Skip to main content

Abstract

Antioxidants are a class of chemical substances naturally found in our food which can prevent or reduce the oxidative stress of the physiological system. The body is constantly producing free radicals due to regular use of oxygen. These free radicals are responsible for the cell damage in the body and contribute to various kinds of health problems, such as heart disease, diabetes, macular degeneration, and cancer. Antioxidants being fantastic free radical scavengers help in preventing and repairing the cell damage caused by these radicals.

Plants and animals are the abundant source of naturally producing antioxidants. Alternately, antioxidants can also be synthesized by chemical process as well as from the different kinds of agro-related wastes using biological process. Based on their solubility, antioxidants are broadly categorized into two groups: water soluble and lipid soluble. In general, water-soluble antioxidants, such as ascorbic acid, glutathione, and uric acid, have functions in the cell cytosol and the blood plasma. Ascorbic acid is a redox catalyst which reduces and neutralizes the reactive oxygen species (ROS), glutathione has antioxidant properties as reducing agent and can be reversibly oxidized and reduced, while α-tocopherol, carotenoid, and ubiquinol are the examples of lipid-soluble antioxidants and protect the cell membranes from lipid peroxidation. Another commonly used classification is on the basis of their mechanism of action, i.e., primary or chain-breaking antioxidants and secondary or preventive antioxidants.

Antioxidants can also act as prooxidants when these are not present at the right place at the right concentration at the right time. The relative importance of the antioxidant and prooxidant activities of an antioxidant is an area of current research.

This chapter discusses the types, sources, synthesis, uses, and protective efficacy of various antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aebi H (1984) Catalase invitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Ajila CM, Brar SK, Verma M, Tyagi RD, Godbout S, Valéro JR (2011) Extraction and analysis of polyphenols: recent trends. Crit Rev Biotechnol 31(3):227–249

    Article  CAS  Google Scholar 

  • Ames B, Cathcart R, Schwiers E, Hochstein P (1981) Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A 78(11):6858–6862

    Article  CAS  Google Scholar 

  • Amit K, Priyadarsini KI (2011) Free radicals, oxidative stress and importance of antioxidants in human health. J Med Allied Sci 1(2):53–60

    Google Scholar 

  • Anttonen MJ, Karjalainen RO (2005) Environmental and genetic variation of phenolic compounds in red raspberry. J Food Compost Anal 18:759–769

    Article  CAS  Google Scholar 

  • Arnao MB, Cano A, Acosta M (2001) The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem 73:239–244

    Article  CAS  Google Scholar 

  • Beecher GR (2003) Overview of dietary flavonoids: nomenclature, occurrence and intake. J Nutr 133(10):3248S–3254S

    CAS  Google Scholar 

  • Belitz HD, Grosch W (1999) Phenolic compounds. Food chemistry. Springer, Berlin, pp 764–775

    Google Scholar 

  • Benvenuti S, Paellati F, Melegari M, Bertelli D (2004) Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. J Food Sci 69:164–169

    Google Scholar 

  • Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  Google Scholar 

  • Biswas SK, McClure D, Jimenez LA, Megson IL, Rahman I (2005) Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. Antioxid Redox Signal 7(1–2):32–41

    Article  CAS  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28:25–30

    Article  CAS  Google Scholar 

  • Chakraborty P, Kumar S, Dutta D, Gupta V (2009) Role of antioxidants in common health diseases. Res J Pharm Technol 2(2):238–244

    CAS  Google Scholar 

  • Chaovanalikit A, Wrolstad RE (2004) Anthocyanin and polyphenolic composition of fresh and processed cherries. J Food Sci 69(1):73–83

    Google Scholar 

  • Číž M, Čížová H, Denev P, Kratchanova M, Slavov A, Lojek A (2010) Different methods for control and comparison of the antioxidant properties of vegetables. Food Control 21:518–523

    Article  Google Scholar 

  • Dabbagh AJ, Mannion T, Lynch SM, Frei B (1984) The effect of iron overload on rat plasma and liver oxidant status in vivo. Biochem J 300(Pt 3):799–803

    Google Scholar 

  • Dhillon GS, Brar SK, Kaur S, Verma M (2013) Bioproduction and extraction optimization of citric acid from Aspergillus niger by rotating drum type solid-state bioreactor. Ind Crops Prod 41:78–84

    Article  CAS  Google Scholar 

  • Dimitrios B (2006) Sources of natural phenolic antioxidants. Trends Food Sci Technol 17:505–512

    Article  CAS  Google Scholar 

  • Exarchou V, Nenadis N, Tsimidou M, Gerothanassis IP, Troganis A, Boskou D (2002) Antioxidant activities and phenolic composition of extracts from Greek oregano, Greek sage and summer savory. J Agric Food Chem 50:5294–5299

    Article  CAS  Google Scholar 

  • Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18(10):872–879

    Article  CAS  Google Scholar 

  • Federici F, Fava F, Kalogerakis N, Mantzavinos D (2009) Valorisation of agro-industrial by-products, effluents and waste: concept, opportunities and the case of olive mill wastewaters. J Chem Technol Biotechnol 84:895–900. doi:10.1002/jctb.2165

    Article  CAS  Google Scholar 

  • Friedman M, Henika PR, Levin CE, Mandrell RE, Kozukue N (2006) Antimicrobial activities of tea catechins and theaflavins and tea extracts against Bacillus cereus. J Food Prot 69(2):354–361

    CAS  Google Scholar 

  • Gassara F, Ajila CM, Brar SK, Verma M, Tyagi RD, Valero JR (2012) Liquid state fermentation of apple pomace sludge for the production of ligninolytic enzymes and liberation of polyphenolic compounds. Process Biochem 47(6):999–1004

    Article  CAS  Google Scholar 

  • Gorinstein S, Martin-Belloso O, Park Y, Haruenkit R, Lojek A, Ciž M, Capi A, Libman I, Trakhtenberg S (2001) Comparison of some biochemical characteristics of different citrus fruits. Food Chem 74:309–315

    Article  CAS  Google Scholar 

  • Gupta VK, Sharma SK (2006) Plant as natural antioxidant. Nat Product Radiance 5(4):326–334

    Google Scholar 

  • Hägg M, Ylikoski S, Kumpulainen J (1995) Vitamin C content in fruits and berries consumed in Finland. J Food Compost Anal 8:12–20

    Article  Google Scholar 

  • Halvorsen BL, Holte K, Myhrstad MCW, Barikmo I, Hvattum E, Remberg SF, Wold A, Haffner K, Baugerod H, Andersen LF, Moskaug J, Jacobs DR, Blomhoff R (2002) A systematic screening of total antioxidants in dietary plants. J Nutr 132:461–471

    CAS  Google Scholar 

  • Hamid AA, Aiyelaagbe OO, Usman LA, Ameen OM, Lawal A (2010) Antioxidants: its medicinal and pharmacological applications. Afr J Pure Appl Chem 4(8):142–151

    CAS  Google Scholar 

  • Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74(1):214–226

    Article  CAS  Google Scholar 

  • Holasova M, Fiedlerova V, Smrcinova H, Orsak M, Lachman J, Vavreinova S (2002) Buckwheat the source of antioxidant activity in functional foods. Food Res Int 35:207–211

    Article  CAS  Google Scholar 

  • http://www.selectscience.net/product-news/rapid-and-accurate-antioxidant-measurement-in-foods. Accessed 19 Oct 2012

  • Jolić SM, Redovniković IR, Marković K, Šipušić ĐI, Delonga K (2011) Changes of phenolic compounds and antioxidant capacity in cocoa beans processing. Int J Food Sci Technol 46(9):1793–1800

    Article  Google Scholar 

  • Kähkönen MP, Hopia AI, Vuorela HJ, Rauha J, Pihlaja K, Kujala TS, Heinonen M (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962

    Article  Google Scholar 

  • Kähkönen MP, Hopia AI, Heinonen M (2001) Berry phenolics and their antioxidant activity. J Agric Food Chem 49(8):4076–4082

    Article  Google Scholar 

  • Kakkar PS, Das BB, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21:130–132

    CAS  Google Scholar 

  • Kim EH, Kim SH, Chung JI, Chi HY, Kim JA, Chung IM (2006) Analysis of phenolic compounds and isoflavones in soybean seeds (Glycine max (L.) merill) and sprouts grown under different conditions. Eur Food Res Technol 222:201–208

    Article  CAS  Google Scholar 

  • Knoblich M, Anderson B, Latshaw D (2005) Analyses of tomato peel and seed byproducts, and their use as a source of carotenoids. J Sci Food Agric 85:1166–1170

    Article  CAS  Google Scholar 

  • Kopsell DA, Kopsell DE, Lefsrud MG, Curran-Celentano J, Dukach LE (2004) Variation in lutein, β-carotene and chlorophyll concentrations among Brassica oleracea cultigens and seasons. HortScience 39(2):361–364

    CAS  Google Scholar 

  • Kurilich AC, Tsaui GJ, Brown A, Howard L, Klein BP, Jeffrey EH, Kushad M, Wallig MA, Juvik J (1999) Carotene, tocopherol, and ascorbate contents in subspecies of Brassica oleracea. J Agric Food Chem 47:1576–1681

    Article  CAS  Google Scholar 

  • Lachman J, Proněk D, Hejtmánková A, Dudjak J, Pivec V, Faitová K (2003) Total polyphenol and main flavonoid antioxidants in different onion (Allium cepa L.) varieties. Hortic Sci (Prague) 30(4):142–147

    Google Scholar 

  • Laokuldilok T, Shoemaker CF, Jongkaewwattana S, Tulyathan V (2011) Antioxidants and antioxidant activity of several pigmented rice brans. J Agric Food Chem 59(1):193–199

    Article  CAS  Google Scholar 

  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  CAS  Google Scholar 

  • Lomnitski L, Bergman M, Nyska A, Ben-Shaul V, Grossman S (2003) Composition, efficacy, and safety of spinach extracts. Nutr Cancer 46(2):222–231

    Article  CAS  Google Scholar 

  • Lu Y, Foo LY (1997) Identification and quantification of major polyphenols in apple pomace. Food Chem 59(2):187–194

    Article  CAS  Google Scholar 

  • Lu Y, Foo LY (2000) Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chem 68:81–85

    Article  CAS  Google Scholar 

  • Määttä-Riihinen KR, Kamal-Eldin A, Mattila PH, Gonzalez-Paramas AM, Törrönen AR (2004) Distribution and contents of phenolic compounds in eighteen Scandinavian berry species. J Agric Food Chem 52:4477–4486

    Article  Google Scholar 

  • Mannach C, Scalbert A, Morand C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    Google Scholar 

  • Materska M, Perucka I (2005) Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L.). J Agric Food Chem 53:1750–1756

    Article  CAS  Google Scholar 

  • Moein S, Moein MR (2012) New usage of a fluorometric method to assay antioxidant activity in plant extracts. Iran J Pharm Sci 8(1):71–78

    CAS  Google Scholar 

  • Negi PS, Chauhan AS, Sadia GA, Rohinishree YS, Ramteke RS (2005) Antioxidant and antibacterial activities of various Seabuckthorn (Hippophae rhamnoides L.) seed extracts. Food Chem 92:119–124

    Article  CAS  Google Scholar 

  • Nie L, Wise ML, Peterson DM, Meydani M (2006) Avenanthramide, a polyphenol from oats, inhibits vascular smooth muscle cell proliferation and enhances nitric oxide production. Atherosclerosis 186:260–266

    Article  CAS  Google Scholar 

  • Nourooz-Zadeh J, Tajaddini-Sarmadi J, Wolff SP (1994) Measurement of plasma hydroperoxide concentrations by the ferrous oxidation-xylenol orange assay in conjunction with triphenylphosphine. Anal Biochem 220(2):403–409

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohisi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  • Olsson ME, Gustavsson K, Andersson S, Nilsson A, Duan RD (2004) Inhibition of cancer cell proliferation in vitro by fruit and berry extracts and correlation with antioxidant levels. J Agric Food Chem 52:7264–7271

    Article  CAS  Google Scholar 

  • Papas AM (1998) Antioxidant status, diet, nutrition, and health. CRC Series, Boca Raton, FL

    Google Scholar 

  • Pastrana-Bonilla E, Akoh CC, Sellappan S, Krewer G (2003) Phenolic content and antioxidant capacity of muscadine grapes. J Agric Food Chem 51:5497–5503

    Article  CAS  Google Scholar 

  • Pathak SB, Niranjan K, Padh H, Rajani M (2004) TLC densitometric method for the quantification of eugenol and gallic acid in clove. Chromatographia 60(3–4):241–244

    CAS  Google Scholar 

  • Peterson DM, Emmons CL, Hibbs AH (2001) Phenolic antioxidants and antioxidant activity in pearling fractions of oat groats. J Cereal Sci 33:97–103

    Article  CAS  Google Scholar 

  • Pokorny J, Yanishlieva N, Gordon MH (2001) Antioxidants in food: practical applications. CRC, Boca Raton, FL

    Book  Google Scholar 

  • Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53(10):4290–4302

    Article  CAS  Google Scholar 

  • Raygani V, Rahimi Z, Zahraie M, Noroozian M, Pourmotabbed A (2007) Enzymatic and non-enzymatic antioxidant defense in Alzheimer’s disease. Acta Med Iran 45(4):271–276

    Google Scholar 

  • Reyes-Carmona J, Youseg GG, Martinez-Peniche RA, Lila MA (2005) Antioxidant capacity of fruit extracts of blackberry (Rubus sp.) produced in different climatic regions. J Food Sci 70:497–503

    Article  Google Scholar 

  • Said S, Allam M, Moustafa H, Mohamedz A (2002) A thermal stability of some commercial natural and synthetic antioxidants and their mixtures. J Food Lipids 9:277–293

    Article  Google Scholar 

  • Senorans FJ, Ibanez E, Cavero S, Tabera J, Reglero G (2000) Liquid chromatographic–mass spectrometric analysis of supercritical-fluid extracts of rosemary plants. J Chromatogr A 870: 491–499

    Article  CAS  Google Scholar 

  • Sikora E, Cieslik E, Topolska K (2008) The sources of natural antioxidants. Acta Sci Pol Technol Aliment 7(1):5–17

    CAS  Google Scholar 

  • Siriwoharn T, Wrolstad RE, Finn CE, Pereira CB (2004) Influence of cultivar, maturity, and sampling on blackberry (Rubus L. Hybrids) anthocyanins, polyphenolics, and antioxidant properties. J Agric Food Chem 52:8021–8030

    Article  CAS  Google Scholar 

  • Spatafora C, Tringali C (2012) Valorization of vegetable waste: identification of bioactive compounds and their chemo-enzymatic optimization. Open Agric J 6:9–16

    Article  CAS  Google Scholar 

  • Srinivasan K (2007) Black pepper and its pungent principle-piperine: a review of diverse physiological effects. Food Sci Nutr 47(8):735–774

    CAS  Google Scholar 

  • Stewart AJ, Bozonnet S, Mullen W, Jenkins GI, Lean ME, Crozier A (2000) Occurrence of flavonols in tomatoes and tomato-based products. J Agric Food Chem 48:2663–2669

    Article  CAS  Google Scholar 

  • Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235(4792):1043–1046

    Article  CAS  Google Scholar 

  • Taruscio TG, Barney DL, Exon J (2004) Content and profile of flavanoid and phenolic acid compounds in conjunction with the antioxidant capacity for a variety of northwest Vaccinium berries. J Agric Food Chem 52:3169–3176

    Article  CAS  Google Scholar 

  • Teresa MM, Magdalena W, Andrzej KA (2011) Systematic review of the effect of vitamin C infusion and vitamin E-coated membrane on hemodialysis-induced oxidative stress. Intech doi:10.5772/22542

    Google Scholar 

  • Touriño S, Lizárraga D, Carreras A, Matito C, Ugartondo V, Mitjans M, Centelles JJ, Vinardell MP, Juliá L, Cascante M, Torres JL (2008) Antioxidant/prooxidant effects of bioactive polyphenolics. Electron J Environ Agric Food Chem 7(8):3348–3352

    Google Scholar 

  • Vallejo F, Tomas-Barberan FA, Garcia-Viguera C (2003) Phenolic compound contents in edible parts of broccoli inflorescences after domestic cooking. J Sci Food Agric 83:1511–1616

    Article  CAS  Google Scholar 

  • Vijayalakshmi G, Adinarayana M, Rao PJ (2012) Kinetics and mechanism of regeneration of β-carotene from tert-butoxyl radical induced β-carotene radical cation by α-tocopherol: a synergistic interaction. J Chem Pharm Res 4(7):3574–3582

    CAS  Google Scholar 

  • Walters MT, Heasman AP, Hughes PS (1997) Comparison of (+)-catechina and ferulic acid as natural antioxidants and their impact on beer flavor stability. Part 1: Forced-aging. J Am Soc Brew Chem 55(2):83–89

    CAS  Google Scholar 

  • Wanasundara PKJPD, Shahidi F (2005) Bailey’s industrial oil and fat products. doi: 10.1002/047167849X

  • Wang CC, Chen LG, Lee LT, Yang LL (2003) Effects of 6-gingerol, an antioxidant from ginger, on inducing apoptosis in human leukemic HL-60 cells. In Vivo 17(6):641–645

    CAS  Google Scholar 

  • Yanishlieva-Maslarova NN, Heinonen M (2001) Sources of natural antioxidants. In: Gordon M, Pokorny J, Yanishlieva N (eds) Antioxidants in food. CRC, Boca Raton, FL

    Google Scholar 

  • Zadernowski R, Naczk M, Nesterowicz J (2005) Phenolic acid profiles in some small berries. J Agric Food Chem 53:2118–2124

    Article  CAS  Google Scholar 

  • Zheng W, Wang SY (2001) Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem 49:5165–5170

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are thankful to the Director of DIPAS, Delhi, for her constant support and encouragement. One of the authors, Ms. Mamta, is thankful to the University Grants Commission, Delhi, India, for getting the senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kshipra Misra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mamta, Misra, K., Dhillon, G.S., Brar, S.K., Verma, M. (2014). Antioxidants. In: Brar, S., Dhillon, G., Soccol, C. (eds) Biotransformation of Waste Biomass into High Value Biochemicals. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8005-1_6

Download citation

Publish with us

Policies and ethics