Skip to main content

Modeling Host–Pathogen Interactions in Necrotizing Enterocolitis

  • Chapter
  • First Online:
Complex Systems and Computational Biology Approaches to Acute Inflammation

Abstract

Necrotizing enterocolitis (NEC) is a severe disease of the gastrointestinal tract that affects primarily premature infants and is characterized by physiological immaturity of the intestine, abnormal bacterial colonization of the gut, and disordered inflammatory signaling. The severity of NEC coupled to a lack of effective therapy has motivated the use of systems approaches including computational modeling to gain a fuller insight into both mechanism and therapy for NEC. Here, we explore ordinary differential equation, partial differential equation, and agent based mathematical models that incorporate clinical and experimental observations to study key interactions of bacteria, the intestinal epithelial barrier, and the inflammatory response in NEC. The three different modeling approaches provide techniques to obtain time-dependent and/or space-dependent information about the complex interplay between host defense mechanisms and bacterial virulence. The strengths, shortcomings, and applicability of each model type are examined. Ultimately, theoretical models can help to unravel the complex network of factors that contribute to the pathology of NEC and guide the development of treatment strategies aimed at reestablishing the integrity of the epithelial wall and preventing the propagation of inflammation in NEC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alfaleh K, Bassler D (2008) Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst Rev (3):CD005496. Epub 2008/02/07

    Google Scholar 

  2. Lin PW, Nasr TR, Stoll BJ (2008) Necrotizing enterocolitis: recent scientific advances in pathophysiology and prevention. Semin Perinatol 32(2):70–82

    Article  PubMed  Google Scholar 

  3. Claud EC, Walker WA (2008) Bacterial colonization, probiotics, and necrotizing enterocolitis. J Clin Gastroenterol 42:S46–S52

    Article  PubMed  Google Scholar 

  4. Hunter CJ, Upperman JS, Ford HR, Camerini V (2008) Understanding the susceptibility of the premature infant to necrotizing enterocolitis (NEC). Pediatr Res 63(2):117–123, Epub 2007/12/20

    Article  PubMed  Google Scholar 

  5. Deitch EA (1990) Bacterial translocation of the gut flora. J Trauma 30(12):S184–S189

    Article  PubMed  CAS  Google Scholar 

  6. Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9(11):799–809

    Article  PubMed  CAS  Google Scholar 

  7. Leser TD, Molbak L (2009) Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host. Environ Microbiol 11(9):2194–2206, Epub 2009/09/10

    Article  PubMed  CAS  Google Scholar 

  8. Kennedy RJ, Kirk SJ, Gardiner KR (2002) Mucosal barrier function and the commensal flora. Gut 50(3):441–442, Epub 2002/02/13

    Article  PubMed  CAS  Google Scholar 

  9. Garcia-Lafuente A, Antolin M, Guarner F, Crespo E, Malagelada JR (2001) Modulation of colonic barrier function by the composition of the commensal flora in the rat. Gut 48(4):503–507, Epub 2001/03/15

    Article  PubMed  CAS  Google Scholar 

  10. Cario E, Rosenberg IM, Brandwein SL, Beck PL, Reinecker HC, Podolsky DK (2000) Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing toll-like receptors. J Immunol 164(2):966–972

    PubMed  CAS  Google Scholar 

  11. Duerkop BA, Vaishnava S, Hooper LV (2009) Immune responses to the microbiota at the intestinal mucosal surface. Immunity 31(3):368–376, Epub 2009/09/22

    Article  PubMed  CAS  Google Scholar 

  12. Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV (2008) Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci USA 105(52):20858–20863, Epub 2008/12/17

    Article  PubMed  CAS  Google Scholar 

  13. Xavier RJ, Podolsky DK (2000) Microbiology. How to get along – friendly microbes in a hostile world. Science 289(5484):1483–1484

    Article  PubMed  CAS  Google Scholar 

  14. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2(8):675–680

    Article  PubMed  CAS  Google Scholar 

  15. Gribar SC, Sodhi CP, Richardson WM, Anand RJ, Gittes GK, Branca MF et al (2009) Reciprocal expression and signaling of TLR4 and TLR9 in the pathogenesis and treatment of necrotizing enterocolitis. J Immunol 182(1):636–646, Epub 2008/12/26

    PubMed  CAS  Google Scholar 

  16. Sodhi C, Levy R, Gill R, Neal MD, Richardson W, Branca M et al (2011) DNA attenuates enterocyte Toll-like receptor 4-mediated intestinal mucosal injury after remote trauma. Am J Physiol Gastrointest Liver Physiol 300(5):G862–G873, Epub 2011/01/15

    Article  PubMed  CAS  Google Scholar 

  17. Soliman A, Michelsen KS, Karahashi H, Lu J, Meng FJ, Qu XW et al (2010) Platelet-activating factor induces TLR4 expression in intestinal epithelial cells: implication for the pathogenesis of necrotizing enterocolitis. PLoS One 5(10):e15044

    Article  PubMed  CAS  Google Scholar 

  18. Caplan MS, Hsueh W (1990) Necrotizing enterocolitis: role of platelet activating factor, endotoxin, and tumor necrosis factor. J Pediatr 117(1 Pt 2):S47–S51, Epub 1990/07/01

    PubMed  CAS  Google Scholar 

  19. Hackam DJ, Upperman JS, Grishin A, Ford HR (2005) Disordered enterocyte signaling and intestinal barrier dysfunction in the pathogenesis of necrotizing enterocolitis. Semin Pediatr Surg 14(1):49–57, Epub 2005/03/17

    Article  PubMed  Google Scholar 

  20. Han X, Fink MP, Delude RL (2003) Proinflammatory cytokines cause NO*-dependent and -independent changes in expression and localization of tight junction proteins in intestinal epithelial cells. Shock 19(3):229–237, Epub 2003/03/13

    Article  PubMed  CAS  Google Scholar 

  21. Han X, Fink MP, Yang R, Delude RL (2004) Increased iNOS activity is essential for intestinal epithelial tight junction dysfunction in endotoxemic mice. Shock 21(3):261–270, Epub 2004/02/11

    Article  PubMed  CAS  Google Scholar 

  22. Nanthakumar N, Meng D, Goldstein AM, Zhu WS, Lu L, Uauy R et al (2011) The mechanism of excessive intestinal inflammation in necrotizing enterocolitis: an immature innate immune response. PLoS One 6(3):e17776

    Article  PubMed  CAS  Google Scholar 

  23. Bianchi ME, Manfredi AA (2009) Immunology. Dangers in and out. Science 323(5922):1683–1684, Epub 2009/03/28

    Article  PubMed  CAS  Google Scholar 

  24. Rahman FZ, Smith AM, Hayee B, Marks DJ, Bloom SL, Segal AW (2010) Delayed resolution of acute inflammation in ulcerative colitis is associated with elevated cytokine release downstream of TLR4. PLoS One 5(3):e9891, Epub 2010/04/03

    Article  PubMed  CAS  Google Scholar 

  25. Schanler RJ (2001) The use of human milk for premature infants. Pediatr Clin North Am 48(1):207–219, Epub 2001/03/10

    Article  PubMed  CAS  Google Scholar 

  26. Newburg DS, Walker WA (2007) Protection of the neonate by the innate immune system of developing gut and of human milk. Pediatr Res 61(1):2–8, Epub 2007/01/11

    Article  PubMed  CAS  Google Scholar 

  27. Liedel JL, Guo Y, Yu Y, Shiou SR, Chen S, Petrof EO et al (2011) Mother’s milk-induced Hsp70 expression preserves intestinal epithelial barrier function in an immature rat pup model. Pediatr Res 69(5 Pt 1):395–400, Epub 2011/01/26

    Article  PubMed  CAS  Google Scholar 

  28. Lucas A, Cole TJ (1990) Breast milk and neonatal necrotising enterocolitis. Lancet 336(8730):1519–1523, Epub 1990/12/22

    Article  PubMed  CAS  Google Scholar 

  29. Petty JK, Ziegler MM (2005) Operative strategies for necrotizing enterocolitis: the prevention and treatment of short-bowel syndrome. Semin Pediatr Surg 14(3):191–198, Epub 2005/08/09

    Article  PubMed  Google Scholar 

  30. Torrazza RM, Neu J (2011) The developing intestinal microbiome and its relationship to health and disease in the neonate. J Perinatol 31:S29–S34

    Article  Google Scholar 

  31. Guner YS, Friedlich P, Wee CP, Dorey F, Camerini V, Upperman JS (2009) State-based analysis of necrotizing enterocolitis outcomes. J Surg Res 157(1):21–29, Epub 2009/07/21

    Article  PubMed  Google Scholar 

  32. Ricketts RR (1994) Surgical treatment of necrotizing enterocolitis and the short bowel syndrome. Clin Perinatol 21(2):365–387, Epub 1994/06/01

    PubMed  CAS  Google Scholar 

  33. Koffeman GI, van Gemert WG, George EK, Veenendaal RA (2003) Classification, epidemiology and aetiology. Best Pract Res Clin Gastroenterol 17(6):879–893, Epub 2003/12/04

    Article  PubMed  Google Scholar 

  34. Petrosyan M, Guner YS, Williams M, Grishin A, Ford HR (2009) Current concepts regarding the pathogenesis of necrotizing enterocolitis. Pediatr Surg Int 25(4):309–318, Epub 2009/03/21

    Article  PubMed  Google Scholar 

  35. Soraisham A, Harish A, Al-Hindi M, Singhal N, Sauve R (2006) Does necrotizing enterocolitis impact the neurodevelopmental and growth outcomes in preterm infants with birthweight < =1250 g? J Paediatr Child Health 42(9):499–504

    Article  PubMed  Google Scholar 

  36. Leaphart CL, Cavallo J, Gribar SC, Cetin S, Li J, Branca MF et al (2007) A critical role for TLR4 in the pathogenesis of necrotizing enterocolitis by modulating intestinal injury and repair. J Immunol 179(7):4808–4820, Epub 2007/09/20

    PubMed  CAS  Google Scholar 

  37. Sodhi C, Richardson W, Gribar S, Hackam DJ (2008) The development of animal models for the study of necrotizing enterocolitis. Dis Model Mech 1(2–3):94–98, Epub 2008/12/03

    Article  PubMed  Google Scholar 

  38. Bin-Nun A, Bromiker R, Wilschanski M, Kaplan M, Rudensky B, Caplan M et al (2005) Oral probiotics prevent necrotizing enterocolitis in very low birth weight neonates. J Pediatr 147(2):192–196, Epub 2005/08/30

    Article  PubMed  Google Scholar 

  39. Dani C, Biadaioli R, Bertini G, Martelli E, Rubaltelli FF (2002) Probiotics feeding in prevention of urinary tract infection, bacterial sepsis and necrotizing enterocolitis in preterm infants. A prospective double-blind study. Biol Neonate 82(2):103–108, Epub 2002/08/10

    Article  PubMed  CAS  Google Scholar 

  40. Lin HC, Hsu CH, Chen HL, Chung MY, Hsu JF, Lien RI et al (2008) Oral probiotics prevent necrotizing enterocolitis in very low birth weight preterm infants: a multicenter, randomized, controlled trial. Pediatrics 122(4):693–700, Epub 2008/10/03

    Article  PubMed  Google Scholar 

  41. Ruemmele FM, Bier D, Marteau P, Rechkemmer G, Bourdet-Sicard R, Walker WA et al (2009) Clinical evidence for immunomodulatory effects of probiotic bacteria. J Pediatr Gastroenterol Nutr 48(2):126–141

    Article  PubMed  CAS  Google Scholar 

  42. Barclay AR, Stenson B, Simpson JH, Weaver LT, Wilson DC (2007) Probiotics for necrotizing enterocolitis: a systematic review. J Pediatr Gastroenterol Nutr 45(5):569–576, Epub 2007/11/22

    Article  PubMed  Google Scholar 

  43. Khailova L, Dvorak K, Arganbright KM, Halpern MD, Kinouchi T, Yajima M et al (2009) Bifidobacterium bifidum improves intestinal integrity in a rat model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 297(5):G940–G949, Epub 2010/05/27

    Article  PubMed  CAS  Google Scholar 

  44. Chen HL, Lai YW, Chen CS, Chu TW, Lin W, Yen CC et al (2010) Probiotic Lactobacillus casei expressing human lactoferrin elevates antibacterial activity in the gastrointestinal tract. Biometals 23(3):543–554

    Article  PubMed  CAS  Google Scholar 

  45. Galdeano CM, de LeBlanc AD, Vinderola G, Bonet AEB, Perdigon G (2007) Proposed model: mechanisms of immunomodulation induced by probiotic bacteria. Clin Vaccine Immunol 14(5):485–492

    Article  PubMed  CAS  Google Scholar 

  46. Ohland CL, Macnaughton WK (2010) Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 298(6):G807–G819, Epub 2010/03/20

    Article  PubMed  CAS  Google Scholar 

  47. Afrazi A, Sodhi CP, Richardson W, Neal M, Good M, Siggers R et al (2011) New insights into the pathogenesis and treatment of necrotizing enterocolitis: toll-like receptors and beyond. Pediatr Res 69(3):183–188, Epub 2010/12/08

    Article  PubMed  CAS  Google Scholar 

  48. Hammerman C, Kaplan M (2006) Probiotics and neonatal intestinal infection. Curr Opin Infect Dis 19(3):277–282, Epub 2006/04/29

    Article  PubMed  Google Scholar 

  49. Hoyos AB (1999) Reduced incidence of necrotizing enterocolitis associated with enteral administration of Lactobacillus acidophilus and Bifidobacterium infantis to neonates in an intensive care unit. Int J Infect Dis 3(4):197–202, Epub 1999/11/27

    Article  PubMed  CAS  Google Scholar 

  50. Szajewska H, Guandalini S, Morelli L, Van Goudoever JB, Walker A (2010) Effect of Bifidobacterium animalis subsp lactis supplementation in preterm infants: a systematic review of randomized controlled trials. J Pediatr Gastroenterol Nutr 51(2):203–209, Epub 2010/06/15

    Article  PubMed  CAS  Google Scholar 

  51. Land MH, Rouster-Stevens K, Woods CR, Cannon ML, Cnota J, Shetty AK (2005) Lactobacillus sepsis associated with probiotic therapy. Pediatrics 115(1):178–181, Epub 2005/01/05

    PubMed  Google Scholar 

  52. Arciero JC, Ermentrout GB, Upperman JS, Vodovotz Y, Rubin JE (2010) Using a mathematical model to analyze the role of probiotics and inflammation in necrotizing enterocolitis. PLoS One 5(4):e10066, Epub 2010/04/27

    Article  PubMed  CAS  Google Scholar 

  53. Upperman JS, Camerini V, Lugo B, Yotov I, Sullivan J, Rubin J et al (2007) Mathematical modeling in necrotizing enterocolitis a new look at an ongoing problem. J Pediatr Surg 42(3):445–453

    Article  PubMed  Google Scholar 

  54. Kim M, Christley S, Alverdy JC, Liu D, An G (2012) Immature oxidative stress management as a unifying principle in the pathogenesis of necrotizing enterocolitis: insights from an agent-based model. Surg Infect 13(1):18–32, Epub 2012/01/06

    Article  Google Scholar 

  55. Arciero J, Bard Ermentrout G, Siggers R, Afrazi A, Hackam D, Vodovotz Y et al (2013) Modeling the interactions of bacteria and toll-like receptor-mediated inflammation in necrotizing enterocolitis. J Theor Biol 321:83–99, Epub 2012/12/15

    Article  PubMed  CAS  Google Scholar 

  56. Barber J, Tronzo M, Harold Horvat C, Clermont G, Upperman J, Vodovotz Y et al (2013) A three-dimensional mathematical and computational model of necrotizing enterocolitis. J Theor Biol 322:17–32, Epub 2012/12/12

    Article  PubMed  Google Scholar 

  57. Reynolds A, Rubin J, Clermont G, Day J, Vodovotz Y, Ermentrout GB (2006) A reduced mathematical model of the acute inflammatory response: I. Derivation of model and analysis of anti-inflammation. J Theor Biol 242(1):220–236

    Article  PubMed  CAS  Google Scholar 

  58. Day J, Rubin J, Vodovotz Y, Chow CC, Reynolds A, Clermont G (2006) A reduced mathematical model of the acute inflammatory response II. Capturing scenarios of repeated endotoxin administration. J Theor Biol 242(1):237–256

    Article  PubMed  CAS  Google Scholar 

  59. Chow CC, Clermont G, Kumar R, Lagoa C, Tawadrous Z, Gallo D et al (2005) The acute inflammatory response in diverse shock states. Shock 24(1):74–84

    Article  PubMed  CAS  Google Scholar 

  60. Kumar R, Clermont G, Vodovotz Y, Chow CC (2004) The dynamics of acute inflammation. J Theor Biol 230(2):145–155

    Article  PubMed  CAS  Google Scholar 

  61. Taubes CH (2001) Modeling differential equations in biology. Prentice Hall, New Jersey, 500 p

    Google Scholar 

  62. Johansson ME, Gustafsson JK, Sjoberg KE, Petersson J, Holm L, Sjovall H et al (2010) Bacteria penetrate the inner mucus layer before inflammation in the dextran sulfate colitis model. PLoS One 5(8):e12238, Epub 2010/09/02

    Article  PubMed  CAS  Google Scholar 

  63. Maxson RT, Dunlap JP, Tryka F, Jackson RJ, Smith SD (1994) The role of the mucus gel layer in intestinal bacterial translocation. J Surg Res 57(6):682–686

    Article  PubMed  CAS  Google Scholar 

  64. Kraehenbuhl JP, Corbett M (2004) Immunology. Keeping the gut microflora at bay. Science 303(5664):1624–1625, Epub 2004/03/16

    Article  PubMed  CAS  Google Scholar 

  65. Meyer-Hoffert U, Hornef MW, Henriques-Normark B, Axelsson LG, Midtvedt T, Putsep K et al (2008) Secreted enteric antimicrobial activity localises to the mucus surface layer. Gut 57(6):764–771, Epub 2008/02/06

    Article  PubMed  CAS  Google Scholar 

  66. Samel S, Keese M, Lanig S, Kleczka M, Gretz N, Hafner M et al (2003) Supplementation and inhibition of nitric oxide synthesis influences bacterial transit time during bacterial translocation in rats. Shock 19(4):378–382, Epub 2003/04/12

    Article  PubMed  CAS  Google Scholar 

  67. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118(2):229–241

    Article  PubMed  CAS  Google Scholar 

  68. Hooper LV, Macpherson AJ (2010) Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 10(3):159–169, Epub 2010/02/26

    Article  PubMed  CAS  Google Scholar 

  69. Zareie M, Johnson-Henry K, Jury J, Yang PC, Ngan BY, McKay DM et al (2006) Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress. Gut 55(11):1553–1560, Epub 2006/04/28

    Article  PubMed  CAS  Google Scholar 

  70. Gouyer V, Gottrand F, Desseyn JL (2011) The extraordinarily complex but highly structured organization of intestinal mucus-gel unveiled in multicolor images. PLoS One 6(4):e18761, Epub 2011/05/03

    Article  PubMed  CAS  Google Scholar 

  71. Smith PD, Ochsenbauer-Jambor C, Smythies LE (2005) Intestinal macrophages: unique effector cells of the innate immune system. Immunol Rev 206:149–159, Epub 2005/07/29

    Article  PubMed  CAS  Google Scholar 

  72. Smythies LE, Sellers M, Clements RH, Mosteller-Barnum M, Meng G, Benjamin WH et al (2005) Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J Clin Invest 115(1):66–75, Epub 2005/01/05

    PubMed  CAS  Google Scholar 

  73. Lotz M, Gutle D, Walther S, Menard S, Bogdan C, Hornef MW (2006) Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. J Exp Med 203(4):973–984, Epub 2006/04/12

    Article  PubMed  CAS  Google Scholar 

  74. Clark JA, Coopersmith CM (2007) Intestinal crosstalk: a new paradigm for understanding the gut as the “motor” of critical illness. Shock 28(4):384–393, Epub 2007/06/20

    Article  PubMed  CAS  Google Scholar 

  75. Neal MD, Leaphart C, Levy R, Prince J, Billiar TR, Watkins S et al (2006) Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J Immunol 176(5):3070–3079

    PubMed  CAS  Google Scholar 

  76. Rachmilewitz D, Katakura K, Karmeli F, Hayashi T, Reinus C, Rudensky B et al (2004) Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 126(2):520–528

    Article  PubMed  CAS  Google Scholar 

  77. Fernandez-Carrocera LA, Solis-Herrera A, Cabanillas-Ayon M, Gallardo-Sarmiento RB, Garcia-Perez CS, Montano-Rodriguez R et al (2013) Double-blind, randomised clinical assay to evaluate the efficacy of probiotics in preterm newborns weighing less than 1500 g in the prevention of necrotising enterocolitis. Arch Dis Child Fetal Neonatal Ed 98(1):F5–F9, Epub 2012/05/05

    Article  PubMed  Google Scholar 

  78. Wang Q, Dong J, Zhu Y (2012) Probiotic supplement reduces risk of necrotizing enterocolitis and mortality in preterm very low-birth-weight infants: an updated meta-analysis of 20 randomized, controlled trials. J Pediatr Surg 47(1):241–248, Epub 2012/01/17

    Article  PubMed  Google Scholar 

  79. Millar M, Wilks M, Costeloe K (2003) Probiotics for preterm infants? Arch Dis Child Fetal Neonatal Ed 88:F354–F358

    Article  PubMed  CAS  Google Scholar 

  80. Nakayama M, Yajima M, Hatano S, Yajima T, Kuwata T (2003) Intestinal adherent bacteria and bacterial translocation in breast-fed and formula-fed rats in relation to susceptibility to infection. Pediatr Res 54(3):364–371, Epub 2003/06/06

    Article  PubMed  Google Scholar 

  81. Caplan M (2012) Are probiotics ready for prime time? JPEN J Parenter Enteral Nutr 36(1 Suppl):6S, Epub 2012/01/18

    Article  PubMed  Google Scholar 

  82. Hillen T, Painter KJ (2009) A user’s guide to PDE models for chemotaxis. J Math Biol 58(1–2):183–217, Epub 2008/07/16

    Article  PubMed  CAS  Google Scholar 

  83. Murray JD (2003) Mathematical biology II. Spatial models and biomedical applications. Springer, New York, 811 p

    Google Scholar 

  84. Murray JD (2002) Mathematical biology I: An introduction. Springer, New York, 551 p

    Google Scholar 

  85. Qureshi F, Leaphart C, Cetin S, Li J, Grishin A, Watkins S, Ford H, Hackam D (2005) Increased expression and function of integrins in enterocytes by endotoxin impairs epithelial restitution. J Gastroenterol 128(4):1012–1022

    Article  CAS  Google Scholar 

  86. Ewing R, Iliev O, Lazarov R (2001) A modified finite volume approximation of second-order elliptic equations with discontinuous coefficients. SIAM J Sci Comput 23(4):1334–1350

    Article  Google Scholar 

  87. Garofalo RP, Goldman AS (1999) Expression of functional immunomodulatory and anti-inflammatory factors in human milk. Clin Perinatol 26(2):361–377, Epub 1999/07/08

    PubMed  CAS  Google Scholar 

  88. Goldman AS (1993) The immune system of human milk: antimicrobial, antiinflammatory and immunomodulating properties. Pediatr Infect Dis J 12(8):664–671, Epub 1993/08/01

    Article  PubMed  CAS  Google Scholar 

  89. Penner K, Ermentrout B, Swigon D (2012) Pattern formation in a model of acute inflammation. SIAM J Appl Dyn Syst 11(2):629–660

    Article  Google Scholar 

  90. Bauer AL, Beauchemin CA, Perelson AS (2009) Agent-based modeling of host-pathogen systems: the successes and challenges. Inform Sci 179(10):1379–1389, Epub 2010/02/18

    Article  Google Scholar 

  91. Hunt CA, Ropella GE, Lam TN, Tang J, Kim SH, Engelberg JA et al (2009) At the biological modeling and simulation frontier. Pharm Res 26(11):2369–2400, Epub 2009/09/17

    Article  PubMed  CAS  Google Scholar 

  92. An G, Mi Q, Dutta-Moscato J, Vodovotz Y (2009) Agent-based models in translational systems biology. Wiley Interdiscip Rev Syst Biol Med 1(2):159–171, Epub 2010/09/14

    Article  PubMed  CAS  Google Scholar 

  93. An G (2006) Concepts for developing a collaborative in silico model of the acute inflammatory response using agent-based modeling. J Crit Care 21(1):105–110, discussion 10–11

    Article  PubMed  Google Scholar 

  94. An G (2008) Introduction of an agent-based multi-scale modular architecture for dynamic knowledge representation of acute inflammation. Theor Biol Med Model 5(1):11

    Article  PubMed  CAS  Google Scholar 

  95. Bailey AM, Thorne BC, Peirce SM (2007) Multi-cell agent-based simulation of the microvasculature to study the dynamics of circulating inflammatory cell trafficking. Ann Biomed Eng 35(6):916–936

    Article  PubMed  Google Scholar 

  96. Li NY, Verdolini K, Clermont G, Mi Q, Rubinstein EN, Hebda PA et al (2008) A patient-specific in silico model of inflammation and healing tested in acute vocal fold injury. PLoS One 3(7):e2789

    Article  PubMed  CAS  Google Scholar 

  97. Vodovotz Y, An G (2010) Systems biology and inflammation. Methods Mol Biol 662:181–201

    Article  PubMed  CAS  Google Scholar 

  98. Vodovotz Y, Clermont G, Chow C, An G (2004) Mathematical models of the acute inflammatory response. Curr Opin Crit Care 10(5):383–390

    Article  PubMed  Google Scholar 

  99. Dong X, Foteinou PT, Calvano SE, Lowry SF, Androulakis IP (2010) Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes. PLoS One 5(2):e9249

    Article  PubMed  CAS  Google Scholar 

  100. Kim SH, Debnath J, Mostov K, Park S, Hunt CA (2009) A computational approach to resolve cell level contributions to early glandular epithelial cancer progression. BMC Syst Biol 3:122

    Article  PubMed  Google Scholar 

  101. Mansury Y, Diggory M, Deisboeck TS (2006) Evolutionary game theory in an agent-based brain tumor model: exploring the ‘Genotype-Phenotype’ link. J Theor Biol 238(1):146–156

    Article  PubMed  Google Scholar 

  102. Zhang L, Strouthos CG, Wang Z, Deisboeck TS (2009) Simulating brain tumor heterogeneity with a multiscale agent-based model: linking molecular signatures, phenotypes and expansion rate. Math Comput Model 49(1–2):307–319

    Article  PubMed  Google Scholar 

  103. Zhang L, Wang Z, Sagotsky JA, Deisboeck TS (2009) Multiscale agent-based cancer modeling. J Math Biol 58(4–5):545–559

    Article  PubMed  Google Scholar 

  104. Beauchemin C, Samuel J, Tuszynski J (2005) A simple cellular automaton model for influenza A viral infections. J Theor Biol 232(2):223–234

    Article  PubMed  CAS  Google Scholar 

  105. Chao DL, Davenport MP, Forrest S, Perelson AS (2003) Stochastic stage-structured modeling of the adaptive immune system. Proc IEEE Comput Soc Bioinform Conf 2:124–131

    PubMed  Google Scholar 

  106. Funk GA, Barbour AD, Hengartner H, Kalinke U (1998) Mathematical model of a virus-neutralizing immunoglobulin response. J Theor Biol 195(1):41–52

    Article  PubMed  CAS  Google Scholar 

  107. Funk GA, Jansen VA, Bonhoeffer S, Killingback T (2005) Spatial models of virus-immune dynamics. J Theor Biol 233(2):221–236

    Article  PubMed  Google Scholar 

  108. Peleg M, Penchina CM (2000) Modeling microbial survival during exposure to a lethal agent with varying intensity. Crit Rev Food Sci Nutr 40(2):159–172

    Article  PubMed  CAS  Google Scholar 

  109. Walker DC, Hill G, Wood SM, Smallwood RH, Southgate J (2004) Agent-based computational modeling of wounded epithelial cell monolayers. IEEE Trans Nanobioscience 3(3):153–163

    Article  PubMed  CAS  Google Scholar 

  110. Walker D, Wood S, Southgate J, Holcombe M, Smallwood R (2006) An integrated agent-mathematical model of the effect of intercellular signalling via the epidermal growth factor receptor on cell proliferation. J Theor Biol 242(3):774–789

    Article  PubMed  CAS  Google Scholar 

  111. An GC, Faeder JR (2009) Detailed qualitative dynamic knowledge representation using a BioNetGen model of TLR-4 signaling and preconditioning. Math Biosci 217(1):53–63, Epub 2008/10/07

    Article  PubMed  CAS  Google Scholar 

  112. An G (2009) A model of TLR4 signaling and tolerance using a qualitative, particle-event-based method: introduction of spatially configured stochastic reaction chambers (SCSRC). Math Biosci 217(1):43–52, Epub 2008/10/28

    Article  PubMed  CAS  Google Scholar 

  113. Trede NS, Tsytsykova AV, Chatila T, Goldfeld AE, Geha RS (1995) Transcriptional activation of the human TNF-alpha promoter by superantigen in human monocytic cells: role of NF-kappa B. J Immunol 155(2):902–908, Epub 1995/07/15

    PubMed  CAS  Google Scholar 

  114. Kone BC, Schwobel J, Turner P, Mohaupt MG, Cangro CB (1995) Role of NF-kappa B in the regulation of inducible nitric oxide synthase in an MTAL cell line. Am J Physiol 269(5 Pt 2):F718–F729, Epub 1995/11/01

    PubMed  CAS  Google Scholar 

  115. Nadler EP, Dickinson E, Knisely A, Zhang XR, Boyle P, Beer-Stolz D et al (2000) Expression of inducible nitric oxide synthase and interleukin-12 in experimental necrotizing enterocolitis. J Surg Res 92(1):71–77, Epub 2000/06/23

    Article  PubMed  CAS  Google Scholar 

  116. Chan FK, Shisler J, Bixby JG, Felices M, Zheng L, Appel M et al (2003) A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem 278(51):51613–51621, Epub 2003/10/09

    Article  PubMed  CAS  Google Scholar 

  117. Einerhand AW, Renes IB, Makkink MK, van der Sluis M, Buller HA, Dekker J (2002) Role of mucins in inflammatory bowel disease: important lessons from experimental models. Eur J Gastroenterol Hepatol 14(7):757–765, Epub 2002/08/10

    Article  PubMed  CAS  Google Scholar 

  118. Ballance WA, Dahms BB, Shenker N, Kliegman RM (1990) Pathology of neonatal necrotizing enterocolitis: a ten-year experience. J Pediatr 117(1 Pt 2):S6–S13, Epub 1990/07/01

    PubMed  CAS  Google Scholar 

  119. Altmann GG, Enesco M (1967) Cell number as a measure of distribution and renewal of epithelial cells in the small intestine of growing and adult rats. Am J Anat 121(2):319–336, Epub 1967/09/01

    Article  PubMed  CAS  Google Scholar 

  120. Esmon CT (2004) Crosstalk between inflammation and thrombosis. Maturitas 47(4):305–314, Epub 2004/04/06

    Article  PubMed  CAS  Google Scholar 

  121. Caplan MS, Simon D, Jilling T (2005) The role of PAF, TLR, and the inflammatory response in neonatal necrotizing enterocolitis. Semin Pediatr Surg 14(3):145–151, Epub 2005/08/09

    Article  PubMed  Google Scholar 

  122. Morowitz MJ, Poroyko V, Caplan M, Alverdy J, Liu DC (2010) Redefining the role of intestinal microbes in the pathogenesis of necrotizing enterocolitis. Pediatrics 125(4):777–785, Epub 2010/03/24

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Arciero Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arciero, J., Barber, J., Kim, M. (2013). Modeling Host–Pathogen Interactions in Necrotizing Enterocolitis. In: Vodovotz, Y., An, G. (eds) Complex Systems and Computational Biology Approaches to Acute Inflammation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8008-2_13

Download citation

Publish with us

Policies and ethics