Nanoelectronic Applications of Molecular Junctions

  • Natalya A. Zimbovskaya
Part of the Springer Tracts in Modern Physics book series (STMP, volume 254)


It is a common knowledge that the first functioning transistor was invented in the late 1940s by Bardeen, Brattain, and Shockley, and this invention had marked the starting point for the microelectronic revolution. The metal-oxide-silicon field-effect transistors (MOSFET) appeared in the 1960s, and they dominated the development of microelectronics in the following forty years. Computer industry and digital communication systems give two examples of MOSFET applications. One of the most important characteristics of the progress in microelectronics is the process of miniaturization of electronic devices. As early as 1965, Gordon Moore has made his famous prediction that the number of transistors placed on a single silicon chip would double every one and one half year [472]. This prediction became the roadmap of the semiconductor industry. The increase in the number of transistors situated on a sole chip requires their miniaturization. Actually, the size of MOSFET produced by the microelectronic industry during the last thirty years has shrunken a factor of more than one hundred, and presently it reaches a few tens of nanometer [472]. However, there are grounds to expect increasing difficulties slowing down the MOSFET miniaturization beyond the 10 nm mode. These problems mostly originate from the fact that a nanometer-sized MOSFET no longer behaves as a device with a long channel, that is, a device where the electrostatics and the current flow in the channel between the source and drain are effectively controlled by the gate. When the channel length becomes too short, the gate ability to control the channel deteriorates, and the so-called short-channel effects appear. These effects increase the MOSFET “off” current and render the current dependence of the bias voltage, so the device performance worsens. To improve the electrostatic control of the channel by the gate, new device structures are being explored, where the gate electrode is wrapped around the channel region. These devices are called multi-gate MOSFETs, and their size could be made smaller than that of usual planar devices. Functional multi-gate transistors made in a silicon nanowire with the diameter of 3 nm were reported in 2006 [473].


Graphene Sheet Gate Voltage Memory Element Thermoelectric Device Molecular Junction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Aviram, M.A. Ratner, Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974)CrossRefGoogle Scholar
  2. 5.
    A.W. Ghosh, Electronics with molecules, in Comprehensive Semiconductor Science and Technology, vol. 5, ed. by P. Brattacharya, R. Fornari, H. Kamimura (Elsevier, Amsterdam, 2011), pp. 383–478Google Scholar
  3. 9.
    M. Poot, E. Osorio, K. O’Neil, J.M. Thijssen, D. Vanmaekelbergh, Temperature dependence of three-terminal molecular junctions with sulfur end-functionalized tercyclohexylidenes. Nano Lett. 6, 1031–1035 (2006)CrossRefGoogle Scholar
  4. 10.
    E. Lortscher, H.B. Weber, H. Riel, Statistical approach to investigating transport through single molecules. Phys. Rev. Lett. 98, 176807 (2007)CrossRefGoogle Scholar
  5. 13.
    P. Liljeroth, J. Repp, G. Meyer, Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007)CrossRefGoogle Scholar
  6. 14.
    L.V. Venkataraman, J.E. Klare, M.S. Hybertsen, C. Nuckolls, M.L. Steigerwald, Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006)CrossRefGoogle Scholar
  7. 15.
    L. Venkataraman, J.E. Klare, I.W. Tam, C. Nuckolls, M.S. Hybertsen, C. Nuckolls, M.L. Steigerwald, Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006)CrossRefGoogle Scholar
  8. 16.
    B. Reddy, S.-Y. Yang, R.A. Segalman, A. Majumdar, Thermoelectricity in molecular junctions. Science 315, 1568–1571 (2007)CrossRefGoogle Scholar
  9. 27.
    J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkovski, J.P. Sithna, H.D. Abruna, P.L. McEuen, D.C. Ralph, Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002)CrossRefGoogle Scholar
  10. 31.
    L.H. Yu, D. Natelson, Kondo physics in C60 single-molecule transistors. Nano Lett. 4, 79–83 (2004)CrossRefGoogle Scholar
  11. 42.
    N.A. Zimbovskaya, M.R. Pederson, A.S. Blum, B.R. Ratna, R. Allen, Nanoparticle networks as chemoselective sensing devices. J. Chem. Phys. 130, 094702 (2009)CrossRefGoogle Scholar
  12. 84.
    F. Zahid, A.W. Ghosh, M. Paulsson, E. Polizzi, S. Datta, Charging-induced asymmetry in molecular conductors. Phys. Rev. B 70, 245317 (2004)CrossRefGoogle Scholar
  13. 156.
    R. Liu, S.-H. Ke, H.U. Baranger, W. Yang, Organometallic spintronics: dicobaltocene switch. Nano Lett. 5, 1959–1962 (2005)CrossRefGoogle Scholar
  14. 169.
    P.G. Piva, G.A. DiLabio, J.L. Pitters, J. Zikovsky, M. Rezeq, S. Dogel, W.A. Hofer, R.A. Wolkow, Field regulation of single-molecule conductivity by a charged surface atom. Nature 435, 658–661 (2005)CrossRefGoogle Scholar
  15. 172.
    T. Rakshit, G.-C. Liang, A.W. Ghosh, M.C. Hersam, S. Datta, Molecules on silicon: self-consistent first-principles theory and calibration to experiments. Phys. Rev. B 72, 125305 (2005)CrossRefGoogle Scholar
  16. 178.
    A. Salomon, D. Cahen, S.M. Lindsay, J. Tomfohr, V.B. Engelkes, C.D. Frisbie, Comparison of electronic transport. Measurements on organic molecules. Adv. Mater. 15, 1881–1890 (2003)CrossRefGoogle Scholar
  17. 192.
    R.A. Kiehl, J.D. Le, P. Candra, R.C. Hoye, T.R. Hoye, Charge storage model for hysteretic negative-differential resistance in metal-molecule-metal junctions. Appl. Phys. Lett. 88, 172102 (2006)CrossRefGoogle Scholar
  18. 193.
    R.P. Berkelaar, H. Sode, T.F. Mocking, A. Kumar, B. Poelsema, H.J.W. Zandvliet, Molecular bridges. J. Phys. Chem. C 115, 2268 (2011)CrossRefGoogle Scholar
  19. 197.
    A.S. Blum, J.G. Kushmerick, D.P. Long, C.H. Patterson, J.C. Yang, J.C. Henderson, Y. Yao, J.M. Tour, R. Shashidhar, B.R. Ratna, Molecularly inherent voltage controlled conductance switching. Nat. Mater. 4, 167–172 (2005)CrossRefGoogle Scholar
  20. 255.
    B.-Y. Choi, S.-J. Kahng, S. Kim, H. Kim, H.W. Kim, Y.J. Song, J. Ihm, Y. Kuk, Conformational molecular switch of the azobenzene molecule: a scanning tunneling microscopy study. Phys. Rev. Lett. 96, 156106 (2006)CrossRefGoogle Scholar
  21. 279.
    H. Park, J. Park, A.K.L. Lim, E.H. Anderson, A.P. Alivisatos, P.L. McEuen, Nanomechanical oscillations in a single-C60 transistor. Nature 407, 57–60 (2000)CrossRefGoogle Scholar
  22. 291.
    J. Zarembowitch, O. Kahn, New J. Chem. 15, 181–189 (1991)Google Scholar
  23. 295.
    A.-L. Barra, P. Debrunner, D. Gatteschi, Ch.E. Schulz, R. Sessoli, Superparamagnetic-like behavior in an octanuclear iron cluster. Europhys. Lett. 35, 133–136 (1996)CrossRefGoogle Scholar
  24. 337.
    A.I. Hochbaum, R. Chen, R. Diaz Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008)CrossRefGoogle Scholar
  25. 338.
    K. Baheti, J.A. Malen, P. Doak, P. Reddy, S.Y. Jang, T.D. Tilley, A. Majumdar, R.A. Segalman, Probing the chemistry of molecular heterojunctions using thermoelectricity. Nano Lett. 8, 715–719 (2008)CrossRefGoogle Scholar
  26. 342.
    Y. Dubi, M. Di Ventra, Thermoelectric effects in nanoscale junctions. Nano Lett. 9, 97–101 (2009)CrossRefGoogle Scholar
  27. 344.
    A.M. Lunde, K. Flensberg, L.I. Glazman, Interaction-induced resonance in conductance and thermopower of quantum wires. Phys. Rev. Lett. 97, 256802 (2006)CrossRefGoogle Scholar
  28. 345.
    D. Segal, Thermoelectric effect in molecular junctions: a tool for revealing transport mechanisms. Phys. Rev. B 72, 165426 (2005)CrossRefGoogle Scholar
  29. 359.
    M. Yoshida, L.N. Oliveira, Thermoelectric effects in quantum dots. Physica B 404, 3312–3315 (2009)CrossRefGoogle Scholar
  30. 361.
    C.M. Finch, V.M. Garcia-Suarez, C.J. Lambert, Giant thermopower and figure of merit in single-molecule devices. Phys. Rev. B 79, 033405 (2009)CrossRefGoogle Scholar
  31. 447.
    L.H. Yu, Z.K. Keane, J.W. Ciszek, L. Cheng, J.M. Tour, T. Baruah, M.R. Pederson, D. Natelson, Kondo resonances and anomalous gate dependence in the electrical conductivity of single-molecule transistors. Phys. Rev. Lett. 95, 256803 (2005)CrossRefGoogle Scholar
  32. 458.
    S. Vasudevan, N. Kapur, T. He, M. Neurock, J.M. Tour, A.W. Ghosh, Controlling transistor threshold voltages using molecular dipoles. J. Appl. Phys. 105, 093703 (2009)CrossRefGoogle Scholar
  33. 472.
    G. Moore, Cramming more components onto integrated circuits. Electron. Mag. 38, 114–117 (1965)Google Scholar
  34. 473.
    Y. Li, F. Qian, J. Xiang, C.M. Lieber, Nanowire electronic and optoelectronic devices. Mater. Today 9, 18–27 (2006)CrossRefGoogle Scholar
  35. 474.
    J.P. Colinge, Quantum-wire effects in trigate SOI MOSFETs. Solid-State Electr. 51, 1153–1160 (2007)CrossRefGoogle Scholar
  36. 475.
    C.W. Lee, S.R.N. Yun, C.G. Yu, J.T. Park, J.P. Colinge, Device design guidelines for nano-scale MuGFETs. Solid-State Elect. 51, 505–510 (2007)CrossRefGoogle Scholar
  37. 476.
    D.A. Muller, T. Sorsch, S. Moccio, F.H. Baumann, K. Evans-Lutterodt, G. Timp, The electronic structure at the atomic scale of ultra-thin gate oxides. Nature 399, 758–760 (1999)CrossRefGoogle Scholar
  38. 477.
    J.H. Davis, The Physics of Low-Dimensional Devices (Cambridge University Press, Cambridge, 1998)Google Scholar
  39. 478.
    R. Kim, M. Lundstrom, Characteristics features of 1-D ballistic transport in nanowire MOSFETs. IEEE Trans. Nanotechnol. 7, 787–794 (2008)CrossRefGoogle Scholar
  40. 479.
    Y. Xue, M.A. Ratner, Molecular electronics: from physics to computing, in Nanotechnology: Science and Computation, ed. by J. Chen, N. Jonoska, G. Rosenberg (Springer, Berlin, 2006)Google Scholar
  41. 480.
    R. Martel, T. Schmidt, H.R. Shea, T. Hertel, Ph. Avouris, Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998)CrossRefGoogle Scholar
  42. 481.
    S.J. Tans, A.R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998)CrossRefGoogle Scholar
  43. 482.
    A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, H. Dai, High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 92, 106804 (2004)CrossRefGoogle Scholar
  44. 483.
    J.Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Ustunel, S. Braig, T.A. Arias, P.W. Brouwer, P.L. McEuen, Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano Lett. 4, 517–520 (2004)CrossRefGoogle Scholar
  45. 484.
    S. Wang and P. Sellin, Pronounced hysteresis and high charge storage stability of single-walled carbon nanotube-baced field-effect transistors, Appl. Phys. Lett. 87, 133–117 (2005)Google Scholar
  46. 485.
    J. Guo, S. Hasan, A. Javey, G. Bosman, M. Lundstrom, Assessment of high-frequency performance potential of carbon nanotube transistors. IEEE Trans. Nanotechnol. 4, 715–721 (2005)CrossRefGoogle Scholar
  47. 486.
    F. Leonard, J. Tersoff, Role of Fermi-level pinning in nanotube Schottky diodes. Phys. Rev. Lett. 84, 4693–4696 (2000)CrossRefGoogle Scholar
  48. 487.
    Y. Xue, M.A. Ratner, Scaling analysis of Schottky barriers at metal-embedded semiconducting carbon nanotube interfaces. Phys. Rev. B 69, 161402(R) (2004)Google Scholar
  49. 488.
    S. Auvray, J. Borghetti, M.F. Goffman, A. Filoramo, V. Derycke, J.P. Bourgoin, O. Jost, Carbon nanotube transistor optimization by chemical control of the nanotube-metal interface. Appl. Phys. Lett. 84, 5106–5108 (2004)CrossRefGoogle Scholar
  50. 489.
    J. Appenzeller, J. Knoch, R. Martel, V. Derycke, S.J. Wind, P. Avouris, Carbon nanotube electronics. IEEE Trans. Nanotechnol. 1, 84–89 (2002)CrossRefGoogle Scholar
  51. 490.
    J.U. Lee, P.P. Gipp, C.M. Heller, Carbon nanotube pn junction diodes. Appl. Phys. Lett. 85, 145–147 (2004)CrossRefGoogle Scholar
  52. 491.
    A. Rakitin, C. Papadopoulos, J.M. Xu, Carbon nanotube self-doping: calculation of the hole carrier concentration. Phys. Rev. B 67, 033411 (2003)CrossRefGoogle Scholar
  53. 492.
    F. Ding, P. Larsson, J.A. Larsson, R. Ahuja, H. Duan, A. Rosen, K. Bolton, The importance of strong carbon-metal adhesion for catalytic nucleation of single-walled carbon nanotubes. Nano Lett. 8, 463–468 (2008)CrossRefGoogle Scholar
  54. 493.
    Y. Wu, Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, C.M. Lieber, Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 4, 433–436 (2004)CrossRefGoogle Scholar
  55. 494.
    R. Agarwal, Heterointerfaces in semiconductor nanowires. Small 4, 1872–1893 (2008)CrossRefGoogle Scholar
  56. 495.
    Z. Fan, J.G. Lu, Zinc oxide nanostructures: synthesis and properties, J. Nanosci. Nanotechnol. 5, 1561–1573 (2005)CrossRefGoogle Scholar
  57. 496.
    C. Klingshirn, ZnO: from basics towards applications. Phys. Status Solidi B 244, 3027–3073 (2007)CrossRefGoogle Scholar
  58. 497.
    W.-K. Hong, G. Jo, S. Song, J. Maeng, T. Lee, ZnO nanowire field-effect transistors, in Handbook of Nanophysics; Nanoelectronics and Nanophotonics, ed. by K.D. Sattler (Taylor and Francis Group, New York, 2010)Google Scholar
  59. 499.
    W.-K. Hong, D.-K. Hwang, I.-K. Park, G. Jo, S. Song, S.-J. Park, T. Lee, B.-J. Kim, E.A. Stach, Realization of highly reproducible ZnO nanowire field-effect transistors with n-channel depletion and enhancement modes. Appl. Phys. Lett. 90, 243103 (2007)CrossRefGoogle Scholar
  60. 500.
    D. Yeom, K. Keem, J. Kang, D.-Y. Jeong, C. Yoon, D. Kim, S. Kim, NOT and NAND logic circuits composed of top-gate ZnO nanowire field-effect transistors with high-k Al 2 O 3 gate layers. Nanothechnology 19, 265202 (2008)CrossRefGoogle Scholar
  61. 501.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRefGoogle Scholar
  62. 502.
    B. Huard, J.A. Sulpizio, N. Stander, K. Todd, B. Yang, D. Goldhaber-Gordon, Transport measurements across a tunable potential barrier in graphene. Phys. Rev. Lett. 98, 236803 (2007)CrossRefGoogle Scholar
  63. 503.
    H. Cheraghchi, K. Esfarjani, Negative differential resistance in molecular junctions: application to graphene ribbon junctions. Phys. Rev. B 78, 085123 (2008)CrossRefGoogle Scholar
  64. 504.
    B. Xu, X. Xiao, X. Yang, L. Zang, N. Tao, Large gate modulation in the current of a room temperature single molecule transistor. J. Am. Chem. Soc. 127, 2386–2387 (2005)CrossRefGoogle Scholar
  65. 505.
    F. Jackel, M.D. Watson, K. Mullen, J.P. Rabe, Prototypical single-molecule chemical-field-effect transistor with nanometer-sized gates. Phys. Rev. Lett. 92, 188303 (2004)CrossRefGoogle Scholar
  66. 506.
    H.W. Song, Y.S. Kim, Y.H. Jang, H.J. Jeong, M.A. Reed, T.H. Lee, Observation of molecular orbital gating. Nature 462, 1039–1043 (2009)CrossRefGoogle Scholar
  67. 507.
    S. Ballmann, H.B. Weber, An electrostatic gate for mechanically controlled single-molecule junctions. New J. Phys. 14, 123028 (2012)CrossRefGoogle Scholar
  68. 508.
    F. Prins, A. Barreiro, J.W. Ruitenberg, J.S. Seldenthuis, N. Aliaga-Alcalde, L.M.K. Vandersypen, H.S.J. van der Zant, Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. Nano Lett. 11, 4607–4611 (2011)CrossRefGoogle Scholar
  69. 509.
    C.A. Martin, D. Ding, H.S.J. van der Zant, J.M. van Ruitenbeek, Lithographic mechanical break junctions for single-molecule measurements in vacuum: possibilities and limitations. New J. Phys. 10, 065008 (2008)CrossRefGoogle Scholar
  70. 510.
    S.-C. Chang, Z. Li, C.N. Lau, B. Larade, R.S. Williams, Investigation of a model molecular-electronic rectifier with an evaporated Ti-metal top contact. Appl. Phys. Lett. 83, 3198–3200 (2003)CrossRefGoogle Scholar
  71. 511.
    H. Haick, J. Ghabboun, D. Cahen, Pd versus Au as evaporated metal contacts to molecules. Appl. Phys. Lett. 8(6), 042113 (2005)Google Scholar
  72. 512.
    H.B. Akkerman, P.W.M. Blom, D.M. de Leeuw, B. de Boer, Towards molecular electronics with large-area molecular junctions. Nature 441, 69–72 (2006)CrossRefGoogle Scholar
  73. 513.
    D. Velessiotis, A.M. Douvas, S. Athanasiou, B. Nilsson, G. Petersson, U. Sodervall, G. Alestig, P. Argitis, N. Glezos, Molecular junctions made of tungsten-polyoxometalate self-assembled monolayers: towards polyoxometalate-based molecular electronics devices. Microelectr. Eng. 88, 2775–2777 (2011)CrossRefGoogle Scholar
  74. 514.
    R. Dasari, F.J. Ibanez, F.P. Zamborini, Electrochemical fabrication of metal/organic/metal junctions for molecular electronics and sensing applications. Langmuir 27, 7285–7293 (2011)CrossRefGoogle Scholar
  75. 515.
    R.M. Metzger, Unimolecular electrical rectifiers. Chem. Rev. 103, 3803–3834 (2003)CrossRefGoogle Scholar
  76. 516.
    M. Elbing, R. Ochs, M. Koentopp, M. Fischer, C. von Hanisch, F. Weigend, F. Evers, H. Weber, M. Mayor, A single-molecule diode. Proc. Natl. Acad. Sci. USA 102, 8815 (2005)CrossRefGoogle Scholar
  77. 517.
    Diez-Perez, J. Hihath, Y. Lee, L. Yu, L. Adamska, M.A. Kozhushner, I. Oleynik, N. Tao, Rectification and stability of a single molecular diode with controlled orientation. Nat. Chem. 1, 635–641 (2009)CrossRefGoogle Scholar
  78. 518.
    H. Nakamura, Y. Asai, J. Hihath, C. Bruot, N. Tao, Switch of conducting orbital by bias-induced electronic contact asymmetry in a bipyrimidinyl-biphenyl diblock molecule: mechanism to achieve a pn directional molecular diode. Phys. Chem. C 115, 19931–19938 (2011)CrossRefGoogle Scholar
  79. 519.
    M. Geller, A. Marent, D. Bimberg, Nanomemories using self-organized quantum dots, in Handbook of Nanophysics; Nanoelectronics and Nanophotonics, ed. by K.D. Sattler (Taylor and Francis Group, New York, 2010)Google Scholar
  80. 520.
    M. Geller, A. Marent, E. Stock, D. Bimberg, V.I. Zubkov, I.S. Shulgunova, A.V. Solomonov, Hole capture into self-organized InGaAs quantum dots. Appl. Phys. Lett. 89, 232105 (2006)CrossRefGoogle Scholar
  81. 521.
    M. Geller, A. Marent, T. Nowozin, D. Bimberg, N. Akcay, N. Oncan, A write time of 6 ns for quantum dot-based memory structures. Appl. Phys. Lett. 92, 092108 (2008)CrossRefGoogle Scholar
  82. 522.
    D.V. Lang, Deep-level transient spectroscopy: a new method to characterize traps in semiconductors. J. Appl. Phys. 45, 3023–3026 (1974)CrossRefGoogle Scholar
  83. 523.
    M. Geller, E. Stock, C. Kapteyn, R.L. Sellin, D. Bimberg, Tunneling emission from self-organized In(Ga)As/GaAs quantum dots observed via time-resolved capacitance measurements. Phys. Rev. B 73, 205331 (2006)CrossRefGoogle Scholar
  84. 524.
    A. Marent, M. Geller, A. Schliwa, D. Feise, K. Potschke, D. Bimberg, N. Akcay, N. Oncan, 106 years extrapolated hole storage time in GaSb/AlAs quantum dots, Appl. Phys. Lett. 91, 242109 (2007)CrossRefGoogle Scholar
  85. 525.
    A. Schliwa, M. Winkelnkemper, D. Bimberg, Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)As∕GaAs quantum dots. Phys. Rev. B 76, 205324 (2007)CrossRefGoogle Scholar
  86. 526.
    O. Stier, M. Grundmann, D. Bimberg, Electronic and optical properties of strained quantum dots modeled by 8-band kp theory. Phys. Rev. B 59, 5688–5701 (1999)CrossRefGoogle Scholar
  87. 527.
    E. Bichoutskaia, A.M. Popov, Y.E. Lozovik, Nanotube-based data storage devices. Mater. Today 11, 38–43 (2008)CrossRefGoogle Scholar
  88. 528.
    O. Wunnicke, Gate capacitance of back-gated nanowire field-effect transistors. Appl. Phys. Lett. 89, 083102 (2006)CrossRefGoogle Scholar
  89. 529.
    M.S. Fuhrer, B.M. Kim, T. Du1rkop, T. Brintlinger, High-mobility nanotube transistor memory. Nano Lett. 2, 755–759 (2002)Google Scholar
  90. 530.
    M. Radosavljevic, M. Freitag, K.V. Thadani, A.T. Johnson, Nonvolatile molecular memory elements based on ambipolar nanotube field effect transistors. Nano Lett. 2, 761–764 (2002)CrossRefGoogle Scholar
  91. 531.
    J.B. Cui, R. Sordan, M. Burghard, K. Kern, Carbon nanotube memory devices of high charge storage stability. Appl. Phys. Lett. 81, 3260–3262 (2002)CrossRefGoogle Scholar
  92. 532.
    T. Sakurai, T. Yoshimura, S. Akita, N. Fujimura, Y. Nakayama, Single-wall carbon nanotube field effect transistors with non-volatile memory operation. Jpn. J. Appl. Phys. 45 (2006)Google Scholar
  93. 533.
    X. Duan, Y. Huang, C.M. Lieber, Nonvolatile memory and programmable logic from molecule-gated nanowires. Nano Lett. 2, 487–490 (2002)CrossRefGoogle Scholar
  94. 534.
    J. Mannik, B.R. Goldsmith, A. Kane, P.G. Collins, Chemically induced conductance switching in carbon nanotube circuits. Phys. Rev. Lett. 97, 016601 (2006)CrossRefGoogle Scholar
  95. 535.
    B.R. Goldsmith, J.G. Coroneus, V.R. Khalap, A.A. Kane, G.A. Weiss, P.G. Collins, Conductance-controlled point functionalization of single-walled carbon nanotubes. Science 315, 77–81 (2007)CrossRefGoogle Scholar
  96. 536.
    R.S. Chakraborty, S. Narasimhan, S. Bhunia, Hybridization of CMOS with CNT-based nano electromechanical switch for low leakage and robust circuit design using nanoscaled CMOS devices. IEEE Trans. Circ Syst I 54, 2480–2488 (2007)CrossRefGoogle Scholar
  97. 537.
    M.Y.A. Yousif, P. Lundgren, F. Ghavanini, P. Enoksson, S. Bengtsson, CMOS considerations in nanoelectromechanical carbon nanotube-based switches. Nanotechnology 19, 285204 (2008)CrossRefGoogle Scholar
  98. 538.
    T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung, C.M. Lieber, Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, (2000) 94–97CrossRefGoogle Scholar
  99. 539.
    S.N. Cha, J.E. Jang, Y. Choi, G.A.J. Amaratunga, D.-J. Kang, D.G. Hasko, J.E. Jung, J.M. Kim, Fabrication of a nanoelectromechanical switch using a suspended carbon nanotube. Appl. Phys. Lett. 86, 083105 (2005)CrossRefGoogle Scholar
  100. 540.
    M. Dequesnes, S.V. Rotkin, N.R. Aluru, Calculation of pull-in voltages for nanoelectromechanical switches. Nanotechnology 13, 120–131 (2002)CrossRefGoogle Scholar
  101. 541.
    V.V. Deshpande, H.-Y. Chiu, H.W.Ch. Postma, C. Miko, L. Forro, M. Bockrath, Carbon nanotube linear bearing nanoswitches. Nano Lett. 6, 1092–1095 (2006)Google Scholar
  102. 542.
    L. Maslov, Concept of nonvolatile memory based on multiwall carbon nanotubes. Nanotechnology 17, 2475–2482 (2006)CrossRefGoogle Scholar
  103. 543.
    J.W. Kang, Q. Jiang, Electrostatically telescoping nanotube nonvolatile memory device. Nanotechnology 18, 095705 (2007)CrossRefGoogle Scholar
  104. 544.
    Y.-K. Kwon, D. Tomanek, S. Iijima, “Bucky Shuttle” memory device: synthetic approach and molecular dynamics simulations. Phys. Rev. Lett. 82, 1470–1473 (1999)CrossRefGoogle Scholar
  105. 545.
    Z.J. Donhauser, B.A. Mantooth, K.F. Kelly, L.A. Bumm, J.D. Monnell, J.J. Stapleton, D.L. Allara, J.M. Tour, P.S. Weiss, Conductance switching in single molecules through conformational changes. Science 292, 2303–2307 (2001)CrossRefGoogle Scholar
  106. 546.
    G.K. Ramachandran, T.J. Hopson, A.M. Rawlett, L.A. Nagahara, A. Primak, S.M. Lindsay, A bond-fluctuation mechanism for stochastic switching in wired molecules. Science 300, 1413–1416 (2003)CrossRefGoogle Scholar
  107. 547.
    D. Dulic, F. Pump, S. Campidelli, P. Lavie, G. Cuniberti, A. Filoramo, Controlled stability of molecular junctions. Angew. Chem. 121, 8423–8426 (2009)CrossRefGoogle Scholar
  108. 548.
    E.G. Emberly, G. Kirczenow, The smallest molecular switch. Phys. Rev. Lett. 91, 188301 (2003)CrossRefGoogle Scholar
  109. 549.
    G. Li, A. Mishchenko, Z. Li, I. Pobelov, Th. Wandlowski, X.Q. Li, F. Wurthner, A. Bagrets, F. Evers, Electrochemical gate-controlled electron transport of redox-active single perylene bisimide molecular junctions. J. Phys.: Condens. Matter 20, 374122 (2008)Google Scholar
  110. 550.
    Y. Wada, T. Uda, M. Lutwyche, S. Kondo, S. Heike, A proposal of nanoscale devices based on atom/molecule switching. J. Appl. Phys. 74, 7321–7328 (1993)CrossRefGoogle Scholar
  111. 551.
    C. Joachim, J.K. Gimzewski, H. Tang, Physical principles of the single-C60 transistor effect. Phys. Rev. B 58, 16407–16417 (1998)CrossRefGoogle Scholar
  112. 552.
    Ch. Loppacher, M. Guggisberg, O. Pfeiffer, E. Meyer, M. Bammerlin, R. Luthi, R. Schlittler, J.K. Gimzewski, H. Tang, C. Joachim, Direct determination of the energy required to operate a single molecule switch. Phys. Rev. Lett. 90, 066107 (2003)CrossRefGoogle Scholar
  113. 553.
    V. Meded, A. Bagrets, A. Arnold, F. Evers, Molecular switch controlled by pulsed bias voltages. Small 5, 2218–2223 (2009)CrossRefGoogle Scholar
  114. 554.
    M. Taniguchi, M. Tsutsui, K. Yokota, T. Kawai, Mechanically-controllable single molecule switch based on configuration specific electrical conductivity of metal–molecule-metal junctions. Chem. Sci. 1, 247–253 (2010)CrossRefGoogle Scholar
  115. 555.
    C. Li, D. Zhang, X. Liu, S. Han, T. Tang, C. Zhou, W. Fan, J. Koehne, J. Han, M. Meyyappan, A.M. Rawlett, D.W. Price, J.M. Tour, Fabrication approach for molecular memory arrays. Appl. Phys. Lett. 82, 645–647 (2003)CrossRefGoogle Scholar
  116. 556.
    R. Jorn, T. Seideman, Implications and applications of current-induced dynamics in molecular junctions. Acc. Chem. Res. 43, 1186–1194 (2010)CrossRefGoogle Scholar
  117. 557.
    E. Lortscher, J.W. Ciszek, J. Tour, H. Riel, Reversible and controllable switching of a single-molecule junction. Small 2, 973–977 (2006)CrossRefGoogle Scholar
  118. 558.
    Y. Chen, D.A.A. Ohlberg, X. Li, D.R. Stewart, R.S. Williams, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart, D.L. Olynick, E. Anderson, Nanoscale molecular-switch devices fabricated by imprint lithography. Appl. Phys. Lett. 82, 1610–1612 (2003)CrossRefGoogle Scholar
  119. 559.
    J.E. Green, J.W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, Y. Luo, B.A. Sheriff, K. Xu, Y.S. Shin, H.-R. Tseng, J.F. Stoddart, J.R. Heath, A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 414–417 (2007)CrossRefGoogle Scholar
  120. 560.
    D.R. Stewart, D.A.A. Ohlberg, P.A. Beck, Y. Chen, R.S. Williams, Molecule-independent electrical switching in Pt/organic monolayer/Ti devices. Nano Lett. 4, 133–136 (2004)CrossRefGoogle Scholar
  121. 561.
    D. Vuillaume, Molecular nanoelectronics. Proc. IEEE 98, 2111–2123 (2010)Google Scholar
  122. 562.
    A.J. Kronemeijer, H.B. Akkerman, T. Kudernac, B.J. van Wees, B.L. Feringa, P.W.M. Blom, B. de Boer, Reversible conductance switching in molecular devices. Adv. Mater. 20, 1467–1473 (2008)CrossRefGoogle Scholar
  123. 563.
    A.S. Kumar, T. Ye, T. Takami, B.-C. Yu, A.K. Flatt, J.M. Tour, P.S. Weiss, Reversible photo-switching of single azobenzene molecules in controlled nanoscale environments. Nano Lett. 8, 1644–1648 (2008)CrossRefGoogle Scholar
  124. 564.
    J.M. Mativetsky, G. Pace, M. Elbing, M.A. Rampi, M. Mayor, P. Samori, Azobenzenes as light-controlled molecular electronic switches in nanoscale metal-molecule-metal junctions. J. Am. Chem. Soc. 130, 9192–9193 (2008)CrossRefGoogle Scholar
  125. 565.
    X. Zhang, Y. Wen, Y. Li, G. Li, S. Du, H. Guo, L. Yang, L. Jiang, H. Gao, Y. Song, Molecularly controlled modulation of conductance on azobenzene monolayer-modified silicon surfaces. J. Phys. Chem. C 112, 8288–8293 (2008)CrossRefGoogle Scholar
  126. 566.
    D. Dulic, S.J. van der Molen, T. Kudernac, H.T. Jonkman, J.J.D. de Jong, T.N. Bowden, J. van Esch, B.L. Feringa, B.J. van Wees, One-way optoelectronic switching of photochromic molecules on gold. Phys. Rev. Lett. 91, 207402 (2003)CrossRefGoogle Scholar
  127. 567.
    D. Nozaki, G. Cuniberti, Silicon-based molecular switch junctions. Nano Res. 2, 648–659 (2009)CrossRefGoogle Scholar
  128. 568.
    M. Zhuang, M. Ernzerhof, Mechanism of a molecular electronic photo switch. Phys. Rev. B 72, 073104 (2005)CrossRefGoogle Scholar
  129. 569.
    J. Li, G. Speyer, O.F. Sankey, Conduction switching of photochromic molecules. Phys. Rev. Lett. 93, 248302 (2004)CrossRefGoogle Scholar
  130. 570.
    C. Bertarelli, M.C. Gallazzi, F. Stellacci, G. Zerbi, S. Stagira, M. Nisoli, S. De Silvestri, Ultrafast photoinduced ring-closure dynamics of a diarylethene polymer. Chem. Phys. Lett. 359, 278–282 (2002)CrossRefGoogle Scholar
  131. 571.
    D. Dulic, S.J. van der Molen, T. Kudernac, H.T. Jonkman, J.J.D. de Jong, T.N. Bowden, J. van Esch, B.L. Feringa, B.J. van Wees, One-way optoelectronic switching of photochromic molecules on gold. Phys. Rev. Lett. 91, 207402 (2003)CrossRefGoogle Scholar
  132. 572.
    N. Katsonis, T. Kudernac, M. Walko, S. Jan van der Molen, B.J. van Wees, B.L. Feringa, Reversible conductance switching of single diarylethenes on a gold surface. Adv. Mater. 18, 1397–1400 (2006)CrossRefGoogle Scholar
  133. 573.
    A.C. Whalley, M.L. Steigerwald, X. Guo, C. Nuckolls, Reversible switching in molecular electronic devices. J. Am. Chem. Soc. 129, 12590–12591 (2007)CrossRefGoogle Scholar
  134. 574.
    K. Smaali, S. Lenfant, S. Karpe, M. Oafrain, P. Blanchard, D. Deresmes, S.Godey, A. Rochefort, J. Roncali, D. Vuillaume, High on-off conductance switching ratio in optically-driven self-assembled conjugated molecular systems. ACS Nano 4, 2411–2421 (2010)Google Scholar
  135. 575.
    Q. Li, G. Mathur, M. Homsi, S. Surthi, V. Misra, V. Malinovskii, K.-H. Schweikart, L. Yu, J.S. Lindsey, Z. Liu, R.B. Dabke, A. Yasseri, D.F. Bocian, W.G. Kuhr, Capacitance and conductance characterization of ferrocene-containing self-assembled monolayers on silicon surfaces for memory applications. Appl. Phys. Lett. 81, 1494–1496 (2002)CrossRefGoogle Scholar
  136. 577.
    Z. Liu, A.A. Yasseri, J.S. Lindsey, D.F. Bocian, Molecular memories that survive silicon device processing and real-world operation. Science 302, 1543–1545 (2003)CrossRefGoogle Scholar
  137. 578.
    M.N. Leuenberger, D. Loss, Spin tunneling and phonon-assisted relaxation in Mn12-acetate. Phys. Rev. B 61, 1286–1302 (2000)CrossRefGoogle Scholar
  138. 579.
    E.S. Snow, F.K. Perkins, E.J. Houser, S.C. Badescu, T.L. Reinecke, Chemical detection with a single-walled carbon nanotube capacitor. Science 307, 1942–1945 (2005)CrossRefGoogle Scholar
  139. 581.
    M. Freitag, A.T. Johnson, S.V. Kalinin, D.A. Bonnell, Role of single defects in electronic transport through carbon nanotube field-effect transistors. Phys. Rev. Lett. 89, 216801 (2002)CrossRefGoogle Scholar
  140. 582.
    C. Staii, A.T. Johnson, DNA-decorated carbon nanotubes for chemical sensing. Nano Lett. 5, 1774–1778 (2005)CrossRefGoogle Scholar
  141. 583.
    R.R. Breaker, Natural and engineered nucleic acids as tools to explore biology. Nature 432, 838–845 (2004)CrossRefGoogle Scholar
  142. 584.
    J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, P.E. Sheehan, Reduced graphene oxide molecular sensors. Nano Lett. 8, 3137–3140 (2008)CrossRefGoogle Scholar
  143. 585.
    S. Gilje, S. Han, M. Wang, K.L. Wang, R.B. Kaner, A chemical route to graphene for device applications. Nano Lett. 7, 3394–3398 (2007)CrossRefGoogle Scholar
  144. 586.
    Y.-M. Lin, Ph. Avouris, Strong suppression of electrical noise in bilayer graphene nano devices. Nano Lett. 8, 2119–2125 (2008)CrossRefGoogle Scholar
  145. 587.
    A. Modi, N. Koratkar, E. Lass, B. Wei, P.M. Ajayan, Miniaturized gas ionization sensors using carbon nanotubes. Nature 424, 171–174 (2003)CrossRefGoogle Scholar
  146. 588.
    Y. Zhang, J. Liu, C. Zhu, Novel gas ionization sensors using carbon nanotubes. Sensor Lett. 8, 219–227 (2010)CrossRefGoogle Scholar
  147. 589.
    Y. Cui, Q. Wei, H. Park, C.M. Lieber, Nanowire nanosensors for highly-sensitive, selective and integrated detection of biological and chemical species. Science 293, 1289–1292 (2001)CrossRefGoogle Scholar
  148. 594.
    A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 5, 667–673 (2005)CrossRefGoogle Scholar
  149. 598.
    B. Li, L. Shang, M.S. Marcus, T.L. Clare, E. Perkins, R.J. Hamers, Chemoselective nanowire fuses: chemically induced cleavage and electrical detection of carbon nanofiber bridges. Small 4, 795–801 (2008)CrossRefGoogle Scholar
  150. 599.
    X.-J. Huang, Y.-K. Choi, Chemical sensors based on nanostructured materials. Sens. Actuators B 122, 659–671 (2007)CrossRefGoogle Scholar
  151. 600.
    Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84, 3654–3656 (2004)CrossRefGoogle Scholar
  152. 601.
    N.S. Ramgir, I.S. Mulla, K.P. Vijayamohanan, A room temperature nitric oxide sensor actualized from Ru-doped SnO2 nanowires. Sens. Actuators B 107, 708–715 (2005)CrossRefGoogle Scholar
  153. 602.
    C. Li, D. Zhang, B. Lei, S. Han, X. Liu, C. Zhou, Surface treatment and doping dependence of In 2 O 3 nanowires as ammonia sensors. J. Phys. Chem. B 107, 12451–12455 (2003)Google Scholar
  154. 603.
    Y. Zhang, A. Kolmakov, S. Chretien, H. Metiu, M. Moskovits, Control of catalytic reactions at the surface of a metal oxide nanowire by manipulating electron density inside it. Nano Lett. 4, 403–407 (2004)CrossRefGoogle Scholar
  155. 604.
    F. Favier, E. Walter, M.P. Zach, T. Benter, R.M. Penner, Hydrogen sensors and hydrogen-activated switches were fabricated from arrays of mesoscopic palladium wires. Science 293, 2227–2231 (2001)CrossRefGoogle Scholar
  156. 605.
    A.S. Blum, C.M. Soto, K.E. Sapsford, C.D. Wilson, M.H. Moore, B.R. Ratna, Molecular electronics based nanosensors on a viral scaffold. Biosens. Bioelectron. 26, 2852–2857 (2011)CrossRefGoogle Scholar
  157. 606.
    A.P. de Silva, H.Q.N. Gunaratne, T. Gunnlaugsson, A.J.M. Huxley, C.P. McCoy, J.T. Rademacher, T.E. Rice, Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997)CrossRefGoogle Scholar
  158. 607.
    C.W. Rogers, M.O. Wolf, Luminescent molecular sensors based on analyte coordination to transition metal complexes. Coord. Chem. Rev. 233–234, 341–350 (2002)CrossRefGoogle Scholar
  159. 608.
    J.N. Demas, B.A. DeGraff, Applications of luminescent transition platinum group metal complexes to sensor technology and molecular probes. Coord. Chem. Rev. 211, 317–351 (2001)CrossRefGoogle Scholar
  160. 609.
    B. Valeur, I. Leray, Design principles of fluorescent molecular sensors for cation recognition. Coord. Chem. Rev. 205, 3–40 (2000)CrossRefGoogle Scholar
  161. 612.
    R.E. Gawley, H. Mao, M.M. Haque, J.B. Thorne, J.S. Pharr, Visible fluorescence chemosensor for saxitoxin. J. Org. Chem. 72, 2187–2191 (2007)CrossRefGoogle Scholar
  162. 613.
    Y. Dubi, M. Di Ventra, Heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 83, 131–155 (2011)CrossRefGoogle Scholar
  163. 614.
    L.D. Hicks, M.S. Dresselhaus, Effect of quantum wells on the thermoelectric figure of merit. Phys. Rev. B 47, 2727–1273 (1993)Google Scholar
  164. 615.
    C.J. Vineis, A. Shakouri, A. Majumdar, M.G. Kanatzidis, Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22, 3970 (2010)CrossRefGoogle Scholar
  165. 616.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001)CrossRefGoogle Scholar
  166. 617.
    R. Rurali, Colloquium: structural, electronic, and transport properties of silicon nanowires. Rev. Mod. Phys. 82, 427–449 (2010)CrossRefGoogle Scholar
  167. 618.
    M. Paulsson, S. Datta, Thermoelectric effect in molecular electronics. Phys. Rev. B 67, 241403(R) (2003)Google Scholar
  168. 619.
    J.A. Malen, P. Doak, K. Baheti, T.D. Tilley, R.A. Segalman, A. Majumdar, Identifying the length dependence of orbital alignment and contact coupling in molecular heterojunctions. Nano Lett. 9, 1164–1169 (2009)CrossRefGoogle Scholar
  169. 620.
    J.R. Widawsky, P. Darancet, J.B. Neaton, L. Venkataraman, Simultaneous determination of conductance and thermopower of single molecule junctions. Nano Lett. 12, 354–358 (2012)CrossRefGoogle Scholar
  170. 621.
    S.K. Yee, J.A. Malen, A. Majumdar, R.A. Segalman, Thermoelectricity in fullerene-metal heterojunctions. Nano Lett. 11, 4089–4094 (2011)CrossRefGoogle Scholar
  171. 622.
    M. Zwolak, M. Di Ventra, Colloquium: physical approaches to DNA sequencing and detection. Rev. Mod. Phys. 80, 141–165 (2008)CrossRefGoogle Scholar
  172. 623.
    E. Macia, Thermoelectric power and electrical conductance of DNA based molecular junctions. Nanotechnology 16, S254–S260 (2005)CrossRefGoogle Scholar
  173. 624.
    E. Macia, DNA-based thermoelectric devices: a theoretical prospective. Phys. Rev. B 75, 035130 (2007)CrossRefGoogle Scholar
  174. 625.
    Z. Wang, J.A. Carter, A. Lagutchev, Y.K. Koh, N.-H. Seong, D.G. Cahill, D.D. Dlott, Ultrafast flash thermal conductance of molecular chains. Science 317, 787–789 (2007)CrossRefGoogle Scholar
  175. 626.
    M. Tsutsui, M. Taniguchi, K. Yokota, T. Kawai, Roles of lattice cooling on local heating in metal–molecule-metal junctions. Appl. Phys. Lett. 96, 103110 (2010)CrossRefGoogle Scholar
  176. 627.
    F. Liu, K.L. Wang, Correlated random telegraph signal and low-frequency noise in carbon nanotube transistors. Nano Lett. 8, 147–151 (2008)CrossRefGoogle Scholar
  177. 628.
    J. Chan, B. Burke, K. Evans, K.A. Williams, S. Vasudevan, M. Liu, J. Campbell, A.W. Ghosh, Reversal of current blockade in nanotube-based field effect transistors through multiple trap correlations. Phys. Rev. B 80, 033402 (2009)CrossRefGoogle Scholar
  178. 629.
    N.P. Guisinger, M.E. Greene, R. Basu, A.S. Baluch, M.C. Hersam, Room temperature negative differential resistance through individual organic molecules on silicon surfaces. Nano Lett. 4, 55–59 (2004)CrossRefGoogle Scholar
  179. 630.
    S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J.L. Bredas, N. Stuhr-Hansen, P. Hedega, T. Bjornholm, Single-electron transistor of a single organic molecule with access to several redox states. Nature 425, 698–701 (2003)CrossRefGoogle Scholar
  180. 631.
    M. Tsutsui, M. Taniguchi, Vibrational spectroscopy of single-molecule junctions by direct current measurements. J. Appl. Phys. 113, 084301 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Natalya A. Zimbovskaya
    • 1
  1. 1.Department of Physics and ElectronicsUniversity of Puerto Rico at HumacaoHumacaoUSA

Personalised recommendations