Skip to main content

General Description

  • Chapter
  • First Online:
Transport Properties of Molecular Junctions

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 254))

Abstract

We start our analysis of MMMs transport properties by adopting an extremely simplified model for the junction. We consider the molecule (presented as a set of energy levels) placed in between two leads (left L and right R). The leads are treated as free electron reservoirs with nearly continuous energy spectra. Currently, we omit from consideration electron–electron correlations (Coulomb interactions) and electron–phonon interactions. The effects of these interactions on the electron transport are discussed in the next chapters. Thus we consider all atomic nuclei in the molecule to be fixed to their equilibrium positions, which corresponds to the Born–Oppenheimer approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Nitzan, Electron transmission through molecules and molecular interfaces. Annu. Rev. Phys. Chem. 52, 681–750 (2001)

    Article  CAS  Google Scholar 

  2. S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge, 2005)

    Book  Google Scholar 

  3. A.W. Ghosh, Electronics with molecules, in Comprehensive Semiconductor Science and Technology, vol. 5, ed. by P. Brattacharya, R. Fornari, H. Kamimura (Elsevier, Amsterdam, 2011), pp. 383–478

    Google Scholar 

  4. L.H. Yu, Z.K. Keane, J.W. Ciszek, L. Cheng, M.P. Stewart, J.M. Tour, D. Natelson, Inelastic electron tunneling via molecular vibrations in single-molecule transistors. Phys. Rev. Lett. 93, 266802 (2004)

    Article  CAS  Google Scholar 

  5. M. Poot, E. Osorio, K. O’Neil, J.M. Thijssen, D. Vanmaekelbergh, Temperature dependence of three-terminal molecular junctions with sulfur end-functionalized tercyclohexylidenes. Nano Lett. 6, 1031–1035 (2006)

    Article  CAS  Google Scholar 

  6. L.V. Venkataraman, J.E. Klare, M.S. Hybertsen, C. Nuckolls, M.L. Steigerwald, Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006)

    Article  CAS  Google Scholar 

  7. L. Venkataraman, J.E. Klare, I.W. Tam, C. Nuckolls, M.S. Hybertsen, C. Nuckolls, M.L. Steigerwald, Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006)

    Article  CAS  Google Scholar 

  8. B. Reddy, S.-Y. Yang, R.A. Segalman, A. Majumdar, Thermoelectricity in molecular junctions. Science 315, 1568–1571 (2007)

    Article  CAS  Google Scholar 

  9. G. Kurczenow, in The Oxford Handbook of Nanoscience and Nanothechnology (Oxford University Press, Oxford, 2009)

    Google Scholar 

  10. M. Galperin, M.A. Ratner, A. Nitzan, Hysteresis, switching, and negative differential resistance in molecular junctions: a polaron model. Nano Lett. 5, 125–130 (2005)

    Article  CAS  Google Scholar 

  11. R. Gutierrez, S. Mandal, G. Cuniberti, Dissipative effects in the electronic transport through DNA molecular wires. Phys. Rev. B 71, 235116 (2005)

    Article  CAS  Google Scholar 

  12. A. Mitra, I. Aleiner, A.J. Millis, Phonon effects in molecular transistors: quantal and classical treatment. Phys. Rev. B 69, 245302 (2004)

    Article  CAS  Google Scholar 

  13. T. Komeda, Y. Kim, M. Kawai, B.N.J. Persson, H. Ueba, Lateral hopping of molecules induced by excitation of internal vibration mode. Science 295, 2055–2058 (2002)

    Article  CAS  Google Scholar 

  14. T. Mii, S.G. Tikhodeev, H. Ueba, Spectral features of inelastic electron transport via a localized state. Phys. Rev. B 68, 205406 (2003)

    Article  CAS  Google Scholar 

  15. M. Galperin, M.A. Ratner, A. Nitzan, Inelastic electron tunneling spectroscopy in molecular junctions: peaks and dips. J. Chem. Phys. 121, 11965–11979 (2004)

    Article  CAS  Google Scholar 

  16. M. Galperin, M.A. Ratner, A. Nitzan, Molecular transport junctions: vibrational effects. J. Phys.: Condens. Matter 19, 103201 (2007)

    Google Scholar 

  17. J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkovski, J.P. Sithna, H.D. Abruna, P.L. McEuen, D.C. Ralph, Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002)

    Article  CAS  Google Scholar 

  18. N.B. Zhitenev, H. Meng, Z. Bao, Conductance of small molecular junctions. Phys. Rev. Lett. 88, 226801 (2002)

    Article  CAS  Google Scholar 

  19. B.Q. Xu, P.M. Zhang, X.L. Li, N.J. Tao, Direct conductance measurement of single DNA molecules in aqueous solution. Nano Lett. 4, 1105–1108 (2004)

    Article  CAS  Google Scholar 

  20. M. Galperin, A. Nitzan, M.A. Ratner, Inelastic effects in molecular junctions in the Coulomb and Kondo regimes: nonequilibrium equation-of-motion approach. Phys. Rev. B 76, 035301 (2007)

    Article  CAS  Google Scholar 

  21. N.A. Zimbovskaya, Electron transport through a quantum dot in the Coulomb blockade regime: nonequilibrium Green’s function based model. Phys. Rev. B 78, 035331 (2008)

    Article  CAS  Google Scholar 

  22. A. Rosch, J. Kroha, P. Wolfle, Kondo effect in quantum dots at high voltage: universality and scaling. Phys. Rev. Lett. 87, 156802 (2001)

    Article  CAS  Google Scholar 

  23. A. Rosch, J. Paaske, J. Kroha, P. Wolfle, The Kondo effect in non-equilibrium quantum dots: perturbative renormalization group. J. Phys. Soc. Japan 74, 118 (2005)

    Article  CAS  Google Scholar 

  24. H.B. Heersche, Z. de Groot, J.A. Folk, S.H.J. van der Zant, C. Romeike, M.R. Wegewijs, L. Zobby, D. Barreca, E. Tondello, A. Cornia, Electron transport through single Mn12 molecular magnets. Phys. Rev. Lett. 96, 206801 (2006)

    Article  CAS  Google Scholar 

  25. C. Romeike, M.R. Wegewijs, M. Ruben, W. Wenzel, H. Schoeller, Charge-switchable molecular magnet and spin blockade of tunneling. Phys. Rev. B 75, 064404 (2007)

    Article  CAS  Google Scholar 

  26. A.S. Blum, J. Yang, R. Shashidhar, B.R. Ratna, Comparing the conductivity of molecular wires with the scanning tunneling microscope. Appl. Phys. Lett. 82, 3322–3324 (2003)

    Article  CAS  Google Scholar 

  27. A.S. Blum, C.M. Soto, C.D. Wilson, T.L. Brower, S.K. Pollack, T.L. Schull, A. Chatterji, T. Lin, J.E. Johnson, C. Amsinck, P. Franzon, R. Shashidhar, B.R. Ratna, An engineered virus as a scaffold for three-dimensional self-assembly on the nanoscale. Small 1, 702–706 (2005)

    Article  CAS  Google Scholar 

  28. N.A. Zimbovskaya, M.R. Pederson, A.S. Blum, B.R. Ratna, R. Allen, Nanoparticle networks as chemoselective sensing devices. J. Chem. Phys. 130, 094702 (2009)

    Article  CAS  Google Scholar 

  29. F. Chen, N.J. Tao, Electron transport in single molecules: from benzene to graphene. Acc. Chem. Res. 42, 429–438 (2009)

    Article  CAS  Google Scholar 

  30. V. Mujica, M. Kemp, M.A. Ratner, Electron conduction in molecular wires. I. A scattering formalism. J. Chem. Phys. 101, 6849–6855 (1994)

    Google Scholar 

  31. V. Mujica, M. Kemp, M.A. Ratner, Electron conduction in molecular wires. II. Application to scanning tunneling microscopy. J. Chem. Phys. 101, 6856–6864 (1994)

    Google Scholar 

  32. N.D. Lang, Ph. Avouris, Carbon-atom wires: charge-transfer doping, voltage drop, and the effect of distortions. Phys. Rev. Lett. 84, 358–361 (2000)

    Article  CAS  Google Scholar 

  33. N.D. Lang, Ph. Avouris, Electrical conductance of parallel atomic wires. Phys. Rev. B 62, 7325–7329 (2000)

    Article  CAS  Google Scholar 

  34. M. Di Ventra, S.T. Pantelides, N.D. Lang, First-principles calculation of transport properties of a molecular device. Phys. Rev. Lett. 84, 979–982 (2000)

    Article  Google Scholar 

  35. P.S. Damle, A.W. Ghosh, S. Datta, Unified description of molecular conduction: from molecules to metallic wires. Phys. Rev. B 64, 201403(R) (2001)

    Google Scholar 

  36. V. Mujica, A.E. Roitberg, M.A. Ratner, Molecular wire conductance: electrostatic potential spatial profile. J. Chem. Phys. 112, 6834–6839 (2000)

    Article  CAS  Google Scholar 

  37. Y. Xue, S. Datta, M.A. Ratner, Charge transfer and “band lineup” in molecular electronic devices: a chemical and numerical interpretation. J. Chem. Phys. 115, 4292–4299 (2001)

    Article  CAS  Google Scholar 

  38. Y. Xue, M.A. Ratner, Microscopic study of electrical transport through individual molecules with metallic contacts. I. Band lineup, voltage drop, and high-field transport. Phys. Rev. B 68, 115406 (2003)

    Google Scholar 

  39. Y. Xue, M.A. Ratner, Microscopic study of electrical transport through individual molecules with metallic contacts. II. Effect of the interface structure. Phys. Rev. B 68, 115407 (2003)

    Google Scholar 

  40. Y. Xue, M.A. Ratner, End group effect on electrical transport through individual molecules: a microscopic study. Phys. Rev. B 69, 085403 (2004)

    Article  CAS  Google Scholar 

  41. S.H. Ke, H.U. Baranger, W. Yang, Contact atomic structure and electron transport through molecules. J. Chem. Phys. 122, 074704 (2005)

    Article  CAS  Google Scholar 

  42. M. Galperin, A. Nitzan, M.A. Ratner, Molecular transport junctions: current from electronic excitations in the leads. Phys. Rev. Lett. 96, 166803 (2006)

    Article  CAS  Google Scholar 

  43. S. Datta, Electrical resistance: an atomistic view. Nanotechnology 15, S433–S465 (2004)

    Article  CAS  Google Scholar 

  44. R. Landauer, Electrical resistance of disordered one-dimensional lattices. Phil. Mag. 21, 863–867 (1970)

    Article  CAS  Google Scholar 

  45. N.S. Wingreen, A.P. Jauho, Y. Meir, Time-dependent transport through a mesoscopic structure. Phys. Rev. B 48, 8487–8490 (1993)

    Article  Google Scholar 

  46. J.L. D’Amato, G.M. Pastawski, Conductance of a disordered linear chain including inelastic scattering events. Phys. Rev. B 41, 7411–7420 (1990)

    Article  Google Scholar 

  47. N.J. Tao, Electron transport in molecular junctions. Nat. Nanotechnol. 1, 173–181 (2006)

    Article  CAS  Google Scholar 

  48. C. Goldman, Long-range electron transfer in proteins: a renormalized-perturbation-expansion approach. Phys. Rev. A 43, 4500–4511 (1991)

    Article  CAS  Google Scholar 

  49. X.-Q. Li, Y.J. Yan, Scattering matrix approach to electronic dephasing in long-range electron transfer. J. Chem. Phys. 115, 4169–4174 (2001)

    Article  CAS  Google Scholar 

  50. N.A. Zimbovskaya, G. Gumbs, Long-range electron transfer and electronic transport through macromolecules. Appl. Phys. Lett. 81, 1518–1520 (2002)

    Article  CAS  Google Scholar 

  51. M. Buttiker, Role of quantum coherence in series resistors. Phys. Rev. B 33, 3020–3026 (1986)

    Article  Google Scholar 

  52. D.N. Beratan, J.N. Onuchic, J.R. Winkler, H.B. Gray, Electron tunneling pathways in proteins. Science 258, 1740–1741 (1992)

    Article  CAS  Google Scholar 

  53. C.W.J. Beenakker, Theory of Coulomb-blockade oscillations in the conductance of a quantum dot. Phys. Rev. B 44, 1646–1656 (1991)

    Article  Google Scholar 

  54. D.V. Averin, A.N. Korotkov, K.K. Likharev, Theory of single-electron charging of quantum wells and dots. Phys. Rev. B 44, 6199–6211 (1991)

    Article  Google Scholar 

  55. N.B. Kopnin, Y.M. Galperin, V.M. Vinokur, Charge transport through weakly open one-dimensional quantum wires. Phys. Rev. B 79, 035319 (2009)

    Article  CAS  Google Scholar 

  56. P.W. Anderson, Localized magnetic states in metals. Phys. Rev. 124, 41–53 (1961)

    Article  CAS  Google Scholar 

  57. J.J. Palacios, Coulomb blockade in electron transport through a C60 molecule from first principles. Phys. Rev. B 72, 125424 (2005)

    Article  CAS  Google Scholar 

  58. C. Toher, A. Filippetti, S. Sanvito, K. Burke, Self-interaction errors in density-functional calculations of electronic transport. Phys. Rev. Lett. 95, 146402 (2005)

    Article  CAS  Google Scholar 

  59. N. Sai, M. Zwolak, G. Vignale, M. Di Ventra, Dynamical corrections to the DFT-LDA electron conductance in nanoscale systems. Phys. Rev. Lett. 94, 186810 (2005)

    Article  CAS  Google Scholar 

  60. N. Simonian, J.J. Li, K.K. Likharev, Negative differential resistance at sequential single-electron tunnelling through atoms and molecules. Nanotechnology 18, 424006 (2007)

    Article  CAS  Google Scholar 

  61. S. Datta, W. Tian, S. Hong, R. Reifenberger, J.I. Henderson, C.P. Kubiak, Current–voltage characteristics of self-assembled monolayers by scanning tunneling microscopy. Phys. Rev. Lett. 79, 2530–2533 (1997)

    Article  CAS  Google Scholar 

  62. B. Muralidharan, A.W. Ghosh, S. Datta, Probing electronic excitations in molecular conduction. Phys. Rev. B 73, 155410 (2006)

    Article  CAS  Google Scholar 

  63. F. Zahid, A.W. Ghosh, M. Paulsson, E. Polizzi, S. Datta, Charging-induced asymmetry in molecular conductors. Phys. Rev. B 70, 245317 (2004)

    Article  CAS  Google Scholar 

  64. S. Braig, P.W. Brouwer, Rate equations for Coulomb blockade with ferromagnetic leads. Phys. Rev. B 71, 195324 (2005)

    Article  CAS  Google Scholar 

  65. Y. Meir, N.S. Wingreen, P.A. Lee, Transport through a strongly interacting electron system: theory of periodic conductance oscillations. Phys. Rev. Lett. 66, 3048–3051 (1991)

    Article  CAS  Google Scholar 

  66. Y. Meir, N.S. Wingreen, P.A. Lee, Low-temperature transport through a quantum dot: the Anderson model out of equilibrium. Phys. Rev. Lett. 70, 2601–2604 (1993)

    Article  Google Scholar 

  67. R. Swirkowicz, J. Barnas, M. Wilczynski, Electron tunnelling in a double ferromagnetic junction with a magnetic dot as a spacer. J. Phys.: Condens. Matter 14, 2011–2023 (2002)

    Google Scholar 

  68. R. Swirkowicz, J. Barnas, M. Wilczynski, Nonequilibrium Kondo effect in quantum dots. Phys. Rev. B 68, 195318 (2003)

    Article  CAS  Google Scholar 

  69. V. Kashcheyev, A. Aharony, O. Entin-Wohlman, Applicability of the equations-of-motion technique for quantum dots. Phys. Rev. B 73, 125338 (2006)

    Article  CAS  Google Scholar 

  70. A. Goker, Kondo resonance in an AC driven quantum dot subjected to finite bias. Solid State Commun. 148, 230–233 (2008)

    Article  CAS  Google Scholar 

  71. M. Krawiec, Compensation of the Kondo effect in quantum dots coupled to ferromagnetic leads within the equation of motion approach. J. Phys.: Condens. Matter 19, 346234 (2007)

    Google Scholar 

  72. G.D. Mahan, Many-Particle Physics (Plenum, New York, 2000)

    Book  Google Scholar 

  73. M. Buttiker, R. Landauer, Traversal time for tunneling. Phys. Scripta 32, 429–434 (1985)

    Article  Google Scholar 

  74. A.B. Kaiser, Electronic transport properties of conducting polymers and carbon nanotubes. Rep. Prog. Phys. 64, 1–49 (2001)

    Article  CAS  Google Scholar 

  75. A.N. Aleshin, H.J. Lee, Y.W. Park, K. Akagi, Coulomb-blockade transport in quasi-one dimensional polymer nanofibers. Phys. Rev. Lett. 93, 196601 (2004)

    Article  CAS  Google Scholar 

  76. A. Bachtold, M. de Jonge, K. Grove-Rasmussen, P.L. McEuen, M. Buitelaar, C. Schonenberger, Suppression of tunneling into multiwall carbon nanotubes. Phys. Rev. Lett. 87, 166801 (2001)

    Article  CAS  Google Scholar 

  77. P.S. Cornaglia, D.R. Grempel, H. Ness, Quantum transport through a deformable molecular transistor. Phys. Rev. B 71, 075320 (2005)

    Article  CAS  Google Scholar 

  78. S. Monturet, N. Lorente, Inelastic effects in electron transport studied with wave packet propagation. Phys. Rev. B 78, 035445 (2008)

    Article  CAS  Google Scholar 

  79. A. Donarini, M. Grifoni, K. Richter, Dynamical symmetry breaking in transport through molecules. Phys. Rev. Lett. 97, 166801 (2006)

    Article  CAS  Google Scholar 

  80. R. Egger, A.O. Gogolin, Vibration-induced correction to the current through a single molecule. Phys. Rev. B 77, 113405 (2008)

    Article  CAS  Google Scholar 

  81. D.A. Ryndyk, G. Cuniberti, Nonequilibrium resonant spectroscopy of molecular vibrons. Phys. Rev. B 76, 155430 (2007)

    Article  CAS  Google Scholar 

  82. L. Siddiqui, A.W. Ghosh, S. Datta, Phonon runaway in carbon nanotube quantum dots. Phys. Rev. B 76, 085433 (2007)

    Article  CAS  Google Scholar 

  83. A. Troisi, M.A. Ratner, Molecular transport junctions: propensity rules for inelastic electron tunneling spectra. Nano Lett. 6, 1784–1788 (2006)

    Article  CAS  Google Scholar 

  84. J. Zimmermann, P. Pavone, G. Cuniberti, Vibrational modes and low-temperature thermal properties of graphene and carbon nanotubes: minimal force-constant model. Phys. Rev. B 78, 045410 (2008)

    Article  CAS  Google Scholar 

  85. J.G. Kushmerick, J. Lazorcik, C.H. Patterson, R. Shashidhar, D.S. Seferos, G.C. Bazan, Vibronic contributions to charge transport across molecular junctions. Nano Lett. 4, 639–642 (2004)

    Article  CAS  Google Scholar 

  86. M. Cizek, M. Thoss, W. Domcke, Theory of vibrationally inelastic electron transport through molecular bridges. Phys. Rev. B 70, 125406 (2004)

    Article  CAS  Google Scholar 

  87. J. Mravlje, A. Ramsak, Kondo effect and channel mixing in oscillating molecules. Phys. Rev. B 78, 235416 (2008)

    Article  CAS  Google Scholar 

  88. N.A. Zimbovskaya, M.M. Kuklja, Vibration-induced inelastic effects in the electron transport through multisite molecular bridges. J. Chem. Phys. 131, 114703 (2009)

    Article  CAS  Google Scholar 

  89. D. Djukic, K.S. Thygesen, C. Untiedt, R.H.M. Smit, K.W. Jacobsen, J.M. van Ruitenbeek, Stretching dependence of the vibration modes of a single-molecule PtH 2Pt bridge. Phys. Rev. B 71, 161402(R) (2005)

    Google Scholar 

  90. X.H. Qiu, G.V. Nazin, W. Ho, Vibronic states in single molecule electron transport. Phys. Rev. Lett. 92, 206102 (2004)

    Article  CAS  Google Scholar 

  91. J. Repp, G. Meyer, S. Paavilainen, F.E. Olsson, M. Persson, Scanning tunneling spectroscopy of Cl vacancies in NaCl films: strong electron-phonon coupling in double-barrier tunneling junctions. Phys. Rev. Lett. 95, 225503 (2005)

    Article  CAS  Google Scholar 

  92. R.H.M. Smit, C. Untiedt, J.M. van Ruitenbeek, The high bias stability of monoatomic chains. Nanotechnology 15, S472–S478 (2004)

    Article  CAS  Google Scholar 

  93. W. Wang, T. Lee, I. Kretzschmar, M.A. Reed, Inelastic electron tunneling spectroscopy of an alkanedithiol self-assembled monolayer. Nano Lett. 4, 643–646 (2004)

    Article  CAS  Google Scholar 

  94. S.W. Wu, G.V. Nazin, X. Chen, X.H. Qiu, W. Ho, Control of relative tunneling rates in single molecule bipolar electron transport. Phys. Rev. Lett. 93, 236802 (2004)

    Article  CAS  Google Scholar 

  95. M. Tsutsui, S. Kurokawa, A. Sakai, Bias-induced local heating in Au atom-sized contacts. Nanotechnology 17, 5334–5338 (2006)

    Article  CAS  Google Scholar 

  96. Z. Huang, F. Chen, R. D’Agosta, P.A. Bennett, M. Di Ventra, N. Tao, Local ionic and electron heating in single-molecule junctions. Nat. Nanotechnol. 2, 698–703 (2007)

    Article  CAS  Google Scholar 

  97. A. Mishchenko, D. Vonlanthen, V. Meded, M. Burkle, C. Li, I.V. Pobelov, A. Bagrets, J.K. Viljas, F. Pauly, F. Evers, M. Mayor, T. Wandlowski, Influence of conformation on conductance of biphenyl-dithiol single-molecule contacts. Nano. Lett. 10, 156 (2010)

    Article  CAS  Google Scholar 

  98. S. Sanvito, A.R. Rocha, Molecular spintronics: the art of driving spin through molecules. J. Comput. Theor. Nanosci. 3, 624–668 (2006)

    CAS  Google Scholar 

  99. A.R. Rocha, V.M. Garcia-Suarez, S.W. Bailey, C.J. Lambert, J. Ferrer, S. Sanvito, Towards molecular spintronics. Nat. Mater. 4, 335–340 (2005)

    Article  CAS  Google Scholar 

  100. L. Bogani, W.L. Wernsdorfer, Molecular spintronics using single-molecule magnets. Nat. Mater. 7, 179–186 (2008)

    Article  CAS  Google Scholar 

  101. V.V. Maslyuk, A. Bagrets, V. Meded, A. Arnold, F. Evers, M. Brandbyge, T. Bredow, I. Mertig, Organometallic benzene-vanadium wire: a one-dimensional half-metallic ferromagnet. Phys. Rev. Lett. 97, 097201 (2006)

    Article  CAS  Google Scholar 

  102. A.B. Vorontsov, M.G. Vavilov, Spin relaxation in quantum dots due to electron exchange with leads. Phys. Rev. Lett. 101, 226805 (2008)

    Article  CAS  Google Scholar 

  103. M.R. Wasielewski, Energy, charge, and spin transport in molecules and self-assembled nanostructures inspired by photosynthesis. J. Org. Chem. 71, 5051–5066 (2006)

    Article  CAS  Google Scholar 

  104. L. Zhou, S.-W. Yang, M.-F. Ng, M.B. Sullivan, V.B.C. Tan, L. Shen, One-dimensional iron-cyclopentadienyl sandwich molecular wire with half metallic, negative differential resistance and high-spin filter efficiency properties. J. Am. Chem. Soc. 130, 4023–4027 (2008)

    Article  CAS  Google Scholar 

  105. L. Wang, Z. Cai, J. Wang, J. Lu, G. Luo, L. Lai, J. Zhou, R. Qin, Z. Gao, D. Yu, G. Li, W.N. Mei, S. Sanvito, Novel one-dimensional organometallic half metals: vanadium-cyclopentadienyl, vanadium-cyclopentadienyl-benzene, and vanadium-anthracene wires, Nano Lett. 8, 3640–3644 (2008)

    Google Scholar 

  106. J.-C. Wu, X.-F. Wang, L. Zhou, H.-X. Da, K.H. Lim, S.-W. Yang, Z.-Y. Li, Manipulating spin transport via vanadium-iron cyclopentadienyl multidecker sandwich molecules. J. Phys. Chem. C 113, 7913–7916 (2009)

    Article  CAS  Google Scholar 

  107. J. Splettstoesser, M. Governale, J. Konig, M. Buttiker, Charge and spin dynamics in interacting quantum dots. Phys. Rev. B 81, 165318 (2010)

    Article  CAS  Google Scholar 

  108. K. Tsukagoshi, B.W. Alphenaar, H. Ago, Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube. Nature 401, 572–574 (1999)

    Article  CAS  Google Scholar 

  109. J.M. Kikkawa, D.D. Awschalom, Resonant spin amplification in n-type GaAs. Phys. Rev. Lett. 80, 4313–4316 (1998)

    Article  CAS  Google Scholar 

  110. J.M. Kikkawa, D.D. Awschalom, Lateral drag of spin coherence in gallium arsenide. Nature 397, 139–141 (1999)

    Article  CAS  Google Scholar 

  111. D.P. DiVincenzo, Quantum computation. Science 270, 255–257 (1995)

    CAS  Google Scholar 

  112. S. Datta, B. Das, Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990)

    Article  CAS  Google Scholar 

  113. Y.K. Kato, R.C. Myers, A.C. Gossard, D.D. Awschalom, Observation of the spin hall effect in semiconductors. Sci. Exp. 306, 1910–1913 (2004)

    CAS  Google Scholar 

  114. S. Murakami, N. Nagaosa, S.-C. Zhang, Dissipationless quantum spin current at room temperature. Science 301, 1348–1351 (2003)

    Article  CAS  Google Scholar 

  115. J. Sinova, D. Culcer, Q. Niu, N.A. Sinitsyn, T. Jungwirth, A.H. MacDonald, Universal intrinsic spin hall effect. Phys. Rev. Lett. 92, 126603 (2004)

    Article  CAS  Google Scholar 

  116. J. Wunderlich, B. Kaestner, J. Sinova, T. Jungwirth, Experimental observation of the spin-hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005)

    Article  CAS  Google Scholar 

  117. G. Salis, D.T. Fuchs, J.M. Kikkawa, D.D. Awschalom, Y. Ohno, H. Ohno, Optical manipulation of nuclear spin by a two-dimensional electron gas. Phys. Rev. Lett. 86, 2677–2680 (2001)

    Article  CAS  Google Scholar 

  118. M.W. Wu, J.H. Jiang, M.Q. Weng, Spin dynamics in semiconductors. Phys. Rep.493, 61–236 (2010)

    Article  CAS  Google Scholar 

  119. R. Pati, L. Senapati, P.M. Ajayan, S.K. Nayak, First-principles calculations of spin-polarized electron transport in a molecular wire: molecular spin valve. Phys. Rev. B 68, 100407(R) (2003)

    Google Scholar 

  120. R. Pati, M. Mailman, L. Senapati, P.M. Ajayan, S.D. Mahanti, S.K. Nayak, Oscillatory spin-polarized conductance in carbon atom wires. Phys. Rev. B 68, 014412 (2003)

    Article  CAS  Google Scholar 

  121. S. Schmaus, A. Bagrets, Y. Nahas, T.K. Yamada, A. Bork, M. Bowen, E. Beaurepaire, F. Evers, W. Wulfhekel, Giant magnetoresistance through a single molecule. Nat. Nanotechnol. 6, 185 (2011)

    Article  CAS  Google Scholar 

  122. Q.-F. Sun, J. Wang, H. Guo, Quantum transport theory for nanostructures with Rashba spin-orbital interaction. Phys. Rev. B 71, 165310 (2005)

    Article  CAS  Google Scholar 

  123. D. Gatteschi, R. Sessoli, Quantum tunneling of magnetization and related phenomena in molecular materials. Angew. Chem. Int. Ed. 42, 268–297 (2003)

    Article  CAS  Google Scholar 

  124. J. Cirera, E. Ruiz, S. Alvarez, F. Neese, J. Kortus, How to build molecules with large magnetic anisotropy. Chem. Eur. J. 15, 4078–4087 (2009)

    Article  CAS  Google Scholar 

  125. C. Romeike, M.R. Wegewijs, W. Hofstetter, H. Schoeller, Quantum-tunneling-induced Kondo effect in single molecular magnets. Phys. Rev. Lett. 96, 196601 (2006)

    Article  CAS  Google Scholar 

  126. F. Elste, C. Timm, Transport through anisotropic magnetic molecules with partially ferromagnetic leads: spin-charge conversion and negative differential conductance. Phys. Rev. B 73, 235305 (2006)

    Article  CAS  Google Scholar 

  127. C. Timm, F. Elste, Spin amplification, reading, and writing in transport through anisotropic magnetic molecules. Phys. Rev. B 73, 235304 (2006)

    Article  CAS  Google Scholar 

  128. C. Timm, Tunneling through magnetic molecules with arbitrary angle between easy axis and magnetic field. Phys. Rev. B 76, 014421 (2007)

    Article  CAS  Google Scholar 

  129. J.E. Grose, E.S. Tam, C. Timm, M. Scheloske, B. Ulgut, J.J. Parks, H.D. Abruna, W. Harneit, D.C. Ralph, Tunnelling spectra of individual magnetic endofullerene molecules. Nat. Mater. 7, 884–889 (2008)

    Article  CAS  Google Scholar 

  130. K. Park, M.R. Pederson, C.S. Hellberg, Properties of low-lying excited manifolds in Mn 12 acetate. Phys. Rev. B 69, 014416 (2004)

    Article  CAS  Google Scholar 

  131. K. Park, M.R. Pederson, Effect of extra electrons on the exchange and magnetic anisotropy in the anionic single-molecule magnet Mn 12. Phys. Rev. B 70, 054414 (2004)

    Article  CAS  Google Scholar 

  132. J. Kortus, C. Massobrio, M. Drillon, First-principles calculations applied to molecular magnetism. J. Comput. Theor. Nanosci. 3, 11–27 (2006)

    CAS  Google Scholar 

  133. A.V. Postnikov, J. Kortus, M.R. Pederson, Density functional studies of molecular magnets. Phys. Status Solidi B 243, 2533–2572 (2006)

    Article  CAS  Google Scholar 

  134. C. Loose, E. Ruiz, B. Kersting, J. Kortus, Magnetic exchange interaction in triply bridged dinickel(II) complexes. Chem. Phys. Lett. 452, 38–43 (2008)

    Article  CAS  Google Scholar 

  135. R. Liu, S.-H. Ke, H.U. Baranger, W. Yang, Organometallic spintronics: dicobaltocene switch. Nano Lett. 5, 1959–1962 (2005)

    Article  CAS  Google Scholar 

  136. C. Iacovita, M.V. Rastei, B.W. Heinrich, T. Brumme, J. Kortus, L. Limot, J.P. Bucher, Visualizing the spin of individual cobalt-phthalocyanine molecules. Phys. Rev. Lett. 101, 116602 (2008)

    Article  CAS  Google Scholar 

  137. O. Cespedes, M.S. Ferreira, S. Sanvito, M. Kociak, J.M.D. Coey, Contact induced magnetism in carbon nanotubes. J. Phys.: Condens. Matter 16, L155–L161 (2004)

    Google Scholar 

  138. M.S. Ferreira, S. Sanvito, Contact-induced spin polarization in carbon nanotubes. Phys. Rev. B 69, 035407 (2004)

    Article  CAS  Google Scholar 

  139. Y. Yamamoto, T. Miura, M. Suzuki, N. Kawamura, H. Miyagawa, T. Nakamura, K. Kobayashi, T. Teranishi, H. Hori, Direct observation of ferromagnetic spin polarization in gold nanoparticles. Phys. Rev. Lett. 93, 116801 (2004)

    Article  CAS  Google Scholar 

  140. P. Crespo, R. Litran, T.C. Rojas, M. Multigner, J.M. de la Fuente, J.C. Sanchez-Lopez, M.A. Garcia, A. Hernando, S. Penades, A. Fernandez, Permanent magnetism, magnetic anisotropy, and hysteresis of thiol-capped gold nanoparticles. Phys. Rev. Lett. 93, 087204 (2004)

    Article  CAS  Google Scholar 

  141. S.G. Ray, S.S. Daube, G. Leitus, Z. Vager, R. Naaman, Chirality-induced spin-selective properties of self-assembled monolayers of DNA on gold. Phys. Rev. Lett. 96, 036101 (2006)

    Article  CAS  Google Scholar 

  142. B.C. Stipe, M.A. Rezaei, W. Ho, A variable-temperature scanning tunneling microscope capable of single-molecule vibrational spectroscopy. Rev. Sci. Instrum. 70, 137–143 (1999)

    Article  CAS  Google Scholar 

  143. Y. Kim, T. Pietsch, A. Erbe, W. Belzig, E. Scheer, Benzenedithiol: a broad-range single-channel molecular conductor. Nano Lett. 11, 3734–3738 (2011)

    Article  CAS  Google Scholar 

  144. M. Tsutsui, M. Taniguchi, Single molecule electronics and devices. Sensors 12, 7259–7298 (2012)

    Article  CAS  Google Scholar 

  145. M. Mayor, H.B. Weber, J. Reichert, M. Elbing, C.V. Haenisch, D. Beckmann, M. Fischer, Electric current through a molecular rod - relevance of the position of anchor groups. Angew. Chem. Int. Ed. 42, 5834 (2003)

    Article  CAS  Google Scholar 

  146. A. Bagrets, A. Arnold, F. Evers, Conduction properties of bipyridinium-functionalized molecular wires. J. Am. Chem. Soc. 130, 9013 (2008)

    Article  CAS  Google Scholar 

  147. X. Cao, R.J. Hamers, Silicon surfaces as electron acceptors: dative bonding of amines with Si(001) and Si(111) surfaces. J. Am. Chem. Soc. 123, 10988–10996 (2001)

    Article  CAS  Google Scholar 

  148. P.G. Piva, G.A. DiLabio, J.L. Pitters, J. Zikovsky, M. Rezeq, S. Dogel, W.A. Hofer, R.A. Wolkow, Field regulation of single-molecule conductivity by a charged surface atom. Nature 435, 658–661 (2005)

    Article  CAS  Google Scholar 

  149. F. Anariba, J. Steach, R.L. McCreery, Strong effects of molecular structure on electron transport in carbon/molecule/copper electronic junctions. J. Phys. Chem. B 109, 11163–11172 (2005)

    Article  CAS  Google Scholar 

  150. X. Guo, J.P. Small, J.E. Klare, Y. Wang, M.S. Purewal, I.W. Tam, B.H. Hong, R. Caldwell, L. Huang, S. O’Brien, J. Yan, R. Breslow, S.J. Wind, J. Hone, P. Kim, C. Nuckolls, Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 311, 356–359 (2006)

    Article  CAS  Google Scholar 

  151. T. Rakshit, G.-C. Liang, A.W. Ghosh, M.C. Hersam, S. Datta, Molecules on silicon: self-consistent first-principles theory and calibration to experiments. Phys. Rev. B 72, 125305 (2005)

    Article  CAS  Google Scholar 

  152. V. Mujica, M.A. Ratner, Semiconductor/molecule transport junctions: an analytical form for the self-energies. Chem. Phys. 326, 197–203 (2006)

    Article  CAS  Google Scholar 

  153. J. Chen, M.A. Reed, Electronic transport of molecular systems. Chem. Phys. 281, 127–145 (2002)

    Article  CAS  Google Scholar 

  154. Y. Selzer, A. Salomon, D. Cahen, The importance of chemical bonding to the contact for tunneling through alkyl chains. J. Phys. Chem. B 106, 10432–10439 (2002)

    Article  CAS  Google Scholar 

  155. S. Lindsay, Molecular wires and devices: advances and issues. Faraday Discuss. 131, 403–409 (2006)

    Article  CAS  Google Scholar 

  156. R.M. Metzger, T. Xu, I.R. Peterson, Electrical rectification by a monolayer of hexadecylquinolinium tricyanoquinodimethanide measured between macroscopic gold electrodes. J. Phys. Chem. B 105, 7280–7290 (2001)

    Article  CAS  Google Scholar 

  157. A. Salomon, D. Cahen, S.M. Lindsay, J. Tomfohr, V.B. Engelkes, C.D. Frisbie, Comparison of electronic transport. Measurements on organic molecules. Adv. Mater. 15, 1881–1890 (2003)

    Article  CAS  Google Scholar 

  158. L.T. Cai, H. Skulason, J.G. Kushmerick, S.K. Pollack, J. Naciri, R. Shashidhar, D.L. Allara, T.E. Mallouk, T.S. Mayer, Nanowire-based molecular monolayer junctions: synthesis, assembly, and electrical characterization. J. Phys. Chem. B 108, 2827–2832 (2004)

    Article  CAS  Google Scholar 

  159. N. Gerge-Hackett, M.J. Cabral, T.L. Pernell, L.R. Harriott, J.C. Beanb, C.L.B. Chen, M. Lu, J.M. Tour, Vapor phase deposition of oligo-phenylene-ethynylene molecules for use in molecular electronic devices. J. Vac. Sci. Technol. B 25, 252–257 (2007)

    Article  CAS  Google Scholar 

  160. H.B. Akkerman, P.W.M. Blom, D.M. de Leeuw, B. de Boer, Towards molecular electronics with large-area molecular junctions. Nature 441, 69–72 (2006)

    Article  CAS  Google Scholar 

  161. H.B. Akkerman, B. de Boer, Electrical conduction through single molecules and self-assembled monolayers. J. Phys.: Condens. Matter 20, 013001 (2008)

    Google Scholar 

  162. B. Xu, P. Zhang, X. Li, N. Tao, Direct conductance measurement of single DNA molecules in aqueous solution. Nano Lett. 4, 1105–1108 (2004)

    Article  CAS  Google Scholar 

  163. X.Y. Xiao, D. Brune, J. He, S.M. Lindsay, C.B. Gorman, N.J. Tao, Redox-gated electron transport in electrically wired ferrocene molecules. Chem. Phys. 326, 138–143 (2006)

    Article  CAS  Google Scholar 

  164. J.P. Choi, R.W. Murray, Electron self-exchange between Au140( + ∕ 0) nanoparticles is faster than that between Au38( + ∕ 0) in solid-state, mixed-valent films. J. Am. Chem. Soc. 128, 10496–10502 (2006)

    Google Scholar 

  165. J. Liao, L. Bernard, M. Langer, C. Schonenberger, M. Calame, Reversible formation of molecular junctions in 2D nanoparticle arrays. Adv. Mater. 18, 2444–2447 (2006)

    Article  CAS  Google Scholar 

  166. J. Gaudioso, L.J. Lauhon, W. Ho, Vibrationally mediated negative differential resistance in a single molecule. Phys. Rev. Lett. 85, 1918–1921 (2000)

    Article  CAS  Google Scholar 

  167. J.R. Hahn, W. Ho, Imaging and vibrational spectroscopy of single pyridine molecules on Ag(110) using a low-temperature scanning tunneling microscope. J. Chem. Phys. 124, 204708 (2006)

    Article  CAS  Google Scholar 

  168. J.B. Maddox, U. Harbola, N. Liu, C. Silien, W. Ho, G.C. Bazan, S. Mukamel, Simulation of single molecule inelastic electron tunneling signals in paraphenylene-vinylene oligomers and distyrylbenzene[2. 2] paracyclophanes. J. Phys. Chem. A 110, 6329–6338 (2006)

    Google Scholar 

  169. J. Tersoff, D.R. Hamann, Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985)

    Article  CAS  Google Scholar 

  170. J. Tersoff, D.R. Hamann, Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 50, 1998–2001 (1983)

    Article  CAS  Google Scholar 

  171. R.A. Kiehl, J.D. Le, P. Candra, R.C. Hoye, T.R. Hoye, Charge storage model for hysteretic negative-differential resistance in metal-molecule-metal junctions. Appl. Phys. Lett. 88, 172102 (2006)

    Article  CAS  Google Scholar 

  172. R.P. Berkelaar, H. Sode, T.F. Mocking, A. Kumar, B. Poelsema, H.J.W. Zandvliet, Molecular bridges. J. Phys. Chem. C 115, 2268 (2011)

    Article  CAS  Google Scholar 

  173. L. Venkataraman, Y.S. Park, A.C. Whalley, C. Nuckolls, M.S. Hybertsen, M.L. Steigerwald, Electronics and chemistry: varying single-molecule junction conductance using chemical substituents. Nano Lett. 7, 502–506 (2007)

    Article  CAS  Google Scholar 

  174. X.D. Cui, A. Primak, X. Zarate, J. Tomfohr, O.F. Sankey, A.L. Moore, T.A. Moore, D. Gust, G. Harris, S.M. Lindsay, Reproducible measurement of single-molecule conductivity. Science 294, 571–574 (2001)

    Article  CAS  Google Scholar 

  175. B.Q. Xu, N.J. Tao, Measurement of single molecule conductance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003)

    Article  CAS  Google Scholar 

  176. A.S. Blum, J.G. Kushmerick, D.P. Long, C.H. Patterson, J.C. Yang, J.C. Henderson, Y. Yao, J.M. Tour, R. Shashidhar, B.R. Ratna, Molecularly inherent voltage controlled conductance switching. Nat. Mater. 4, 167–172 (2005)

    Article  CAS  Google Scholar 

  177. A.S. Blum, J.G. Kushmerick, J.C. Yang, M. Moore, S.K. Pollack, J. Naciri, R. Shashidhar, B.R. Ratna, Charge transport and scaling in molecular wires. J. Phys. Chem. B 108, 18124–18128 (2004)

    Article  CAS  Google Scholar 

  178. Y. Selzer, L. Cai, M.A. Cabassi, Y. Yao, J.M. Tour, T.S. Mayer, D.L. Allara, Effect of local environment on molecular conduction: isolated molecule versus self-assembled monolayer. Nano Lett. 5, 61–65 (2005)

    Article  CAS  Google Scholar 

  179. S.N. Yaliraki, M.A. Ratner, Molecule-interface coupling effects on electronic transport in molecular wires. J. Chem. Phys. 109, 5036–5043 (1998)

    Article  CAS  Google Scholar 

  180. C.D. Lindstrom, X.-Y. Zhu, Photoinduced electron transfer at molecule-metal interfaces. Chem. Rev. 106, 4281–4300 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zimbovskaya, N.A. (2013). General Description. In: Transport Properties of Molecular Junctions. Springer Tracts in Modern Physics, vol 254. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8011-2_1

Download citation

Publish with us

Policies and ethics