Skip to main content

Transport Theory

  • Chapter
  • First Online:
Book cover Transport Properties of Molecular Junctions

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 254))

  • 1205 Accesses

Abstract

We start our theoretical analysis of MMM junctions transport properties by briefly introducing the concept of Green’s functions which are necessary for the development of the transport theory. A very thorough treatment of the Green’s functions properties and their quantum mechanical applications is given in numerous works on the subject. Here, we minimize mathematical intricacies by considering a system whose Hamiltonian H is independent of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Aviram, M.A. Ratner, Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974)

    Article  CAS  Google Scholar 

  2. S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge, 2005)

    Book  Google Scholar 

  3. A.W. Ghosh, Electronics with molecules, in Comprehensive Semiconductor Science and Technology, vol. 5, ed. by P. Brattacharya, R. Fornari, H. Kamimura (Elsevier, Amsterdam, 2011), pp. 383–478

    Google Scholar 

  4. A. Mitra, I. Aleiner, A.J. Millis, Phonon effects in molecular transistors: quantal and classical treatment. Phys. Rev. B 69, 245302 (2004)

    Article  Google Scholar 

  5. T. Mii, S.G. Tikhodeev, H. Ueba, Spectral features of inelastic electron transport via a localized state. Phys. Rev. B 68, 205406 (2003)

    Article  Google Scholar 

  6. M. Galperin, M.A. Ratner, A. Nitzan, Inelastic electron tunneling spectroscopy in molecular junctions: peaks and dips. J. Chem. Phys. 121, 11965–11979 (2004)

    Article  CAS  Google Scholar 

  7. M. Galperin, M.A. Ratner, A. Nitzan, Molecular transport junctions: vibrational effects. J. Phys.: Condens. Matter 19, 103201 (2007)

    Google Scholar 

  8. M. Galperin, A. Nitzan, M.A. Ratner, Inelastic effects in molecular junctions in the Coulomb and Kondo regimes: nonequilibrium equation-of-motion approach. Phys. Rev. B 76, 035301 (2007)

    Article  Google Scholar 

  9. N.A. Zimbovskaya, Electron transport through a quantum dot in the Coulomb blockade regime: nonequilibrium Green’s function based model. Phys. Rev. B 78, 035331 (2008)

    Article  Google Scholar 

  10. V. Mujica, M. Kemp, M.A. Ratner, Electron conduction in molecular wires. I. A scattering formalism. J. Chem. Phys. 101, 6849–6855 (1994)

    Article  Google Scholar 

  11. N.A. Zimbovskaya, Low temperature electronic transport and electron transfer through organic macromolecules. J. Chem. Phys. 118, 4–7 (2003)

    Article  CAS  Google Scholar 

  12. N.A. Zimbovskaya, Low-temperature electronic transport through macromolecules and characteristics of intramolecular electron transfer. J. Chem. Phys. 123, 114708 (2005)

    Article  Google Scholar 

  13. J.L. D’Amato, G.M. Pastawski, Conductance of a disordered linear chain including inelastic scattering events. Phys. Rev. B 41, 7411–7420 (1990)

    Article  Google Scholar 

  14. X.-Q. Li, Y.J. Yan, Scattering matrix approach to electronic dephasing in long-range electron transfer. J. Chem. Phys. 115, 4169–4174 (2001)

    Article  CAS  Google Scholar 

  15. N.A. Zimbovskaya, G. Gumbs, Long-range electron transfer and electronic transport through macromolecules. Appl. Phys. Lett. 81, 1518–1520 (2002)

    Article  CAS  Google Scholar 

  16. M. Buttiker, Role of quantum coherence in series resistors. Phys. Rev. B 33, 3020–3026 (1986)

    Article  Google Scholar 

  17. C.W.J. Beenakker, Theory of Coulomb-blockade oscillations in the conductance of a quantum dot. Phys. Rev. B 44, 1646–1656 (1991)

    Article  Google Scholar 

  18. D.V. Averin, A.N. Korotkov, K.K. Likharev, Theory of single-electron charging of quantum wells and dots. Phys. Rev. B 44, 6199–6211 (1991)

    Article  Google Scholar 

  19. N. Simonian, J.J. Li, K.K. Likharev, Negative differential resistance at sequential single-electron tunnelling through atoms and molecules. Nanotechnology 18, 424006 (2007)

    Article  Google Scholar 

  20. S. Datta, W. Tian, S. Hong, R. Reifenberger, J.I. Henderson, C.P. Kubiak, Current–voltage characteristics of self-assembled monolayers by scanning tunneling microscopy. Phys. Rev. Lett. 79, 2530–2533 (1997)

    Article  CAS  Google Scholar 

  21. B. Muralidharan, A.W. Ghosh, S. Datta, Probing electronic excitations in molecular conduction. Phys. Rev. B 73, 155410 (2006)

    Article  Google Scholar 

  22. S. Braig, P.W. Brouwer, Rate equations for Coulomb blockade with ferromagnetic leads. Phys. Rev. B 71, 195324 (2005)

    Article  Google Scholar 

  23. Y. Meir, N.S. Wingreen, P.A. Lee, Transport through a strongly interacting electron system: theory of periodic conductance oscillations. Phys. Rev. Lett. 66, 3048–3051 (1991)

    Article  CAS  Google Scholar 

  24. Y. Meir, N.S. Wingreen, P.A. Lee, Low-temperature transport through a quantum dot: the Anderson model out of equilibrium. Phys. Rev. Lett. 70, 2601–2604 (1993)

    Article  Google Scholar 

  25. R. Swirkowicz, J. Barnas, M. Wilczynski, Electron tunnelling in a double ferromagnetic junction with a magnetic dot as a spacer. J. Phys.: Condens. Matter 14, 2011–2023 (2002)

    Google Scholar 

  26. R. Swirkowicz, J. Barnas, M. Wilczynski, Nonequilibrium Kondo effect in quantum dots. Phys. Rev. B 68, 195318 (2003)

    Article  Google Scholar 

  27. V. Kashcheyev, A. Aharony, O. Entin-Wohlman, Applicability of the equations-of-motion technique for quantum dots. Phys. Rev. B 73, 125338 (2006)

    Article  Google Scholar 

  28. A. Goker, Kondo resonance in an AC driven quantum dot subjected to finite bias. Solid State Commun. 148, 230–233 (2008)

    Article  CAS  Google Scholar 

  29. G.D. Mahan, Many-Particle Physics (Plenum, New York, 2000)

    Book  Google Scholar 

  30. A.B. Kaiser, Electronic transport properties of conducting polymers and carbon nanotubes. Rep. Prog. Phys. 64, 1–49 (2001)

    Article  CAS  Google Scholar 

  31. A.N. Aleshin, H.J. Lee, Y.W. Park, K. Akagi, Coulomb-blockade transport in quasi-one dimensional polymer nanofibers. Phys. Rev. Lett. 93, 196601 (2004)

    Article  CAS  Google Scholar 

  32. L. Siddiqui, A.W. Ghosh, S. Datta, Phonon runaway in carbon nanotube quantum dots. Phys. Rev. B 76, 085433 (2007)

    Article  Google Scholar 

  33. N.A. Zimbovskaya, M.M. Kuklja, Vibration-induced inelastic effects in the electron transport through multisite molecular bridges. J. Chem. Phys. 131, 114703 (2009)

    Article  Google Scholar 

  34. F. Elste, C. Timm, Transport through anisotropic magnetic molecules with partially ferromagnetic leads: spin-charge conversion and negative differential conductance. Phys. Rev. B 73, 235305 (2006)

    Article  Google Scholar 

  35. L.P. Kadanoff, G. Baum, Quantum Statistical Mechanics. Green’s Function Method in Equilibrium and Nonequilibrium Problems (Benjamin, Reading, 1962)

    Google Scholar 

  36. M. Vagner, Expansions of nonequilibrium Green’s functions. Phys. Rev. B 44, 6104–6117 (1991)

    Article  Google Scholar 

  37. E.N. Economou, Green’s Functions in Quantum Physics (Springer, New York, 2005)

    Google Scholar 

  38. N.S. Wingreen, K.W. Jacobsen, J.W. Wilkins, Resonant tunneling with electron-phonon interaction: an exactly solvable model. Phys. Rev. Lett. 61, 1396–1399 (1988)

    Article  Google Scholar 

  39. N.S. Wingreen, K.W. Jacobsen, J.W. Wilkins, Inelastic scattering in resonant tunneling. Phys. Rev. B 40, 11834–11850 (1989)

    Article  Google Scholar 

  40. A. Troisi, M.A. Ratner, Modeling the inelastic electron tunneling spectra of molecular wire junctions. Phys. Rev. B 72, 033408 (2005)

    Article  Google Scholar 

  41. A. Troisi, M.A. Ratner, A. Nitzan, Vibronic effects in off-resonance molecular wire conductance. J. Chem. Phys. 118, 6072–6082 (2003)

    Article  CAS  Google Scholar 

  42. L. Yan, Inelastic electron tunneling spectroscopy and vibrational coupling. J. Phys. Chem. A 110, 13249–13252 (2006)

    Article  CAS  Google Scholar 

  43. S. Datta, Electric Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  44. Y. Magarshak, J. Malinsky, A.D. Joran, Diagram techniques for solving Schwinger-Dyson equations: electron transfer pathways in biological molecules. J. Chem. Phys. 95, 418–431 (1991)

    Article  CAS  Google Scholar 

  45. J. Bonca, S.A. Trugman, Inelastic quantum transport. Phys. Rev. Lett. 79, 4874–4877 (1997)

    Article  CAS  Google Scholar 

  46. H. Ness, Quantum inelastic electron-vibration scattering in molecular wires: Landauer-like versus Green’s function approaches and temperature effects. J. Phys.: Condens. Matter 18, 6307–6328 (2006)

    Google Scholar 

  47. Y. Zhou, M. Freitag, J. Hone, C. Staii, A.T. Johnson, N.J. Pinto, A.G. MacDiarmid, Fabrication and electrical characterization of polyaniline-based nanofibers with diameter below 30 nm. Appl. Phys. Lett. 83, 3800–3802 (2003)

    Google Scholar 

  48. A.G. MacDiarmid, Nobel lecture: synthetic metals: a novel role for organic polymers. Rev. Mod. Phys. 73, 701–712 (2001)

    Article  CAS  Google Scholar 

  49. J. Joo, Z. Oblakowski, G. Du, J.P. Pouget, E.J. Oh, J.M. Wiesinger, Y. Min, A.G. MacDiarmid, A.J. Epstein, Microwave dielectric response of mesoscopic metallic regions and the intrinsic metallic state of polyaniline. Phys. Rev. B 49, 2977–2980 (1994)

    Article  CAS  Google Scholar 

  50. J.P. Pouget, Z. Oblakowski, Y. Nogami, P.A. Albouy, M. Laridjani, E.J. Oh, Y. Min, A.G. MacDiarmid, J. Tsukamoto, T. Ishiguro, A.J. Epstein, Recent structural investigations of metallic polymers. Synth. Met. 65, 131–140 (1994)

    Article  CAS  Google Scholar 

  51. M. Pollak, C.J. Adkins, Conduction in granular metals. Philos. Mag. B 65, 855–860 (1992)

    Article  Google Scholar 

  52. V.N. Prigodin, A.J. Epstein, Nature of insulator-metal transition and novel mechanism of charge transport in the metallic state of highly doped electronic polymers. Synth. Met. 125, 43–53 (2001)

    Article  Google Scholar 

  53. C.J. Bolton-Heaton, C.J. Lambert, V.I. Falko, V.N. Prigodin, A.J. Epstein, Distribution of time constants for tunneling through a one-dimensional disordered chain. Phys. Rev. B 60, 10569–10572 (1999)

    Article  CAS  Google Scholar 

  54. N.A. Zimbovskaya, A.T. Johnson, N.J. Pinto, Electronic transport mechanism in conducting polymer nanofibers. Phys. Rev. B 72, 024213 (2005)

    Article  Google Scholar 

  55. N.A. Zimbovskaya, Inelastic electron transport in polymer nanofibers. J. Chem. Phys. 123, 114705 (2008)

    Article  Google Scholar 

  56. H. Hang, A.-P. Jauho, Quantum Kinetics in Transport and Optics in Semiconductors (Springer, Berlin, 1996)

    Google Scholar 

  57. K.-C. Chou, Z.-B. Su, B.-L. Hao, L. Yu, Equilibrium and nonequilibrium formalisms made unified. Phys. Rep. 118, 1–131 (1984)

    Article  Google Scholar 

  58. B.-L. Hao, Closed time path Green’s functions and nonlinear response theory. Physica A 109, 221–236 (1981)

    Article  Google Scholar 

  59. E. Wang, U. Heinz, Generalized fluctuation-dissipation theorem for nonlinear response functions. Phys. Rev. D 66, 025008 (2002)

    Article  Google Scholar 

  60. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (University Press, New York, 1995)

    Google Scholar 

  61. U. Harbola, S. Mukamel, Non-equilibrium superoperator GW-equations. J. Chem. Phys. 124, 044106–044117 (2006)

    Article  Google Scholar 

  62. U. Harbola, S. Mukamel, Superoperator nonequilibrium Green’s function theory of many-body systems; applications to charge transfer and transport in open junctions. Phys. Rep. 465, 191–222 (2008)

    Article  Google Scholar 

  63. Y. Meir, N.S. Wingreen, Landauer formula for the current through an interacting electron region. Phys. Rev. Lett. 68, 2512–2515 (1992)

    Article  Google Scholar 

  64. A.P. Jauho, N.S. Wingreen, Y. Meir, Time-dependent transport in interacting and noninteracting resonant-tunneling systems. Phys. Rev. B 50, 5528–5544 (1994)

    Article  CAS  Google Scholar 

  65. N.S. Wingreen, Y. Meir, Anderson model out of equilibrium: Noncrossing-approximation approach to transport through a quantum dot. Phys. Rev. B 49, 11040–11052 (1994)

    Article  CAS  Google Scholar 

  66. J. Inarrea, G. Platero, A.H. MacDonald, Electronic transport through a double quantum dot in the spin-blockade regime: theoretical models. Phys. Rev. B 76, 085329 (2007)

    Article  Google Scholar 

  67. L.Y. Gorelik, A. Isacsson, M.V. Voinova, B. Kasemo, R.I. Shekhter, M. Jonson, Shuttle mechanism for charge transfer in Coulomb blockade nanostructures. Phys. Rev. Lett. 80, 4526–4529 (1998)

    Article  CAS  Google Scholar 

  68. N.M. Chtchelkatchev, W. Belzig, C. Bruder, Charge transport through a single-electron transistor with a mechanically oscillating island. Phys. Rev. B 70, 193305 (2004)

    Article  Google Scholar 

  69. Ya.M. Blanter, O. Usmani, Yu.V. Nazarov, Single-electron tunneling with strong mechanical feedback. Phys. Rev. Lett. 93, 136802 (2004)

    Google Scholar 

  70. C.B. Doiron, W. Belzig, C. Bruder, Electrical transport through a single-electron transistor strongly coupled to an oscillator. Phys. Rev. B 74, 205336 (2006)

    Article  Google Scholar 

  71. K.D. McCarthy, N. Prokofiev, M.T. Tuominen, Incoherent dynamics of vibrating single-molecule transistors. Phys. Rev. B 67, 245415 (2003)

    Article  Google Scholar 

  72. J. Koch, M. Semmelhack, F. von Oppen, A. Nitzan, Current-induced nonequilibrium vibrations in single-molecule devices. Phys. Rev. B 73, 155306 (2006)

    Article  Google Scholar 

  73. J. Koch, F. von Oppen, Franck-Condon blockade and giant Fano factors in transport through single molecules. Phys. Rev. Lett. 94, 206804 (2005)

    Article  Google Scholar 

  74. J. Koch, F. von Oppen, Effects of charge-dependent vibrational frequencies and anharmonicities in transport through molecules. Phys. Rev. B 72, 113308 (2005)

    Article  Google Scholar 

  75. J. Koch, M.E. Raikh, F. von Oppen, Pair tunneling through single molecules. Phys. Rev. Lett. 96, 056803 (2006)

    Article  Google Scholar 

  76. H. Ueba, T. Mii, N. Lorente, B.N.J. Persson, Adsorbate motions induced by inelastic-tunneling current: theoretical scenarios of two-electron processes. J. Chem. Phys. 123, 084707 (2005)

    Article  CAS  Google Scholar 

  77. S. Braig, K. Flensberg, Vibrational sidebands and dissipative tunneling in molecular transistors. Phys. Rev. B 68, 205324 (2003)

    Article  Google Scholar 

  78. D.A. Ryndyk, P. D’Amico, K. Richter, Single-spin polaron memory effect in quantum dots and single molecules. Phys. Rev. B 81, 115333 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zimbovskaya, N.A. (2013). Transport Theory. In: Transport Properties of Molecular Junctions. Springer Tracts in Modern Physics, vol 254. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8011-2_2

Download citation

Publish with us

Policies and ethics