amsterdam, 2011), pp. 383–478

    Google Scholar 

  3. M. Poot, E. Osorio, K. O’Neil, J.M. Thijssen, D. Vanmaekelbergh, Temperature dependence of three-terminal molecular junctions with sulfur end-functionalized tercyclohexylidenes. Nano Lett. 6, 1031–1035 (2006)

    Article  CAS  Google Scholar 

  4. E. Lortscher, H.B. Weber, H. Riel, Statistical approach to investigating transport through single molecules. Phys. Rev. Lett. 98, 176807 (2007)

    Article  CAS  Google Scholar 

  5. P. Liljeroth, J. Repp, G. Meyer, Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007)

    Article  CAS  Google Scholar 

  6. L.V. Venkataraman, J.E. Klare, M.S. Hybertsen, C. Nuckolls, M.L. Steigerwald, Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006)

    Article  CAS  Google Scholar 

  7. L. Venkataraman, J.E. Klare, I.W. Tam, C. Nuckolls, M.S. Hybertsen, C. Nuckolls, M.L. Steigerwald, Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006)

    Article  CAS  Google Scholar 

  8. B. Reddy, S.-Y. Yang, R.A. Segalman, A. Majumdar, Thermoelectricity in molecular junctions. Science 315, 1568–1571 (2007)

    Article  CAS  Google Scholar 

  9. J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkovski, J.P. Sithna, H.D. Abruna, P.L. McEuen, D.C. Ralph, Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002)

    Article  CAS  Google Scholar 

  10. L.H. Yu, D. Natelson, Kondo physics in C60 single-molecule transistors. Nano Lett. 4, 79–83 (2004)

    Article  CAS  Google Scholar 

  11. N.A. Zimbovskaya, M.R. Pederson, A.S. Blum, B.R. Ratna, R. Allen, Nanoparticle networks as chemoselective sensing devices. J. Chem. Phys. 130, 094702 (2009)

    Article  CAS  Google Scholar 

  12. F. Zahid, A.W. Ghosh, M. Paulsson, E. Polizzi, S. Datta, Charging-induced asymmetry in molecular conductors. Phys. Rev. B 70, 245317 (2004)

    Article  CAS  Google Scholar 

  13. R. Liu, S.-H. Ke, H.U. Baranger, W. Yang, Organometallic spintronics: dicobaltocene switch. Nano Lett. 5, 1959–1962 (2005)

    Article  CAS  Google Scholar 

  14. P.G. Piva, G.A. DiLabio, J.L. Pitters, J. Zikovsky, M. Rezeq, S. Dogel, W.A. Hofer, R.A. Wolkow, Field regulation of single-molecule conductivity by a charged surface atom. Nature 435, 658–661 (2005)

    Article  CAS  Google Scholar 

  15. T. Rakshit, G.-C. Liang, A.W. Ghosh, M.C. Hersam, S. Datta, Molecules on silicon: self-consistent first-principles theory and calibration to experiments. Phys. Rev. B 72, 125305 (2005)

    Article  CAS  Google Scholar 

  16. A. Salomon, D. Cahen, S.M. Lindsay, J. Tomfohr, V.B. Engelkes, C.D. Frisbie, Comparison of electronic transport. Measurements on organic molecules. Adv. Mater. 15, 1881–1890 (2003)

    Article  CAS  Google Scholar 

  17. R.A. Kiehl, J.D. Le, P. Candra, R.C. Hoye, T.R. Hoye, Charge storage model for hysteretic negative-differential resistance in metal-molecule-metal junctions. Appl. Phys. Lett. 88, 172102 (2006)

    Article  CAS  Google Scholar 

  18. R.P. Berkelaar, H. Sode, T.F. Mocking, A. Kumar, B. Poelsema, H.J.W. Zandvliet, Molecular bridges. J. Phys. Chem. C 115, 2268 (2011)

    Article  CAS  Google Scholar 

  19. A.S. Blum, J.G. Kushmerick, D.P. Long, C.H. Patterson, J.C. Yang, J.C. Henderson, Y. Yao, J.M. Tour, R. Shashidhar, B.R. Ratna, Molecularly inherent voltage controlled conductance switching. Nat. Mater. 4, 167–172 (2005)

    Article  CAS  Google Scholar 

  20. B.-Y. Choi, S.-J. Kahng, S. Kim, H. Kim, H.W. Kim, Y.J. Song, J. Ihm, Y. Kuk, Conformational molecular switch of the azobenzene molecule: a scanning tunneling microscopy study. Phys. Rev. Lett. 96, 156106 (2006)

    Article  CAS  Google Scholar 

  21. H. Park, J. Park, A.K.L. Lim, E.H. Anderson, A.P. Alivisatos, P.L. McEuen, Nanomechanical oscillations in a single-C60 transistor. Nature 407, 57–60 (2000)

    Article  Google Scholar 

  22. J. Zarembowitch, O. Kahn, New J. Chem. 15, 181–189 (1991)

    CAS  Google Scholar 

  23. A.-L. Barra, P. Debrunner, D. Gatteschi, Ch.E. Schulz, R. Sessoli, Superparamagnetic-like behavior in an octanuclear iron cluster. Europhys. Lett. 35, 133–136 (1996)

    Article  CAS  Google Scholar 

  24. A.I. Hochbaum, R. Chen, R. Diaz Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008)

    Article  CAS  Google Scholar 

  25. K. Baheti, J.A. Malen, P. Doak, P. Reddy, S.Y. Jang, T.D. Tilley, A. Majumdar, R.A. Segalman, Probing the chemistry of molecular heterojunctions using thermoelectricity. Nano Lett. 8, 715–719 (2008)

    Article  CAS  Google Scholar 

  26. Y. Dubi, M. Di Ventra, Thermoelectric effects in nanoscale junctions. Nano Lett. 9, 97–101 (2009)

    Article  CAS  Google Scholar 

  27. A.M. Lunde, K. Flensberg, L.I. Glazman, Interaction-induced resonance in conductance and thermopower of quantum wires. Phys. Rev. Lett. 97, 256802 (2006)

    Article  CAS  Google Scholar 

  28. D. Segal, Thermoelectric effect in molecular junctions: a tool for revealing transport mechanisms. Phys. Rev. B 72, 165426 (2005)

    Article  CAS  Google Scholar 

  29. M. Yoshida, L.N. Oliveira, Thermoelectric effects in quantum dots. Physica B 404, 3312–3315 (2009)

    Article  CAS  Google Scholar 

  30. C.M. Finch, V.M. Garcia-Suarez, C.J. Lambert, Giant thermopower and figure of merit in single-molecule devices. Phys. Rev. B 79, 033405 (2009)

    Article  CAS  Google Scholar 

  31. L.H. Yu, Z.K. Keane, J.W. Ciszek, L. Cheng, J.M. Tour, T. Baruah, M.R. Pederson, D. Natelson, Kondo resonances and anomalous gate dependence in the electrical conductivity of single-molecule transistors. Phys. Rev. Lett. 95, 256803 (2005)

    Article  CAS  Google Scholar 

  32. S. Vasudevan, N. Kapur, T. He, M. Neurock, J.M. Tour, A.W. Ghosh, Controlling transistor threshold voltages using molecular dipoles. J. Appl. Phys. 105, 093703 (2009)

    Article  CAS  Google Scholar 

  33. G. Moore, Cramming more components onto integrated circuits. Electron. Mag. 38, 114–117 (1965)

    Google Scholar 

  34. Y. Li, F. Qian, J. Xiang, C.M. Lieber, Nanowire electronic and optoelectronic devices. Mater. Today 9, 18–27 (2006)

    Article  CAS  Google Scholar 

  35. J.P. Colinge, Quantum-wire effects in trigate SOI MOSFETs. Solid-State Electr. 51, 1153–1160 (2007)

    Article  CAS  Google Scholar 

  36. C.W. Lee, S.R.N. Yun, C.G. Yu, J.T. Park, J.P. Colinge, Device design guidelines for nano-scale MuGFETs. Solid-State Elect. 51, 505–510 (2007)

    Article  CAS  Google Scholar 

  37. D.A. Muller, T. Sorsch, S. Moccio, F.H. Baumann, K. Evans-Lutterodt, G. Timp, The electronic structure at the atomic scale of ultra-thin gate oxides. Nature 399, 758–760 (1999)

    Article  CAS  Google Scholar 

  38. J.H. Davis, The Physics of Low-Dimensional Devices (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  39. R. Kim, M. Lundstrom, Characteristics features of 1-D ballistic transport in nanowire MOSFETs. IEEE Trans. Nanotechnol. 7, 787–794 (2008)

    Article  Google Scholar 

  40. Y. Xue, M.A. Ratner, Molecular electronics: from physics to computing, in Nanotechnology: Science and Computation, ed. by J. Chen, N. Jonoska, G. Rosenberg (Springer, Berlin, 2006)

    Google Scholar 

  41. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, Ph. Avouris, Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998)

    Article  CAS  Google Scholar 

  42. S.J. Tans, A.R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998)

    Article  CAS  Google Scholar 

  43. A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, H. Dai, High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 92, 106804 (2004)

    Article  CAS  Google Scholar 

  44. J.Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Ustunel, S. Braig, T.A. Arias, P.W. Brouwer, P.L. McEuen, Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano Lett. 4, 517–520 (2004)

    Article  CAS  Google Scholar 

  45. S. Wang and P. Sellin, Pronounced hysteresis and high charge storage stability of single-walled carbon nanotube-baced field-effect transistors, Appl. Phys. Lett. 87, 133–117 (2005)

    Google Scholar 

  46. J. Guo, S. Hasan, A. Javey, G. Bosman, M. Lundstrom, Assessment of high-frequency performance potential of carbon nanotube transistors. IEEE Trans. Nanotechnol. 4, 715–721 (2005)

    Article  Google Scholar 

  47. F. Leonard, J. Tersoff, Role of Fermi-level pinning in nanotube Schottky diodes. Phys. Rev. Lett. 84, 4693–4696 (2000)

    Article  CAS  Google Scholar 

  48. Y. Xue, M.A. Ratner, Scaling analysis of Schottky barriers at metal-embedded semiconducting carbon nanotube interfaces. Phys. Rev. B 69, 161402(R) (2004)

    Google Scholar 

  49. S. Auvray, J. Borghetti, M.F. Goffman, A. Filoramo, V. Derycke, J.P. Bourgoin, O. Jost, Carbon nanotube transistor optimization by chemical control of the nanotube-metal interface. Appl. Phys. Lett. 84, 5106–5108 (2004)

    Article  CAS  Google Scholar 

  50. J. Appenzeller, J. Knoch, R. Martel, V. Derycke, S.J. Wind, P. Avouris, Carbon nanotube electronics. IEEE Trans. Nanotechnol. 1, 84–89 (2002)

    Article  Google Scholar 

  51. J.U. Lee, P.P. Gipp, C.M. Heller, Carbon nanotube pn junction diodes. Appl. Phys. Lett. 85, 145–147 (2004)

    Article  CAS  Google Scholar 

  52. A. Rakitin, C. Papadopoulos, J.M. Xu, Carbon nanotube self-doping: calculation of the hole carrier concentration. Phys. Rev. B 67, 033411 (2003)

    Article  CAS  Google Scholar 

  53. F. Ding, P. Larsson, J.A. Larsson, R. Ahuja, H. Duan, A. Rosen, K. Bolton, The importance of strong carbon-metal adhesion for catalytic nucleation of single-walled carbon nanotubes. Nano Lett. 8, 463–468 (2008)

    Article  CAS  Google Scholar 

  54. Y. Wu, Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, C.M. Lieber, Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 4, 433–436 (2004)

    Article  CAS  Google Scholar 

  55. R. Agarwal, Heterointerfaces in semiconductor nanowires. Small 4, 1872–1893 (2008)

    Article  CAS  Google Scholar 

  56. Z. Fan, J.G. Lu, Zinc oxide nanostructures: synthesis and properties, J. Nanosci. Nanotechnol. 5, 1561–1573 (2005)

    Article  CAS  Google Scholar 

  57. C. Klingshirn, ZnO: from basics towards applications. Phys. Status Solidi B 244, 3027–3073 (2007)

    Article  CAS  Google Scholar 

  58. W.-K. Hong, G. Jo, S. Song, J. Maeng, T. Lee, ZnO nanowire field-effect transistors, in Handbook of Nanophysics; Nanoelectronics and Nanophotonics, ed. by K.D. Sattler (Taylor and Francis Group, New York, 2010)

    Google Scholar 

  59. W.-K. Hong, D.-K. Hwang, I.-K. Park, G. Jo, S. Song, S.-J. Park, T. Lee, B.-J. Kim, E.A. Stach, Realization of highly reproducible ZnO nanowire field-effect transistors with n-channel depletion and enhancement modes. Appl. Phys. Lett. 90, 243103 (2007)

    Article  CAS  Google Scholar 

  60. D. Yeom, K. Keem, J. Kang, D.-Y. Jeong, C. Yoon, D. Kim, S. Kim, NOT and NAND logic circuits composed of top-gate ZnO nanowire field-effect transistors with high-k Al 2 O 3 gate layers. Nanothechnology 19, 265202 (2008)

    Article  CAS  Google Scholar 

  61. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  CAS  Google Scholar 

  62. B. Huard, J.A. Sulpizio, N. Stander, K. Todd, B. Yang, D. Goldhaber-Gordon, Transport measurements across a tunable potential barrier in graphene. Phys. Rev. Lett. 98, 236803 (2007)

    Article  CAS  Google Scholar 

  63. H. Cheraghchi, K. Esfarjani, Negative differential resistance in molecular junctions: application to graphene ribbon junctions. Phys. Rev. B 78, 085123 (2008)

    Article  CAS  Google Scholar 

  64. B. Xu, X. Xiao, X. Yang, L. Zang, N. Tao, Large gate modulation in the current of a room temperature single molecule transistor. J. Am. Chem. Soc. 127, 2386–2387 (2005)

    Article  CAS  Google Scholar 

  65. F. Jackel, M.D. Watson, K. Mullen, J.P. Rabe, Prototypical single-molecule chemical-field-effect transistor with nanometer-sized gates. Phys. Rev. Lett. 92, 188303 (2004)

    Article  CAS  Google Scholar 

  66. H.W. Song, Y.S. Kim, Y.H. Jang, H.J. Jeong, M.A. Reed, T.H. Lee, Observation of molecular orbital gating. Nature 462, 1039–1043 (2009)

    Article  CAS  Google Scholar 

  67. S. Ballmann, H.B. Weber, An electrostatic gate for mechanically controlled single-molecule junctions. New J. Phys. 14, 123028 (2012)

    Article  Google Scholar 

  68. F. Prins, A. Barreiro, J.W. Ruitenberg, J.S. Seldenthuis, N. Aliaga-Alcalde, L.M.K. Vandersypen, H.S.J. van der Zant, Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. Nano Lett. 11, 4607–4611 (2011)

    Article  CAS  Google Scholar 

  69. C.A. Martin, D. Ding, H.S.J. van der Zant, J.M. van Ruitenbeek, Lithographic mechanical break junctions for single-molecule measurements in vacuum: possibilities and limitations. New J. Phys. 10, 065008 (2008)

    Article  CAS  Google Scholar 

  70. S.-C. Chang, Z. Li, C.N. Lau, B. Larade, R.S. Williams, Investigation of a model molecular-electronic rectifier with an evaporated Ti-metal top contact. Appl. Phys. Lett. 83, 3198–3200 (2003)

    Article  CAS  Google Scholar 

  71. H. Haick, J. Ghabboun, D. Cahen, Pd versus Au as evaporated metal contacts to molecules. Appl. Phys. Lett. 8(6), 042113 (2005)

    Google Scholar 

  72. H.B. Akkerman, P.W.M. Blom, D.M. de Leeuw, B. de Boer, Towards molecular electronics with large-area molecular junctions. Nature 441, 69–72 (2006)

    Article  CAS  Google Scholar 

  73. D. Velessiotis, A.M. Douvas, S. Athanasiou, B. Nilsson, G. Petersson, U. Sodervall, G. Alestig, P. Argitis, N. Glezos, Molecular junctions made of tungsten-polyoxometalate self-assembled monolayers: towards polyoxometalate-based molecular electronics devices. Microelectr. Eng. 88, 2775–2777 (2011)

    Article  CAS  Google Scholar 

  74. R. Dasari, F.J. Ibanez, F.P. Zamborini, Electrochemical fabrication of metal/organic/metal junctions for molecular electronics and sensing applications. Langmuir 27, 7285–7293 (2011)

    Article  CAS  Google Scholar 

  75. R.M. Metzger, Unimolecular electrical rectifiers. Chem. Rev. 103, 3803–3834 (2003)

    Article  CAS  Google Scholar 

  76. M. Elbing, R. Ochs, M. Koentopp, M. Fischer, C. von Hanisch, F. Weigend, F. Evers, H. Weber, M. Mayor, A single-molecule diode. Proc. Natl. Acad. Sci. USA 102, 8815 (2005)

    Article  CAS  Google Scholar 

  77. Diez-Perez, J. Hihath, Y. Lee, L. Yu, L. Adamska, M.A. Kozhushner, I. Oleynik, N. Tao, Rectification and stability of a single molecular diode with controlled orientation. Nat. Chem. 1, 635–641 (2009)

    Article  CAS  Google Scholar 

  78. H. Nakamura, Y. Asai, J. Hihath, C. Bruot, N. Tao, Switch of conducting orbital by bias-induced electronic contact asymmetry in a bipyrimidinyl-biphenyl diblock molecule: mechanism to achieve a pn directional molecular diode. Phys. Chem. C 115, 19931–19938 (2011)

    Article  CAS  Google Scholar 

  79. M. Geller, A. Marent, D. Bimberg, Nanomemories using self-organized quantum dots, in Handbook of Nanophysics; Nanoelectronics and Nanophotonics, ed. by K.D. Sattler (Taylor and Francis Group, New York, 2010)

    Google Scholar 

  80. M. Geller, A. Marent, E. Stock, D. Bimberg, V.I. Zubkov, I.S. Shulgunova, A.V. Solomonov, Hole capture into self-organized InGaAs quantum dots. Appl. Phys. Lett. 89, 232105 (2006)

    Article  CAS  Google Scholar 

  81. M. Geller, A. Marent, T. Nowozin, D. Bimberg, N. Akcay, N. Oncan, A write time of 6 ns for quantum dot-based memory structures. Appl. Phys. Lett. 92, 092108 (2008)

    Article  CAS  Google Scholar 

  82. D.V. Lang, Deep-level transient spectroscopy: a new method to characterize traps in semiconductors. J. Appl. Phys. 45, 3023–3026 (1974)

    Article  CAS  Google Scholar 

  83. M. Geller, E. Stock, C. Kapteyn, R.L. Sellin, D. Bimberg, Tunneling emission from self-organized In(Ga)As/GaAs quantum dots observed via time-resolved capacitance measurements. Phys. Rev. B 73, 205331 (2006)

    Article  CAS  Google Scholar 

  84. A. Marent, M. Geller, A. Schliwa, D. Feise, K. Potschke, D. Bimberg, N. Akcay, N. Oncan, 106 years extrapolated hole storage time in GaSb/AlAs quantum dots, Appl. Phys. Lett. 91, 242109 (2007)

    Article  CAS  Google Scholar 

  85. A. Schliwa, M. Winkelnkemper, D. Bimberg, Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)As∕GaAs quantum dots. Phys. Rev. B 76, 205324 (2007)

    Article  CAS  Google Scholar 

  86. O. Stier, M. Grundmann, D. Bimberg, Electronic and optical properties of strained quantum dots modeled by 8-band kp theory. Phys. Rev. B 59, 5688–5701 (1999)

    Article  CAS  Google Scholar 

  87. E. Bichoutskaia, A.M. Popov, Y.E. Lozovik, Nanotube-based data storage devices. Mater. Today 11, 38–43 (2008)

    Article  CAS  Google Scholar 

  88. O. Wunnicke, Gate capacitance of back-gated nanowire field-effect transistors. Appl. Phys. Lett. 89, 083102 (2006)

    Article  CAS  Google Scholar 

  89. M.S. Fuhrer, B.M. Kim, T. Du1rkop, T. Brintlinger, High-mobility nanotube transistor memory. Nano Lett. 2, 755–759 (2002)

    Google Scholar 

  90. M. Radosavljevic, M. Freitag, K.V. Thadani, A.T. Johnson, Nonvolatile molecular memory elements based on ambipolar nanotube field effect transistors. Nano Lett. 2, 761–764 (2002)

    Article  CAS  Google Scholar 

  91. J.B. Cui, R. Sordan, M. Burghard, K. Kern, Carbon nanotube memory devices of high charge storage stability. Appl. Phys. Lett. 81, 3260–3262 (2002)

    Article  CAS  Google Scholar 

  92. T. Sakurai, T. Yoshimura, S. Akita, N. Fujimura, Y. Nakayama, Single-wall carbon nanotube field effect transistors with non-volatile memory operation. Jpn. J. Appl. Phys. 45 (2006)

    Google Scholar 

  93. X. Duan, Y. Huang, C.M. Lieber, Nonvolatile memory and programmable logic from molecule-gated nanowires. Nano Lett. 2, 487–490 (2002)

    Article  CAS  Google Scholar 

  94. J. Mannik, B.R. Goldsmith, A. Kane, P.G. Collins, Chemically induced conductance switching in carbon nanotube circuits. Phys. Rev. Lett. 97, 016601 (2006)

    Article  CAS  Google Scholar 

  95. B.R. Goldsmith, J.G. Coroneus, V.R. Khalap, A.A. Kane, G.A. Weiss, P.G. Collins, Conductance-controlled point functionalization of single-walled carbon nanotubes. Science 315, 77–81 (2007)

    Article  CAS  Google Scholar 

  96. R.S. Chakraborty, S. Narasimhan, S. Bhunia, Hybridization of CMOS with CNT-based nano electromechanical switch for low leakage and robust circuit design using nanoscaled CMOS devices. IEEE Trans. Circ Syst I 54, 2480–2488 (2007)

    Article  Google Scholar 

  97. M.Y.A. Yousif, P. Lundgren, F. Ghavanini, P. Enoksson, S. Bengtsson, CMOS considerations in nanoelectromechanical carbon nanotube-based switches. Nanotechnology 19, 285204 (2008)

    Article  CAS  Google Scholar 

  98. T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung, C.M. Lieber, Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, (2000) 94–97

    Article  CAS  Google Scholar 

  99. S.N. Cha, J.E. Jang, Y. Choi, G.A.J. Amaratunga, D.-J. Kang, D.G. Hasko, J.E. Jung, J.M. Kim, Fabrication of a nanoelectromechanical switch using a suspended carbon nanotube. Appl. Phys. Lett. 86, 083105 (2005)

    Article  CAS  Google Scholar 

  100. M. Dequesnes, S.V. Rotkin, N.R. Aluru, Calculation of pull-in voltages for nanoelectromechanical switches. Nanotechnology 13, 120–131 (2002)

    Article  Google Scholar 

  101. V.V. Deshpande, H.-Y. Chiu, H.W.Ch. Postma, C. Miko, L. Forro, M. Bockrath, Carbon nanotube linear bearing nanoswitches. Nano Lett. 6, 1092–1095 (2006)

    Google Scholar 

  102. L. Maslov, Concept of nonvolatile memory based on multiwall carbon nanotubes. Nanotechnology 17, 2475–2482 (2006)

    Article  CAS  Google Scholar 

  103. J.W. Kang, Q. Jiang, Electrostatically telescoping nanotube nonvolatile memory device. Nanotechnology 18, 095705 (2007)

    Article  CAS  Google Scholar 

  104. Y.-K. Kwon, D. Tomanek, S. Iijima, “Bucky Shuttle” memory device: synthetic approach and molecular dynamics simulations. Phys. Rev. Lett. 82, 1470–1473 (1999)

    Article  CAS  Google Scholar 

  105. Z.J. Donhauser, B.A. Mantooth, K.F. Kelly, L.A. Bumm, J.D. Monnell, J.J. Stapleton, D.L. Allara, J.M. Tour, P.S. Weiss, Conductance switching in single molecules through conformational changes. Science 292, 2303–2307 (2001)

    Article  CAS  Google Scholar 

  106. G.K. Ramachandran, T.J. Hopson, A.M. Rawlett, L.A. Nagahara, A. Primak, S.M. Lindsay, A bond-fluctuation mechanism for stochastic switching in wired molecules. Science 300, 1413–1416 (2003)

    Article  CAS  Google Scholar 

  107. D. Dulic, F. Pump, S. Campidelli, P. Lavie, G. Cuniberti, A. Filoramo, Controlled stability of molecular junctions. Angew. Chem. 121, 8423–8426 (2009)

    Article  Google Scholar 

  108. E.G. Emberly, G. Kirczenow, The smallest molecular switch. Phys. Rev. Lett. 91, 188301 (2003)

    Article  CAS  Google Scholar 

  109. G. Li, A. Mishchenko, Z. Li, I. Pobelov, Th. Wandlowski, X.Q. Li, F. Wurthner, A. Bagrets, F. Evers, Electrochemical gate-controlled electron transport of redox-active single perylene bisimide molecular junctions. J. Phys.: Condens. Matter 20, 374122 (2008)

    Google Scholar 

  110. Y. Wada, T. Uda, M. Lutwyche, S. Kondo, S. Heike, A proposal of nanoscale devices based on atom/molecule switching. J. Appl. Phys. 74, 7321–7328 (1993)

    Article  CAS  Google Scholar 

  111. C. Joachim, J.K. Gimzewski, H. Tang, Physical principles of the single-C60 transistor effect. Phys. Rev. B 58, 16407–16417 (1998)

    Article  CAS  Google Scholar 

  112. Ch. Loppacher, M. Guggisberg, O. Pfeiffer, E. Meyer, M. Bammerlin, R. Luthi, R. Schlittler, J.K. Gimzewski, H. Tang, C. Joachim, Direct determination of the energy required to operate a single molecule switch. Phys. Rev. Lett. 90, 066107 (2003)

    Article  CAS  Google Scholar 

  113. V. Meded, A. Bagrets, A. Arnold, F. Evers, Molecular switch controlled by pulsed bias voltages. Small 5, 2218–2223 (2009)

    Article  CAS  Google Scholar 

  114. M. Taniguchi, M. Tsutsui, K. Yokota, T. Kawai, Mechanically-controllable single molecule switch based on configuration specific electrical conductivity of metal–molecule-metal junctions. Chem. Sci. 1, 247–253 (2010)

    Article  CAS  Google Scholar 

  115. C. Li, D. Zhang, X. Liu, S. Han, T. Tang, C. Zhou, W. Fan, J. Koehne, J. Han, M. Meyyappan, A.M. Rawlett, D.W. Price, J.M. Tour, Fabrication approach for molecular memory arrays. Appl. Phys. Lett. 82, 645–647 (2003)

    Article  CAS  Google Scholar 

  116. R. Jorn, T. Seideman, Implications and applications of current-induced dynamics in molecular junctions. Acc. Chem. Res. 43, 1186–1194 (2010)

    Article  CAS  Google Scholar 

  117. E. Lortscher, J.W. Ciszek, J. Tour, H. Riel, Reversible and controllable switching of a single-molecule junction. Small 2, 973–977 (2006)

    Article  CAS  Google Scholar 

  118. Y. Chen, D.A.A. Ohlberg, X. Li, D.R. Stewart, R.S. Williams, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart, D.L. Olynick, E. Anderson, Nanoscale molecular-switch devices fabricated by imprint lithography. Appl. Phys. Lett. 82, 1610–1612 (2003)

    Article  CAS  Google Scholar 

  119. J.E. Green, J.W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, Y. Luo, B.A. Sheriff, K. Xu, Y.S. Shin, H.-R. Tseng, J.F. Stoddart, J.R. Heath, A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 414–417 (2007)

    Article  CAS  Google Scholar 

  120. D.R. Stewart, D.A.A. Ohlberg, P.A. Beck, Y. Chen, R.S. Williams, Molecule-independent electrical switching in Pt/organic monolayer/Ti devices. Nano Lett. 4, 133–136 (2004)

    Article  CAS  Google Scholar 

  121. D. Vuillaume, Molecular nanoelectronics. Proc. IEEE 98, 2111–2123 (2010)

    CAS  Google Scholar 

  122. A.J. Kronemeijer, H.B. Akkerman, T. Kudernac, B.J. van Wees, B.L. Feringa, P.W.M. Blom, B. de Boer, Reversible conductance switching in molecular devices. Adv. Mater. 20, 1467–1473 (2008)

    Article  CAS  Google Scholar 

  123. A.S. Kumar, T. Ye, T. Takami, B.-C. Yu, A.K. Flatt, J.M. Tour, P.S. Weiss, Reversible photo-switching of single azobenzene molecules in controlled nanoscale environments. Nano Lett. 8, 1644–1648 (2008)

    Article  CAS  Google Scholar 

  124. J.M. Mativetsky, G. Pace, M. Elbing, M.A. Rampi, M. Mayor, P. Samori, Azobenzenes as light-controlled molecular electronic switches in nanoscale metal-molecule-metal junctions. J. Am. Chem. Soc. 130, 9192–9193 (2008)

    Article  CAS  Google Scholar 

  125. X. Zhang, Y. Wen, Y. Li, G. Li, S. Du, H. Guo, L. Yang, L. Jiang, H. Gao, Y. Song, Molecularly controlled modulation of conductance on azobenzene monolayer-modified silicon surfaces. J. Phys. Chem. C 112, 8288–8293 (2008)

    Article  CAS  Google Scholar 

  126. D. Dulic, S.J. van der Molen, T. Kudernac, H.T. Jonkman, J.J.D. de Jong, T.N. Bowden, J. van Esch, B.L. Feringa, B.J. van Wees, One-way optoelectronic switching of photochromic molecules on gold. Phys. Rev. Lett. 91, 207402 (2003)

    Article  CAS  Google Scholar 

  127. D. Nozaki, G. Cuniberti, Silicon-based molecular switch junctions. Nano Res. 2, 648–659 (2009)

    Article  CAS  Google Scholar 

  128. M. Zhuang, M. Ernzerhof, Mechanism of a molecular electronic photo switch. Phys. Rev. B 72, 073104 (2005)

    Article  CAS  Google Scholar 

  129. J. Li, G. Speyer, O.F. Sankey, Conduction switching of photochromic molecules. Phys. Rev. Lett. 93, 248302 (2004)

    Article  CAS  Google Scholar 

  130. C. Bertarelli, M.C. Gallazzi, F. Stellacci, G. Zerbi, S. Stagira, M. Nisoli, S. De Silvestri, Ultrafast photoinduced ring-closure dynamics of a diarylethene polymer. Chem. Phys. Lett. 359, 278–282 (2002)

    Article  CAS  Google Scholar 

  131. D. Dulic, S.J. van der Molen, T. Kudernac, H.T. Jonkman, J.J.D. de Jong, T.N. Bowden, J. van Esch, B.L. Feringa, B.J. van Wees, One-way optoelectronic switching of photochromic molecules on gold. Phys. Rev. Lett. 91, 207402 (2003)

    Article  CAS  Google Scholar 

  132. N. Katsonis, T. Kudernac, M. Walko, S. Jan van der Molen, B.J. van Wees, B.L. Feringa, Reversible conductance switching of single diarylethenes on a gold surface. Adv. Mater. 18, 1397–1400 (2006)

    Article  CAS  Google Scholar 

  133. A.C. Whalley, M.L. Steigerwald, X. Guo, C. Nuckolls, Reversible switching in molecular electronic devices. J. Am. Chem. Soc. 129, 12590–12591 (2007)

    Article  CAS  Google Scholar 

  134. K. Smaali, S. Lenfant, S. Karpe, M. Oafrain, P. Blanchard, D. Deresmes, S.Godey, A. Rochefort, J. Roncali, D. Vuillaume, High on-off conductance switching ratio in optically-driven self-assembled conjugated molecular systems. ACS Nano 4, 2411–2421 (2010)

    Google Scholar 

  135. Q. Li, G. Mathur, M. Homsi, S. Surthi, V. Misra, V. Malinovskii, K.-H. Schweikart, L. Yu, J.S. Lindsey, Z. Liu, R.B. Dabke, A. Yasseri, D.F. Bocian, W.G. Kuhr, Capacitance and conductance characterization of ferrocene-containing self-assembled monolayers on silicon surfaces for memory applications. Appl. Phys. Lett. 81, 1494–1496 (2002)

    Article  CAS  Google Scholar 

  136. Z. Liu, A.A. Yasseri, J.S. Lindsey, D.F. Bocian, Molecular memories that survive silicon device processing and real-world operation. Science 302, 1543–1545 (2003)

    Article  CAS  Google Scholar 

  137. M.N. Leuenberger, D. Loss, Spin tunneling and phonon-assisted relaxation in Mn12-acetate. Phys. Rev. B 61, 1286–1302 (2000)

    Article  CAS  Google Scholar 

  138. E.S. Snow, F.K. Perkins, E.J. Houser, S.C. Badescu, T.L. Reinecke, Chemical detection with a single-walled carbon nanotube capacitor. Science 307, 1942–1945 (2005)

    Article  CAS  Google Scholar 

  139. M. Freitag, A.T. Johnson, S.V. Kalinin, D.A. Bonnell, Role of single defects in electronic transport through carbon nanotube field-effect transistors. Phys. Rev. Lett. 89, 216801 (2002)

    Article  CAS  Google Scholar 

  140. C. Staii, A.T. Johnson, DNA-decorated carbon nanotubes for chemical sensing. Nano Lett. 5, 1774–1778 (2005)

    Article  CAS  Google Scholar 

  141. R.R. Breaker, Natural and engineered nucleic acids as tools to explore biology. Nature 432, 838–845 (2004)

    Article  CAS  Google Scholar 

  142. J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, P.E. Sheehan, Reduced graphene oxide molecular sensors. Nano Lett. 8, 3137–3140 (2008)

    Article  CAS  Google Scholar 

  143. S. Gilje, S. Han, M. Wang, K.L. Wang, R.B. Kaner, A chemical route to graphene for device applications. Nano Lett. 7, 3394–3398 (2007)

    Article  CAS  Google Scholar 

  144. Y.-M. Lin, Ph. Avouris, Strong suppression of electrical noise in bilayer graphene nano devices. Nano Lett. 8, 2119–2125 (2008)

    Article  CAS  Google Scholar 

  145. A. Modi, N. Koratkar, E. Lass, B. Wei, P.M. Ajayan, Miniaturized gas ionization sensors using carbon nanotubes. Nature 424, 171–174 (2003)

    Article  CAS  Google Scholar 

  146. Y. Zhang, J. Liu, C. Zhu, Novel gas ionization sensors using carbon nanotubes. Sensor Lett. 8, 219–227 (2010)

    Article  CAS  Google Scholar 

  147. Y. Cui, Q. Wei, H. Park, C.M. Lieber, Nanowire nanosensors for highly-sensitive, selective and integrated detection of biological and chemical species. Science 293, 1289–1292 (2001)

    Article  CAS  Google Scholar 

  148. A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 5, 667–673 (2005)

    Article  CAS  Google Scholar 

  149. B. Li, L. Shang, M.S. Marcus, T.L. Clare, E. Perkins, R.J. Hamers, Chemoselective nanowire fuses: chemically induced cleavage and electrical detection of carbon nanofiber bridges. Small 4, 795–801 (2008)

    Article  CAS  Google Scholar 

  150. X.-J. Huang, Y.-K. Choi, Chemical sensors based on nanostructured materials. Sens. Actuators B 122, 659–671 (2007)

    Article  CAS  Google Scholar 

  151. Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84, 3654–3656 (2004)

    Article  CAS  Google Scholar 

  152. N.S. Ramgir, I.S. Mulla, K.P. Vijayamohanan, A room temperature nitric oxide sensor actualized from Ru-doped SnO2 nanowires. Sens. Actuators B 107, 708–715 (2005)

    Article  CAS  Google Scholar 

  153. C. Li, D. Zhang, B. Lei, S. Han, X. Liu, C. Zhou, Surface treatment and doping dependence of In 2 O 3 nanowires as ammonia sensors. J. Phys. Chem. B 107, 12451–12455 (2003)

    Google Scholar 

  154. Y. Zhang, A. Kolmakov, S. Chretien, H. Metiu, M. Moskovits, Control of catalytic reactions at the surface of a metal oxide nanowire by manipulating electron density inside it. Nano Lett. 4, 403–407 (2004)

    Article  CAS  Google Scholar 

  155. F. Favier, E. Walter, M.P. Zach, T. Benter, R.M. Penner, Hydrogen sensors and hydrogen-activated switches were fabricated from arrays of mesoscopic palladium wires. Science 293, 2227–2231 (2001)

    Article  CAS  Google Scholar 

  156. A.S. Blum, C.M. Soto, K.E. Sapsford, C.D. Wilson, M.H. Moore, B.R. Ratna, Molecular electronics based nanosensors on a viral scaffold. Biosens. Bioelectron. 26, 2852–2857 (2011)

    Article  CAS  Google Scholar 

  157. A.P. de Silva, H.Q.N. Gunaratne, T. Gunnlaugsson, A.J.M. Huxley, C.P. McCoy, J.T. Rademacher, T.E. Rice, Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997)

    Article  Google Scholar 

  158. C.W. Rogers, M.O. Wolf, Luminescent molecular sensors based on analyte coordination to transition metal complexes. Coord. Chem. Rev. 233–234, 341–350 (2002)

    Article  Google Scholar 

  159. J.N. Demas, B.A. DeGraff, Applications of luminescent transition platinum group metal complexes to sensor technology and molecular probes. Coord. Chem. Rev. 211, 317–351 (2001)

    Article  CAS  Google Scholar 

  160. B. Valeur, I. Leray, Design principles of fluorescent molecular sensors for cation recognition. Coord. Chem. Rev. 205, 3–40 (2000)

    Article  CAS  Google Scholar 

  161. R.E. Gawley, H. Mao, M.M. Haque, J.B. Thorne, J.S. Pharr, Visible fluorescence chemosensor for saxitoxin. J. Org. Chem. 72, 2187–2191 (2007)

    Article  CAS  Google Scholar 

  162. Y. Dubi, M. Di Ventra, Heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 83, 131–155 (2011)

    Article  CAS  Google Scholar 

  163. L.D. Hicks, M.S. Dresselhaus, Effect of quantum wells on the thermoelectric figure of merit. Phys. Rev. B 47, 2727–1273 (1993)

    Google Scholar 

  164. C.J. Vineis, A. Shakouri, A. Majumdar, M.G. Kanatzidis, Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22, 3970 (2010)

    Article  CAS  Google Scholar 

  165. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001)

    Article  CAS  Google Scholar 

  166. R. Rurali, Colloquium: structural, electronic, and transport properties of silicon nanowires. Rev. Mod. Phys. 82, 427–449 (2010)

    Article  CAS  Google Scholar 

  167. M. Paulsson, S. Datta, Thermoelectric effect in molecular electronics. Phys. Rev. B 67, 241403(R) (2003)

    Google Scholar 

  168. J.A. Malen, P. Doak, K. Baheti, T.D. Tilley, R.A. Segalman, A. Majumdar, Identifying the length dependence of orbital alignment and contact coupling in molecular heterojunctions. Nano Lett. 9, 1164–1169 (2009)

    Article  CAS  Google Scholar 

  169. J.R. Widawsky, P. Darancet, J.B. Neaton, L. Venkataraman, Simultaneous determination of conductance and thermopower of single molecule junctions. Nano Lett. 12, 354–358 (2012)

    Article  CAS  Google Scholar 

  170. S.K. Yee, J.A. Malen, A. Majumdar, R.A. Segalman, Thermoelectricity in fullerene-metal heterojunctions. Nano Lett. 11, 4089–4094 (2011)

    Article  CAS  Google Scholar 

  171. M. Zwolak, M. Di Ventra, Colloquium: physical approaches to DNA sequencing and detection. Rev. Mod. Phys. 80, 141–165 (2008)

    Article  Google Scholar 

  172. E. Macia, Thermoelectric power and electrical conductance of DNA based molecular junctions. Nanotechnology 16, S254–S260 (2005)

    Article  CAS  Google Scholar 

  173. E. Macia, DNA-based thermoelectric devices: a theoretical prospective. Phys. Rev. B 75, 035130 (2007)

    Article  CAS  Google Scholar 

  174. Z. Wang, J.A. Carter, A. Lagutchev, Y.K. Koh, N.-H. Seong, D.G. Cahill, D.D. Dlott, Ultrafast flash thermal conductance of molecular chains. Science 317, 787–789 (2007)

    Article  CAS  Google Scholar 

  175. M. Tsutsui, M. Taniguchi, K. Yokota, T. Kawai, Roles of lattice cooling on local heating in metal–molecule-metal junctions. Appl. Phys. Lett. 96, 103110 (2010)

    Article  CAS  Google Scholar 

  176. F. Liu, K.L. Wang, Correlated random telegraph signal and low-frequency noise in carbon nanotube transistors. Nano Lett. 8, 147–151 (2008)

    Article  CAS  Google Scholar 

  177. J. Chan, B. Burke, K. Evans, K.A. Williams, S. Vasudevan, M. Liu, J. Campbell, A.W. Ghosh, Reversal of current blockade in nanotube-based field effect transistors through multiple trap correlations. Phys. Rev. B 80, 033402 (2009)

    Article  CAS  Google Scholar 

  178. N.P. Guisinger, M.E. Greene, R. Basu, A.S. Baluch, M.C. Hersam, Room temperature negative differential resistance through individual organic molecules on silicon surfaces. Nano Lett. 4, 55–59 (2004)

    Article  CAS  Google Scholar 

  179. S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J.L. Bredas, N. Stuhr-Hansen, P. Hedega, T. Bjornholm, Single-electron transistor of a single organic molecule with access to several redox states. Nature 425, 698–701 (2003)

    Article  CAS  Google Scholar 

  180. M. Tsutsui, M. Taniguchi, Vibrational spectroscopy of single-molecule junctions by direct current measurements. J. Appl. Phys. 113, 084301 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zimbovskaya, N.A. (2013). Nanoelectronic Applications of Molecular Junctions. In: Transport Properties of Molecular Junctions. Springer Tracts in Modern Physics, vol 254. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8011-2_6

Download citation

Publish with us

Policies and ethics