Analysis of Heart Rate Variability

  • Patrick R. Norris


Analysis of heart rate variability—the magnitude and subtle patterns of variation in length of the cardiac cycle from one heartbeat to the next—continues to yield new insights into the role of regulatory mechanisms in acute inflammation and other pathophysiology of critical illness. However, diverse methods of calculating heart rate variability and a large body of literature spanning many application domains can make selection of a particular technique and interpretation of results difficult for newcomers to the field. This chapter serves as a brief introduction for those beginning to undertake heart rate variability analyses, with emphasis on applications to the study of inflammation and critical care. It covers the biological basis and rationale for measuring heart rate variability in these domains and introduces several popular analytic methods and freely available tools for implementing these techniques. Finally, ongoing research efforts are briefly reviewed that may lead to novel diagnostic and therapeutic opportunities for improving the management of acute inflammation and other aspects of critically ill patient care.


Heart Rate Variability Critical Illness Acute Inflammation Traumatic Brain Injury Patient Lower Body Negative Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Billman GE (2011) Heart rate variability – a historical perspective. Front Physiol 2:86PubMedCrossRefGoogle Scholar
  2. 2.
    Moorman JR, Carlo WA, Kattwinkel J, Schelonka RL, Porcelli PJ, Navarrete CT et al (2011) Mortality reduction by heart rate characteristic monitoring in very low birth weight neonates: a randomized trial. J Pediatr 159(6):900–906PubMedCrossRefGoogle Scholar
  3. 3.
    Gleik J (1988) Chaos: making a new science. Penguin, New YorkGoogle Scholar
  4. 4.
    Kamath M, Watanabe M, Upton A (eds) (2012) Heart rate variability (HRV) signal analysis: clinical applications. CRC, Boca Raton, FLGoogle Scholar
  5. 5.
    Malik M, Camm AJ (eds) (1995) Heart rate variability. Wiley-Blackwell, Hoboken, NJGoogle Scholar
  6. 6.
    Bruner S. Physiology models. Accessed 10 Oct 2012
  7. 7.
    Stauss HM (2003) Heart rate variability. Am J Physiol Regul Integr Comp Physiol 285(5):R927–R931PubMedGoogle Scholar
  8. 8.
    Beck W, Barnard CN, Schrire V (1969) Heart rate after cardiac transplantation. Circulation 40(4):437–445PubMedCrossRefGoogle Scholar
  9. 9.
    Bengel FM, Ueberfuhr P, Karja J, Schreiber K, Nekolla SG, Reichart B et al (2004) Sympathetic reinnervation, exercise performance and effects of beta-adrenergic blockade in cardiac transplant recipients. Eur Heart J 25(19):1726–1733PubMedCrossRefGoogle Scholar
  10. 10.
    Murphy DA, Thompson GW, Ardell JL, McCraty R, Stevenson RS, Sangalang VE et al (2000) The heart reinnervates after transplantation. Ann Thorac Surg 69(6):1769–1781PubMedCrossRefGoogle Scholar
  11. 11.
    Uberfuhr P, Frey AW, Reichart B (2000) Vagal reinnervation in the long term after orthotopic heart transplantation. J Heart Lung Transplant 19(10):946–950PubMedCrossRefGoogle Scholar
  12. 12.
    Toledo E, Pinhas I, Aravot D, Almog Y, Akselrod S (2002) Functional restitution of cardiac control in heart transplant patients. Am J Physiol Regul Integr Comp Physiol 282(3): R900–R908PubMedGoogle Scholar
  13. 13.
    Hoyer D, Frank B, Gotze C, Stein PK, Zebrowski JJ, Baranowski R et al (2007) Interactions between short-term and long-term cardiovascular control mechanisms. Chaos 17(1):015110PubMedCrossRefGoogle Scholar
  14. 14.
    Kotani K, Struzik ZR, Takamasu K, Stanley HE, Yamamoto Y (2005) Model for complex heart rate dynamics in health and diseases. Phys Rev E Stat Nonlin Soft Matter Phys 72(4 Pt 1):041904PubMedCrossRefGoogle Scholar
  15. 15.
    Berntson GG, Bigger JT Jr, Eckberg DL, Grossman P, Kaufmann PG, Malik M et al (1997) Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 34(6): 623–648PubMedCrossRefGoogle Scholar
  16. 16.
    (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 93(5):1043–1065Google Scholar
  17. 17.
    Sandercock GR, Bromley PD, Brodie DA (2005) The reliability of short-term measurements of heart rate variability. Int J Cardiol 103(3):238–247PubMedCrossRefGoogle Scholar
  18. 18.
    Kleiger RE, Stein PK, Bigger JT Jr (2005) Heart rate variability: measurement and clinical utility. Ann Noninvasive Electrocardiol 10(1):88–101PubMedCrossRefGoogle Scholar
  19. 19.
    Parati G, Mancia G, Di RM, Castiglioni P (2006) Point: cardiovascular variability is/is not an index of autonomic control of circulation. J Appl Physiol 101(2):676–678PubMedCrossRefGoogle Scholar
  20. 20.
    Jokinen V. Longitudinal changes and prognostic significance of cardiovascular autonomic regulation assessed by heart rate variability and analysis of non-linear heart rate dynamics. Accessed 14 Oct 2012
  21. 21.
    Goldstein B, McNames J, McDonald BA, Ellenby M, Lai S, Sun Z et al (2003) Physiologic data acquisition system and database for the study of disease dynamics in the intensive care unit. Crit Care Med 31(2):433–441PubMedCrossRefGoogle Scholar
  22. 22.
    Korhonen I, Ojaniemi J, Nieminen K, van Gils M, Heikela A, Kari A (1997) Building the IMPROVE Data Library. IEEE Eng Med Biol Mag 16(6):25–32PubMedCrossRefGoogle Scholar
  23. 23.
    Norris PR, Riordan WP Jr, Dawant BM, Kleymeer CJ, Jenkins JM, Williams AE et al (2010) SIMON: a decade of physiological data research and development in trauma intensive care. J Healthc Eng 1(3):315–335CrossRefGoogle Scholar
  24. 24.
    Saeed M, Villarroel M, Reisner AT, Clifford G, Lehman LW, Moody G et al (2011) Multiparameter intelligent monitoring in intensive care II (MIMIC-II): a public-access intensive care unit database. Crit Care Med 39(5):952–960PubMedCrossRefGoogle Scholar
  25. 25.
    Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG et al (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220PubMedCrossRefGoogle Scholar
  26. 26.
    Moody GB, Mark RG, Goldberger AL (2001) PhysioNet: a Web-based resource for the study of physiologic signals. IEEE Eng Med Biol Mag 20(3):70–75PubMedCrossRefGoogle Scholar
  27. 27.
    Norris PR, Morris JA Jr, Ozdas A, Grogan EL, Williams AE (2005) Heart rate variability predicts trauma patient outcome as early as 12 h: implications for military and civilian triage. J Surg Res 129(1):122–128PubMedCrossRefGoogle Scholar
  28. 28.
    Grogan EL, Morris JA Jr, Norris PR, France DJ, Ozdas A, Stiles RA et al (2004) Reduced heart rate volatility: an early predictor of death in trauma patients. Ann Surg 240(3): 547–554PubMedCrossRefGoogle Scholar
  29. 29.
    Bigger JT Jr, Kleiger RE, Fleiss JL, Rolnitzky LM, Steinman RC, Miller JP (1988) Components of heart rate variability measured during healing of acute myocardial infarction. Am J Cardiol 61(4):208–215PubMedCrossRefGoogle Scholar
  30. 30.
    Perkiomaki JS, Makikallio TH, Huikuri HV (2005) Fractal and complexity measures of heart rate variability. Clin Exp Hypertens 27(2–3):149–158PubMedGoogle Scholar
  31. 31.
    Peng CK, Havlin S, Hausdorff JM, Mietus JE, Stanley HE, Goldberger AL (1995) Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease. J Electrocardiol 28(Suppl):59–65PubMedCrossRefGoogle Scholar
  32. 32.
    Goldberger AL (1997) Fractal variability versus pathologic periodicity: complexity loss and stereotypy in disease. Perspect Biol Med 40(4):543–561PubMedGoogle Scholar
  33. 33.
    Huikuri HV, Perkiomaki JS, Maestri R, Pinna GD (2009) Clinical impact of evaluation of cardiovascular control by novel methods of heart rate dynamics. Philos Transact A Math Phys Eng Sci 367(1892):1223–1238CrossRefGoogle Scholar
  34. 34.
    Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5(1):82–87PubMedCrossRefGoogle Scholar
  35. 35.
    Costa M, Goldberger AL, Peng CK (2005) Multiscale entropy analysis of biological signals. Phys Rev E Stat Nonlin Soft Matter Phys 71(2 Pt 1):021906PubMedCrossRefGoogle Scholar
  36. 36.
    Yeragani VK, Srinivasan K, Vempati S, Pohl R, Balon R (1993) Fractal dimension of heart rate time series: an effective measure of autonomic function. J Appl Physiol 75(6):2429–2438PubMedGoogle Scholar
  37. 37.
    Pincus SM, Gladstone IM, Ehrenkranz RA (1991) A regularity statistic for medical data analysis. J Clin Monit 7(4):335–345PubMedCrossRefGoogle Scholar
  38. 38.
    Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA 88(6):2297–2301PubMedCrossRefGoogle Scholar
  39. 39.
    Ganz RE, Weibels G, Stacker KH, Faustmann PM, Zimmermann CW (1993) The Lyapunov exponent of heart rate dynamics as a sensitive marker of central autonomic organization: an exemplary study of early multiple sclerosis. Int J Neurosci 71(1–4):29–36PubMedCrossRefGoogle Scholar
  40. 40.
    Casaleggio A, Cerutti S, Signorini MG (1997) Study of the Lyapunov exponents in heart rate variability signals. Methods Inf Med 36(4–5):274–277PubMedGoogle Scholar
  41. 41.
    Norris PR, Anderson SM, Jenkins JM, Williams AE, Morris JA Jr (2008) Heart rate multiscale entropy at three hours predicts hospital mortality in 3,154 trauma patients. Shock 30(1):17–22PubMedCrossRefGoogle Scholar
  42. 42.
    Trunkvalterova Z, Javorka M, Tonhajzerova I, Javorkova J, Lazarova Z, Javorka K et al (2008) Reduced short-term complexity of heart rate and blood pressure dynamics in patients with diabetes mellitus type 1: multiscale entropy analysis. Physiol Meas 29(7):817–828PubMedCrossRefGoogle Scholar
  43. 43.
    Ahmad S, Ramsay T, Huebsch L, Flanagan S, McDiarmid S, Batkin I et al (2009) Continuous multi-parameter heart rate variability analysis heralds onset of sepsis in adults. PLoS One 4(8):e6642PubMedCrossRefGoogle Scholar
  44. 44.
    Riordan WP Jr, Norris PR, Jenkins JM, Morris JA Jr (2009) Early loss of heart rate complexity predicts mortality regardless of mechanism, anatomic location, or severity of injury in 2178 trauma patients. J Surg Res 156(2):283–289PubMedCrossRefGoogle Scholar
  45. 45.
    Papaioannou VE, Chouvarda I, Maglaveras N, Dragoumanis C, Pneumatikos I (2011) Changes of heart and respiratory rate dynamics during weaning from mechanical ventilation: a study of physiologic complexity in surgical critically ill patients. J Crit Care 26(3): 262–272PubMedCrossRefGoogle Scholar
  46. 46.
    Ho YL, Lin C, Lin YH, Lo MT (2011) The prognostic value of non-linear analysis of heart rate variability in patients with congestive heart failure – a pilot study of multiscale entropy. PLoS One 6(4):e18699PubMedCrossRefGoogle Scholar
  47. 47.
    Norris PR, Stein PK, Morris JA Jr (2008) Reduced heart rate multiscale entropy predicts death in critical illness: a study of physiologic complexity in 285 trauma patients. J Crit Care 23(3):399–405PubMedCrossRefGoogle Scholar
  48. 48.
    Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3): 379–423CrossRefGoogle Scholar
  49. 49.
    Lake DE, Richman JS, Griffin MP, Moorman JR (2002) Sample entropy analysis of neonatal heart rate variability. Am J Physiol Regul Integr Comp Physiol 283(3):R789–R797PubMedGoogle Scholar
  50. 50.
    Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278(6):H2039–H2049PubMedGoogle Scholar
  51. 51.
    Reynolds EW Jr, Muller BF, Anderson GJ, Muller BT (1967) High-frequency components in the electrocardiogram. A comparative study of normals and patients with myocardial disease. Circulation 35(1):195–206PubMedCrossRefGoogle Scholar
  52. 52.
    Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213(4504):220–222PubMedCrossRefGoogle Scholar
  53. 53.
    Peters CH, Vullings R, Rooijakkers MJ, Bergmans JW, Oei SG, Wijn PF (2011) A continuous wavelet transform-based method for time-frequency analysis of artefact-corrected heart rate variability data. Physiol Meas 32(10):1517–1527PubMedCrossRefGoogle Scholar
  54. 54.
    Belova NY, Mihaylov SV, Piryova BG (2007) Wavelet transform: a better approach for the evaluation of instantaneous changes in heart rate variability. Auton Neurosci 131(1–2):107–122PubMedCrossRefGoogle Scholar
  55. 55.
    Crowe JA, Gibson NM, Woolfson MS, Somekh MG (1992) Wavelet transform as a potential tool for ECG analysis and compression. J Biomed Eng 14(3):268–272PubMedCrossRefGoogle Scholar
  56. 56.
    Mietus JE and Goldberger AL. Heart rate variability analysis with the HRV toolkit. Accessed 12 Oct 2012
  57. 57.
    Clifford GD, Tarassenko L (2005) Quantifying errors in spectral estimates of HRV due to beat replacement and resampling. IEEE Trans Biomed Eng 52(4):630–638PubMedCrossRefGoogle Scholar
  58. 58.
    KUBIOS-HRV. Accessed 10 Oct 2012
  59. 59.
    Niskanen JP, Tarvainen MP, Ranta-Aho PO, Karjalainen PA (2004) Software for advanced HRV analysis. Comput Methods Programs Biomed 76(1):73–81PubMedCrossRefGoogle Scholar
  60. 60.
    Perakakis P, Joffily M, Taylor M, Guerra P, Vila J (2010) KARDIA: a Matlab software for the analysis of cardiac interbeat intervals. Comput Methods Programs Biomed 98(1):83–89PubMedCrossRefGoogle Scholar
  61. 61.
    de Carvalho JLA, da Rocha AF, de Oliveira Nascimento FA, Neto JS, Junqueira LF Jr (2002) Development of a Matlab software for analysis of heart rate variability. In: Proceedings of the 6th IEEE International conference on signal processing, vol 2, pp 1488–1491Google Scholar
  62. 62.
    Maestri R, Pinna GD (1998) POLYAN: a computer program for polyparametric analysis of cardio-respiratory variability signals. Comput Methods Programs Biomed 56(1):37–48PubMedCrossRefGoogle Scholar
  63. 63.
    Lado M, Mendez A, Olivieri D, Rodriguez-Linares L, Vila X. R-Package RHRV: Heart rate variability analysis of ECG data. Accessed 20 Oct 2012
  64. 64.
    Seely AJ, Green GC, Bravi A (2011) Continuous multiorgan variability monitoring in critically ill patients – complexity science at the bedside. Conf Proc IEEE Eng Med Biol Soc 2011:5503–5506PubMedGoogle Scholar
  65. 65.
    Ghuran A, Reid F, La Rovere MT, Schmidt G, Bigger JT Jr, Camm AJ et al (2002) Heart rate turbulence-based predictors of fatal and nonfatal cardiac arrest (The Autonomic Tone and Reflexes After Myocardial Infarction substudy). Am J Cardiol 89(2):184–190PubMedCrossRefGoogle Scholar
  66. 66.
    Huikuri HV, Stein PK (2012) Clinical application of heart rate variability after acute myocardial infarction. Front Physiol 3:41PubMedCrossRefGoogle Scholar
  67. 67.
    Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405(6785):458–462PubMedCrossRefGoogle Scholar
  68. 68.
    Huang J, Wang Y, Jiang D, Zhou J, Huang X (2010) The sympathetic-vagal balance against endotoxemia. J Neural Transm 117(6):729–735PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang Y, Popovic ZB, Bibevski S, Fakhry I, Sica DA, Van Wagoner DR et al (2009) Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ Heart Fail 2(6):692–699PubMedCrossRefGoogle Scholar
  70. 70.
    Hoeger S, Bergstraesser C, Selhorst J, Fontana J, Birck R, Waldherr R et al (2010) Modulation of brain dead induced inflammation by vagus nerve stimulation. Am J Transplant 10(3): 477–489PubMedCrossRefGoogle Scholar
  71. 71.
    Tracey KJ (2002) The inflammatory reflex. Nature 420(6917):853–859PubMedCrossRefGoogle Scholar
  72. 72.
    Olofsson PS, Rosas-Ballina M, Levine YA, Tracey KJ (2012) Rethinking inflammation: neural circuits in the regulation of immunity. Immunol Rev 248(1):188–204PubMedCrossRefGoogle Scholar
  73. 73.
    Huston JM, Tracey KJ (2011) The pulse of inflammation: heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. J Intern Med 269(1):45–53PubMedCrossRefGoogle Scholar
  74. 74.
    Pavlov VA, Ochani M, Gallowitsch-Puerta M, Ochani K, Huston JM, Czura CJ et al (2006) Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc Natl Acad Sci USA 103(13):5219–5223PubMedCrossRefGoogle Scholar
  75. 75.
    Kox M, Pompe JC, van der Hoeven JG, Hoedemaekers CW, Pickkers P (2011) Influence of different breathing patterns on heart rate variability indices and reproducibility during experimental endotoxaemia in human subjects. Clin Sci (Lond) 121(5):215–222CrossRefGoogle Scholar
  76. 76.
    Kox M, Ramakers BP, Pompe JC, van der Hoeven JG, Hoedemaekers CW, Pickkers P (2011) Interplay between the acute inflammatory response and heart rate variability in healthy human volunteers. Shock 36(2):115–120PubMedCrossRefGoogle Scholar
  77. 77.
    Lehrer P, Karavidas MK, Lu SE, Coyle SM, Oikawa LO, Macor M et al (2010) Voluntarily produced increases in heart rate variability modulate autonomic effects of endotoxin induced systemic inflammation: an exploratory study. Appl Psychophysiol Biofeedback 35(4):303–315PubMedCrossRefGoogle Scholar
  78. 78.
    Marsland AL, Gianaros PJ, Prather AA, Jennings JR, Neumann SA, Manuck SB (2007) Stimulated production of proinflammatory cytokines covaries inversely with heart rate variability. Psychosom Med 69(8):709–716PubMedCrossRefGoogle Scholar
  79. 79.
    Rassias AJ, Holzberger PT, Givan AL, Fahrner SL, Yeager MP (2005) Decreased physiologic variability as a generalized response to human endotoxemia. Crit Care Med 33(3):512–519PubMedCrossRefGoogle Scholar
  80. 80.
    Rassias AJ, Guyre PM, Yeager MP (2011) Hydrocortisone at stress-associated concentrations helps maintain human heart rate variability during subsequent endotoxin challenge. J Crit Care 26(6):636.e1–636.e5CrossRefGoogle Scholar
  81. 81.
    Fairchild KD, Saucerman JJ, Raynor LL, Sivak JA, Xiao Y, Lake DE et al (2009) Endotoxin depresses heart rate variability in mice: cytokine and steroid effects. Am J Physiol Regul Integr Comp Physiol 297(4):R1019–R1027PubMedCrossRefGoogle Scholar
  82. 82.
    Gholami M, Mazaheri P, Mohamadi A, Dehpour T, Safari F, Hajizadeh S et al (2012) Endotoxemia is associated with partial uncoupling of cardiac pacemaker from cholinergic neural control in rats. Shock 37(2):219–227PubMedCrossRefGoogle Scholar
  83. 83.
    Huang W, Zhu T, Pan X, Hu M, Lu SE, Lin Y et al (2012) Air pollution and autonomic and vascular dysfunction in patients with cardiovascular disease: interactions of systemic inflammation, overweight, and gender. Am J Epidemiol 176(2):117–126PubMedCrossRefGoogle Scholar
  84. 84.
    Luttmann-Gibson H, Suh HH, Coull BA, Dockery DW, Sarnat SE, Schwartz J et al (2010) Systemic inflammation, heart rate variability and air pollution in a cohort of senior adults. Occup Environ Med 67(9):625–630PubMedCrossRefGoogle Scholar
  85. 85.
    Fang SC, Cavallari JM, Eisen EA, Chen JC, Mittleman MA, Christiani DC (2009) Vascular function, inflammation, and variations in cardiac autonomic responses to particulate matter among welders. Am J Epidemiol 169(7):848–856PubMedCrossRefGoogle Scholar
  86. 86.
    Lanza GA, Barone L, Scalone G, Pitocco D, Sgueglia GA, Mollo R et al (2011) Inflammation-related effects of adjuvant influenza A vaccination on platelet activation and cardiac autonomic function. J Intern Med 269(1):118–125PubMedCrossRefGoogle Scholar
  87. 87.
    Hamaad A, Sosin M, Blann AD, Patel J, Lip GY, MacFadyen RJ (2005) Markers of inflammation in acute coronary syndromes: association with increased heart rate and reductions in heart rate variability. Clin Cardiol 28(12):570–576PubMedCrossRefGoogle Scholar
  88. 88.
    Kon H, Nagano M, Tanaka F, Satoh K, Segawa T, Nakamura M (2006) Association of decreased variation of R-R interval and elevated serum C-reactive protein level in a general population in Japan. Int Heart J 47(6):867–876PubMedCrossRefGoogle Scholar
  89. 89.
    Frasure-Smith N, Lesperance F, Irwin MR, Talajic M, Pollock BG (2009) The relationships among heart rate variability, inflammatory markers and depression in coronary heart disease patients. Brain Behav Immun 23(8):1140–1147PubMedCrossRefGoogle Scholar
  90. 90.
    Haarala A, Kahonen M, Eklund C, Jylhava J, Koskinen T, Taittonen L et al (2011) Heart rate variability is independently associated with C-reactive protein but not with Serum amyloid A. The Cardiovascular Risk in Young Finns Study. Eur J Clin Invest 41(9):951–957PubMedCrossRefGoogle Scholar
  91. 91.
    Lampert R, Bremner JD, Su S, Miller A, Lee F, Cheema F et al (2008) Decreased heart rate variability is associated with higher levels of inflammation in middle-aged men. Am Heart J 156(4):759 e1–759 e7CrossRefGoogle Scholar
  92. 92.
    Papaioannou VE, Dragoumanis C, Theodorou V, Gargaretas C, Pneumatikos I (2009) Relation of heart rate variability to serum levels of C-reactive protein, interleukin 6, and 10 in patients with sepsis and septic shock. J Crit Care 24(4):625–627PubMedCrossRefGoogle Scholar
  93. 93.
    Singh P, Hawkley LC, McDade TW, Cacioppo JT, Masi CM (2009) Autonomic tone and C-reactive protein: a prospective population-based study. Clin Auton Res 19(6):367–374PubMedCrossRefGoogle Scholar
  94. 94.
    Sloan RP, McCreath H, Tracey KJ, Sidney S, Liu K, Seeman T (2007) RR interval variability is inversely related to inflammatory markers: the CARDIA study. Mol Med 13(3–4): 178–184PubMedGoogle Scholar
  95. 95.
    Thayer JF, Fischer JE (2009) Heart rate variability, overnight urinary norepinephrine and C-reactive protein: evidence for the cholinergic anti-inflammatory pathway in healthy human adults. J Intern Med 265(4):439–447PubMedCrossRefGoogle Scholar
  96. 96.
    von Känel R, Carney RM, Zhao S, Whooley MA (2011) Heart rate variability and biomarkers of systemic inflammation in patients with stable coronary heart disease: findings from the Heart and Soul Study. Clin Res Cardiol 100(3):241–247CrossRefGoogle Scholar
  97. 97.
    Lowensohn RI, Weiss M, Hon EH (1977) Heart-rate variability in brain-damaged adults. Lancet 1(8012):626–628PubMedCrossRefGoogle Scholar
  98. 98.
    Winchell RJ, Hoyt DB (1997) Analysis of heart-rate variability: a noninvasive predictor of death and poor outcome in patients with severe head injury. J Trauma 43(6):927–933PubMedCrossRefGoogle Scholar
  99. 99.
    Riordan WP Jr, Cotton BA, Norris PR, Waitman LR, Jenkins JM, Morris JA Jr (2007) Beta-blocker exposure in patients with severe traumatic brain injury (TBI) and cardiac uncoupling. J Trauma 63(3):503–510PubMedCrossRefGoogle Scholar
  100. 100.
    Baguley IJ, Heriseanu RE, Felmingham KL, Cameron ID (2006) Dysautonomia and heart rate variability following severe traumatic brain injury. Brain Inj 20(4):437–444PubMedCrossRefGoogle Scholar
  101. 101.
    Goldstein B, Kempski MH, DeKing D, Cox C, DeLong DJ, Kelly MM et al (1996) Autonomic control of heart rate after brain injury in children. Crit Care Med 24(2):234–240PubMedCrossRefGoogle Scholar
  102. 102.
    Proctor KG, Atapattu SA, Duncan RC (2007) Heart rate variability index in trauma patients. J Trauma 63(1):33–43PubMedCrossRefGoogle Scholar
  103. 103.
    Fathizadeh P, Shoemaker WC, Wo CC, Colombo J (2004) Autonomic activity in trauma patients based on variability of heart rate and respiratory rate. Crit Care Med 32(6): 1300–1305PubMedCrossRefGoogle Scholar
  104. 104.
    Norris PR, Ozdas A, Cao H, Williams AE, Harrell FE, Jenkins JM et al (2006) Cardiac uncoupling and heart rate variability stratify ICU patients by mortality: a study of 2088 trauma patients. Ann Surg 243(6):804–812PubMedCrossRefGoogle Scholar
  105. 105.
    Cooke WH, Salinas J, Convertino VA, Ludwig DA, Hinds D, Duke JH et al (2006) Heart rate variability and its association with mortality in prehospital trauma patients. J Trauma 60(2): 363–370PubMedCrossRefGoogle Scholar
  106. 106.
    Batchinsky AI, Cancio LC, Salinas J, Kuusela T, Cooke WH, Wang JJ et al (2007) Prehospital loss of R-to-R interval complexity is associated with mortality in trauma patients. J Trauma 63(3):512–518PubMedCrossRefGoogle Scholar
  107. 107.
    Batchinsky AI, Skinner JE, Necsoiu C, Jordan BS, Weiss D, Cancio LC (2010) New measures of heart-rate complexity: effect of chest trauma and hemorrhage. J Trauma 68(5):1178–1185PubMedCrossRefGoogle Scholar
  108. 108.
    Batchinsky AI, Cooke WH, Kuusela TA, Jordan BS, Wang JJ, Cancio LC (2007) Sympathetic nerve activity and heart rate variability during severe hemorrhagic shock in sheep. Auton Neurosci 136(1–2):43–51PubMedCrossRefGoogle Scholar
  109. 109.
    Batchinsky AI, Cooke WH, Kuusela T, Cancio LC (2007) Loss of complexity characterizes the heart rate response to experimental hemorrhagic shock in swine. Crit Care Med 35(2): 519–525PubMedCrossRefGoogle Scholar
  110. 110.
    Hinojosa-Laborde C, Rickards CA, Ryan KL, Convertino VA (2011) Heart rate variability during simulated hemorrhage with lower body negative pressure in high and low tolerant subjects. Front Physiol 2:85PubMedCrossRefGoogle Scholar
  111. 111.
    Rickards CA, Ryan KL, Convertino VA (2010) Characterization of common measures of heart period variability in healthy human subjects: implications for patient monitoring. J Clin Monit Comput 24(1):61–70PubMedCrossRefGoogle Scholar
  112. 112.
    Kox M, Vrouwenvelder MQ, Pompe JC, van der Hoeven JG, Pickkers P, Hoedemaekers CW (2012) The effects of brain injury on heart rate variability and the innate immune response in critically ill patients. J Neurotrauma 29(5):747–755PubMedCrossRefGoogle Scholar
  113. 113.
    Ahmad S, Tejuja A, Newman KD, Zarychanski R, Seely AJ (2009) Clinical review: a review and analysis of heart rate variability and the diagnosis and prognosis of infection. Crit Care 13(6):232PubMedCrossRefGoogle Scholar
  114. 114.
    Werdan K, Schmidt H, Ebelt H, Zorn-Pauly K, Koidl B, Hoke RS et al (2009) Impaired regulation of cardiac function in sepsis, SIRS, and MODS. Can J Physiol Pharmacol 87(4): 266–274PubMedCrossRefGoogle Scholar
  115. 115.
    Chen WL, Kuo CD (2007) Characteristics of heart rate variability can predict impending septic shock in emergency department patients with sepsis. Acad Emerg Med 14(5): 392–397PubMedGoogle Scholar
  116. 116.
    Chen WL, Chen JH, Huang CC, Kuo CD, Huang CI, Lee LS (2008) Heart rate variability measures as predictors of in-hospital mortality in ED patients with sepsis. Am J Emerg Med 26(4):395–401PubMedCrossRefGoogle Scholar
  117. 117.
    Bravi A, Green G, Longtin A, Seely AJ (2012) Monitoring and identification of sepsis development through a composite measure of heart rate variability. PLoS One 7(9):e45666PubMedCrossRefGoogle Scholar
  118. 118.
    Korach M, Sharshar T, Jarrin I, Fouillot JP, Raphael JC, Gajdos P et al (2001) Cardiac variability in critically ill adults: influence of sepsis. Crit Care Med 29(7):1380–1385PubMedCrossRefGoogle Scholar
  119. 119.
    Papaioannou VE, Maglaveras N, Houvarda I, Antoniadou E, Vretzakis G (2006) Investigation of altered heart rate variability, nonlinear properties of heart rate signals, and organ dysfunction longitudinally over time in intensive care unit patients. J Crit Care 21(1):95–103PubMedCrossRefGoogle Scholar
  120. 120.
    Morris JA Jr, Norris PR, Waitman LR, Ozdas A, Guillamondegui OD, Jenkins JM (2007) Adrenal insufficiency, heart rate variability, and complex biologic systems: a study of 1,871 critically ill trauma patients. J Am Coll Surg 204(5):885–892PubMedCrossRefGoogle Scholar
  121. 121.
    Griffin MP, Scollan DF, Moorman JR (1994) The dynamic range of neonatal heart rate variability. J Cardiovasc Electrophysiol 5(2):112–124PubMedCrossRefGoogle Scholar
  122. 122.
    Griffin MP, Lake DE, O’Shea TM, Moorman JR (2007) Heart rate characteristics and clinical signs in neonatal sepsis. Pediatr Res 61(2):222–227PubMedCrossRefGoogle Scholar
  123. 123.
    Moorman JR, Lake DE, Griffin MP (2006) Heart rate characteristics monitoring for neonatal sepsis. IEEE Trans Biomed Eng 53(1):126–132PubMedCrossRefGoogle Scholar
  124. 124.
    Cao H, Lake DE, Griffin MP, Moorman JR (2004) Increased nonstationarity of neonatal heart rate before the clinical diagnosis of sepsis. Ann Biomed Eng 32(2):233–244PubMedCrossRefGoogle Scholar
  125. 125.
    Stein PK, Domitrovich PP, Hui N, Rautaharju P, Gottdiener J (2005) Sometimes higher heart rate variability is not better heart rate variability: results of graphical and nonlinear analyses. J Cardiovasc Electrophysiol 16(9):954–959PubMedCrossRefGoogle Scholar
  126. 126.
    Fairchild KD, Srinivasan V, Moorman JR, Gaykema RP, Goehler LE (2011) Pathogen-induced heart rate changes associated with cholinergic nervous system activation. Am J Physiol Regul Integr Comp Physiol 300(2):R330–R339PubMedCrossRefGoogle Scholar
  127. 127.
    Tran TY, Dunne IE, German JW (2008) Beta blockers exposure and traumatic brain injury: a literature review. Neurosurg Focus 25(4):E8PubMedCrossRefGoogle Scholar
  128. 128.
    Van de Louw A, Medigue C, Papelier Y, Cottin F (2010) Positive end-expiratory pressure may alter breathing cardiovascular variability and baroreflex gain in mechanically ventilated patients. Respir Res 11:38PubMedCrossRefGoogle Scholar
  129. 129.
    Borghi-Silva A, Reis MS, Mendes RG, Pantoni CB, Simoes RP, Martins LE et al (2008) Noninvasive ventilation acutely modifies heart rate variability in chronic obstructive pulmonary disease patients. Respir Med 102(8):1117–1123PubMedCrossRefGoogle Scholar
  130. 130.
    Pantoni CB, Di TL, Mendes RG, Catai AM, Luzzi S, Amaral NO et al (2011) Effects of different levels of positive airway pressure on breathing pattern and heart rate variability after coronary artery bypass grafting surgery. Braz J Med Biol Res 44(1):38–45PubMedCrossRefGoogle Scholar
  131. 131.
    Ng J, Sundaram S, Kadish AH, Goldberger JJ (2009) Autonomic effects on the spectral analysis of heart rate variability after exercise. Am J Physiol Heart Circ Physiol 297(4): H1421–H1428PubMedCrossRefGoogle Scholar
  132. 132.
    Tarvainen MP, Georgiadis S, Laitio T, Lipponen JA, Karjalainen PA, Kaskinoro K et al (2012) Heart rate variability dynamics during low-dose propofol and dexmedetomidine anesthesia. Ann Biomed Eng 40(8):1802–1813PubMedCrossRefGoogle Scholar
  133. 133.
    Bourgault AM, Brown CA, Hains SM, Parlow JL (2006) Effects of endotracheal tube suctioning on arterial oxygen tension and heart rate variability. Biol Res Nurs 7(4):268–278PubMedCrossRefGoogle Scholar
  134. 134.
    Newton-Cheh C, Guo CY, Wang TJ, O’donnell CJ, Levy D, Larson MG (2007) Genome-wide association study of electrocardiographic and heart rate variability traits: the Framingham Heart Study. BMC Med Genet 8(Suppl 1):S7PubMedCrossRefGoogle Scholar
  135. 135.
    Norris PR, Canter JA, Jenkins JM, Moore JH, Williams AE, Morris JA Jr (2009) Personalized medicine: genetic variation and loss of physiologic complexity are associated with mortality in 644 trauma patients. Ann Surg 250(4):524–530PubMedGoogle Scholar
  136. 136.
    Bidargaddi N, Sarela A, Korhonen I (2008) Physiological state characterization by clustering heart rate, heart rate variability and movement activity information. Conf Proc IEEE Eng Med Biol Soc 2008:1749–1752PubMedGoogle Scholar
  137. 137.
    Kiyono K, Struzik ZR, Aoyagi N, Togo F, Yamamoto Y (2005) Phase transition in a healthy human heart rate. Phys Rev Lett 95(5):058101PubMedCrossRefGoogle Scholar
  138. 138.
    Godin PJ, Buchman TG (1996) Uncoupling of biological oscillators: a complementary hypothesis concerning the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med 24(7):1107–1116PubMedCrossRefGoogle Scholar
  139. 139.
    Buchman TG (2004) Nonlinear dynamics, complex systems, and the pathobiology of critical illness. Curr Opin Crit Care 10(5):378–382PubMedCrossRefGoogle Scholar
  140. 140.
    Seely AJ, Christou NV (2000) Multiple organ dysfunction syndrome: exploring the paradigm of complex nonlinear systems. Crit Care Med 28(7):2193–2200PubMedCrossRefGoogle Scholar
  141. 141.
    Dick TE, Molkov YI, Nieman G, Hsieh YH, Jacono FJ, Doyle J et al (2012) Linking inflammation, cardiorespiratory variability, and neural control in acute inflammation via computational modeling. Front Physiol 3:222PubMedCrossRefGoogle Scholar
  142. 142.
    An G, Nieman G, Vodovotz Y (2012) Toward computational identification of multiscale “tipping points” in acute inflammation and multiple organ failure. Ann Biomed Eng 40(11): 2414–2424PubMedCrossRefGoogle Scholar
  143. 143.
    Xiao X, Mullen TJ, Mukkamala R (2005) System identification: a multi-signal approach for probing neural cardiovascular regulation. Physiol Meas 26(3):R41–R71PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Departments of Informatics Administration and SurgeryVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations