Skip to main content

Microbial Pigments

  • Chapter
  • First Online:

Abstract

Color is a visual way of communication and rather very important one in foods, drugs, and cosmetics for creating or maintaining their acceptability or appeal. However, not all products are colored, or evenly so, and color additives are to be used in these products. Synthetic colors are being substituted by natural color additives, which have a market estimated in US$ 600 million and steadily growing at around 2 % annually. Natural colors are usually easier to metabolize than their synthetic counterparts and in several cases even have beneficial metabolic activity, as in carotenoid pigments. As a natural source, microbial pigments are suitable for mass production, when compared with vegetal or animal extracts. At the other side, these color additives are inherently less stable than synthetic ones, a problem that explains the limited palette of commercial microbial color additives. This chapter discusses the biological function of biopigments and presents the most important cases of commercial microbial pigments such as β-carotene, riboflavin, astaxanthin, phycocyanin, chlorophyllins, and Monascus pigments and the challenges and opportunities of its production using agro-industrial wastes. Finally, it discusses new product development, from microorganism selection to product formulation and trends in biopigment production.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe K, Hattori H, Hirano M (2007) Accumulation and antioxidant activity of secondary carotenoids in the aerial microalga Coelastrella striolata var multistriata. Food Chem 100:656–661

    Article  CAS  Google Scholar 

  • Aberoumand A (2011) A review article on edible pigments properties and sources as natural biocolorants in foodstuff and food industries. World J Dairy Food Sci 6:71–78

    Google Scholar 

  • Babitha S, Soccol CR, Pandey A (2006) Jackfruit seed – a novel substrate for the production of Monascus pigments through solid-state fermentation. Food Technol Biotechnol 44:465–471

    CAS  Google Scholar 

  • BBC Research (2010) Carotenoids global market folder. http://www.bbcresearch.com. Accessed 13 Oct 2012

  • Ben DR, Ghenim N, Trabelsi L, Yahia A, Challouf R, Ghozzi K, Ammar J, Omrane H, Ben OH (2010) Modeling growth and photosynthetic response in Arthrospira platensis as function of light intensity and glucose concentration using factorial design. J Appl Phycol 22:745–752

    Article  Google Scholar 

  • Boussiba S, Fan L, Vonshak A (1992) Enhancement and determination of astaxanthin accumulation in green alga Haematococcus pluvialis. Methods Enzymol 213:386–391

    Article  CAS  Google Scholar 

  • Buzzini P, Martini A (1999) Production of carotenoids by strains of Rhodotorula glutinis cultured in raw materials of agro-industrial origin. Bioresour Technol 71:41–44

    Article  Google Scholar 

  • Carvalho JC, Oishi BO, Pandey A, Soccol CR (2005) Biopigments from Monascus: strains selection, citrinin production and color stability. Braz Arch Biol Technol 48:885–894

    Article  Google Scholar 

  • Carvalho JC, Pandey A, Oishi BO, Brand D, Rodriguez-Leon JA, Soccol CR (2006) Relation between growth, respirometric analysis and biopigments production from Monascus by solid-state fermentation. Biochem Eng J 29:262–269

    Article  Google Scholar 

  • Carvalho JC, Oishi BO, Woiciechowski AL, Pandey A, Soccol CR (2007) Effect of substrates on the production of Monascus biopigments by solid-substrate fermentation and pigment extraction using different solvents. Ind J Biotechnol 6:194–199

    CAS  Google Scholar 

  • Chaiklahan R, Chirasuwan N, Bunnag B (2012) Stability of phycocyanin extracted from Spirulina sp: influence of temperature, pH and preservatives. Process Biochem 47:659–664

    Article  CAS  Google Scholar 

  • Cheirsilp B, Torpee S (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol 110:510–516

    Article  CAS  Google Scholar 

  • Chen F, Zhang Y, Guo S (1996) Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnol Lett 18:603–608

    Article  CAS  Google Scholar 

  • Chen F, Zhang Y (1997) High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme Microb Technol 20:221–224

    Article  CAS  Google Scholar 

  • Das A, Yoon SH, Lee SH, Kim JY, Oh DK, Kim SW (2007) An update on microbial carotenoid production: application of recent metabolic engineering tools. Appl Microbiol Biotechnol 77:505–512

    Article  CAS  Google Scholar 

  • Del Campo JA, Moreno J, Rodrıguez H, Vargas MA, Rivas J, Guerrero MJ (2000) Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp (Chlorophyta). J Biotechnol 76:51–59

    Article  Google Scholar 

  • Dufossé L (2006) Microbial production of food grade pigments. Food Technol Biotechnol 44:313–321

    Google Scholar 

  • Durán D, Teixeira MFS, Conti R, Esposito E (2002) Ecological-friendly pigments from fungi. Crit Rev Food Sci Nutr 42:53–66

    Article  Google Scholar 

  • Elliot AM (1934) Morphology and life history of Haematococcus pluvialis. Archiv Protistenk 82:250–272

    Google Scholar 

  • Dominguez-Espinosa RM, Webb C (2003) Submerged fermentation in wheat substrates for production of Monascus pigments. World J Microbiol Biotechnol 19:329–336

    Article  CAS  Google Scholar 

  • FDA (2012) Color additives inventories. http://www.fda.gov. Accessed 13 Oct 2012

  • FAO (2012) Yearbook of fishery statistics. http://www.fao.org/fishery/statistics/programme/publications/all/en. Accessed 15 Nov 2012

  • Garcıa-Malea MC, Brindley C, Del Río E, Acien FG, Fernandez JM, Molina E (2005) Modeling of growth and accumulation of carotenoids in Haematococcus pluvialis as a function of irradiance and nutrients supply. Biochem Eng J 26:107–114

    Article  Google Scholar 

  • Giri AV, Anandkumar N, Muthukumaran G, Pennathur G (2004) A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil. BMC Microbiol 4:11. Available at http://www.biomedcentral.com/content/pdf/1471-2180-4-11.pdf. Accessed 15 Nov 2012

  • Graverholt OS, Eriksen NT (2007) Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin. Appl Microbiol Biotechnol 77:69–75

    Article  CAS  Google Scholar 

  • Gulani C, Bhattacharya S, Das A (2012) Assessment of process parameters influencing the enhanced production of prodigiosin from Serratia marcescens and evaluation of its antimicrobial, antioxidant and dyeing potentials. Maln J Microbiol 8:116–122

    CAS  Google Scholar 

  • Harker M, Tsavalos A, Young AJ (1996) Factors responsible for astaxanthin formation in the chlorophyte Haematococcus pluvialis. Bioresour Technol 55:207–217

    Article  CAS  Google Scholar 

  • Hirschberg J et al (1999) Carotenoid-producing bacterial species and process for production of carotenoids using same. United States Patent 5,935,808

    Google Scholar 

  • Hoffmann JP (1998) Wastewater treatment with suspended and non-suspended algae. J Phycol 34:757–763

    Article  CAS  Google Scholar 

  • Hong ME, Choi SP, Park YI, Kim YK, Chang WS, Kim BW, Sim SJ (2012) Astaxanthin production by a highly photosensitive Haematococcus mutant. Process Biochem, 47:1972–1979. http://dx.doi.org/10.1016/j.procbio.2012.07.007

  • Ip PF, Wong KH, Chen F (2004) Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process Biochem 39:1761–1766

    Article  CAS  Google Scholar 

  • Ip PF, Chen F (2005) Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochem 40:733–738

    Article  CAS  Google Scholar 

  • Kang DK, An JY, Park TH, Sim SJ (2006) Astaxanthin biosynthesis from simultaneous N and P uptake by the green alga Haematococcus pluvialis in primary-treated wastewater. Biochem Eng J 31:234–238

    Article  CAS  Google Scholar 

  • Khodaiyan F, Razavi SH, Mousavi SM (2008) Optimization of canthaxanthin production by Dietzia natronolimnaea HS-1 from cheese whey using statistical experimental methods. Biochem Eng J 40:415–422

    Article  CAS  Google Scholar 

  • Kim SJ, Lee HK, Lee YK, Yim JH (2008) Mutant selection of Hahella chejuensis KCTC 2396 and statistical optimization of medium components for prodigiosin yield-up. J Microbiol 46:183–188

    Article  CAS  Google Scholar 

  • Kleinegris DMM, Janssen M, Brandenburg WA, Wijffels RH (2011) Continuous production of carotenoids from Dunaliella salina. Enzyme Microb Technol 48:253–259

    Article  CAS  Google Scholar 

  • Kobayashi M, Kakizono T, Nishio S, Nagai S (1992) Effects of light intensity, light quality and illumination cycle on astaxanthin formation in the green alga Haematococcus pluvialis. J Ferment Bioeng 74:61–63

    Article  CAS  Google Scholar 

  • Kuo FS, Chien YH, Chen CJ (2012) Effects of light sources on growth and carotenoid content of photosynthetic bacteria Rhodopseudomonas palustris. Bioresour Technol 113:315–318

    Article  CAS  Google Scholar 

  • Kwon SK, Park YK, Kim JF (2010) Genome-wide screening and identification of factors affecting the biosynthesis of prodigiosin by Hahella chejuensis, using Escherichia coli as a surrogate host. Appl Environ Microbiol 76:1661–1668

    Article  CAS  Google Scholar 

  • Lim SH, Choi JS, Park EY (2001) Microbial production of riboflavin using riboflavin overproducers, Ashbya gossypii, Bacillus subtilis, and Candida famata: an overview. Biotechnol Bioprocess Eng 6:75–88

    Article  CAS  Google Scholar 

  • Lin CF, Iizuka H (1982) Production of extracellular pigment by a mutant of Monascus kaoliang sp nov. Appl Environ Microbiol 43(3):671–676

    CAS  Google Scholar 

  • Margalith PZ (1999) Production of ketocarotenoids by microalgae. Appl Microbiol Biotechnol 51:431–438

    Article  CAS  Google Scholar 

  • Marova I, Carnecka M, Halienova A, Certik M, Dvorakova T, Haronikova A (2012) Use of several waste substrates for carotenoid-rich yeast biomass production. J Environ Manag 95:338–342

    Article  Google Scholar 

  • Meléndez-Martínez AJ, Britton G, Vicario IM, Heredia FJ (2007) Relationship between the colour and the chemical structure of carotenoid pigments. Food Chem 101:1145–1150

    Article  Google Scholar 

  • Merck (2006) The Merck index. Merck &Co, Whitehouse Station, NJ

    Google Scholar 

  • Margalith PZ (1992) Pigment microbiology. Chapman & Hall, Cambridge

    Google Scholar 

  • Mendes AS, Carvalho JE, Duarte MCT, Durán N, Bruns RE (2001) Factorial design and response surface optimization of crude violacein for Chromobacterium violaceum production. Biotechnol Lett 23:1963–1969

    Article  CAS  Google Scholar 

  • Miki W (1991) Biological functions and activities of animal carotenoids. Pure Appl Chem 63:141–146

    Article  CAS  Google Scholar 

  • Mishraa SK, Shrivastava R, Mauryaa RR, Patidara SK, Haldarb S, Mishraa S (2012) Effect of light quality on the C-phycoerythrin production in marine cyanobacteria Pseudanabaena sp isolated from Gujarat coast, India. Protein Expr Purif 81:5–10

    Article  Google Scholar 

  • Nelis HJ, De Leenheer AP (1989) Microbial production of carotenoids other than β-carotene. In: Vandamme J (ed) Biotechnology of vitamins, pigments and growth factors. Elsevier, Essex

    Google Scholar 

  • Nassau K (2003) The physics and chemistry of color: the 15 mechanisms. In: Shevell SK (ed) The science of color. Elsevier, New York, NY

    Google Scholar 

  • Orosa M, Franqueira D, Cid A, Abalde J (2001) Carotenoid accumulation in Haematococcus pluvialis in mixotrophic growth. Biotechnol Lett 23:373–378

    Article  CAS  Google Scholar 

  • Papaioannou EH, Liakopoulou-Kyriakides M (2010) Substrate contribution on carotenoids production in Blakeslea trispora cultivations. Food Bioprod Process 8:305–311

    Article  Google Scholar 

  • Perez-Fons L, Steiger S, Khaneja R, Bramley PM, Cutting SM, Sandmann G, Fraser PD (2011) Identification and the developmental formation of carotenoid pigments in the yellow/orange Bacillus spore-formers. Biochim Biophys Acta 1811:177–185

    Article  CAS  Google Scholar 

  • Puttananjaiah MKH, Dhale MA, Govindaswamy V (2011) Non-toxic effect of Monascus purpureus extract on lactic acid bacteria suggested their application in fermented foods. Food Nutri Sci 2:837–843

    Article  CAS  Google Scholar 

  • Rangel-Yagui CO, Danesi EDG, Carvalho JCM, Sato S (2004) Chlorophyll production from Spirulina platensis: cultivation with urea addition by fed-batch process. Bioresour Technol 92:133–141

    Article  CAS  Google Scholar 

  • Razavi SH, Marc I (2006) Effect of temperature and pH on the growth kinetics and carotenoid production by Sporobolomyces ruberrimus H110 using technical glycerol as carbon source. Iran Chem Chem Eng 25:59–64

    CAS  Google Scholar 

  • SAG (2012) List of media recipes. http://www.uni-goettingen.de/en/184982.html. Accessed 13 Oct 2012

    Google Scholar 

  • Sardaryan E (2006) Food supplement. United States Patent application 20060247316. http://appft.uspto.gov/netacgi/nph-Parser?p=1&u=%2Fnetahtml%2FPTO%2Fsearch-adv.html&r=1&f=G&l=50&d=PG01&s1=20060247316.PN.&OS=PN/20060247316&RS=PN/20060247316. Accessed 15 Nov 2012

  • Shen H, Kuo CC, Chou J, Delvolve A, Jackson SN, Post J, Woods AS, Hoffer BJ, Wang Y, Harvey BK (2009) Astaxanthin reduces ischemic brain injury in adult rats. FASEB J 23(6): 1958–1968

    Google Scholar 

  • Soccol CR, Sydney EB, de Carvalho JC, Dalmas Neto CJ, Coraucci Neto D, Assmann R, Thomaz-Soccol V (2012) Microalgae use in integrated processes for simultaneous carbon fixation, aqueous agroindustrial residues treatment and production of value-added biomolecules. Annals of the 5th Conference on Industrial Bioprocesses, IFIB, October 7–10, 2012, Taipei

    Google Scholar 

  • Sommer TR, Pottsa WT, Morrisy NM (1991) Utilization of microalgal astaxanthin by rainbow trout (Oncorhynchus mykiss). Aquaculture 94:79–88

    Article  CAS  Google Scholar 

  • Soni SK (2007) Microbes: a source of energy for the 21st century. New India Publishing Agency, New Delhi

    Google Scholar 

  • Tagua VG, Medina HR, Martín-Dominguez R, Eslava AP, Corrochano LM, Cerdá-Olmedo E, Idnurm A (2012) A gene for carotene cleavage required for pheromone biosynthesis and carotene regulation in the fungus Phycomyces blakesleeanus. Fungal Genet Biol 49:398–404

    Article  CAS  Google Scholar 

  • Tanaka T et al (2011) Microorganism and method for producing carotenoid using it. United States Patent 8,030,022

    Google Scholar 

  • Tchobanoglous G, Burton FL, Stensel HD (2003) Wastewater engineering: treatment, disposal and reuse/Metcalf & Eddy Inc. McGraw-Hill, New York, NY

    Google Scholar 

  • Tinoi J, Rakariyatham N, Deming RL (2005) Simplex optimization of carotenoid production by Rhodotorula glutinis using hydrolyzed mung bean waste flour as substrate. Process Biochem 40:2551–2557

    Article  CAS  Google Scholar 

  • Tooley AJ, Cai YA, Glazer AN (2001) Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo-α subunit in a heterologous host. Proc Natl Acad Sci 98:10560–10565

    Article  CAS  Google Scholar 

  • Silva MC (2004) Alterações na biossíntese de carotenoids em leveduras induzidas por agentes químicos. Thesis, University of Campinas

    Google Scholar 

  • Vaquero I, Ruiz-Domínguez C, Márquez M, Vílchez C (2012) Cu-mediated biomass productivity enhancement and lutein enrichment of the novel microalga Coccomyxa onubensis. Process Biochem 47:694–700

    Article  CAS  Google Scholar 

  • Varzakakou M, Roukas T, Kotzekidou P (2010) Effect of the ratio of (+) and (-) mating type of Blakeslea trispora on carotene production from cheese whey in submerged fermentation. World J Microbiol Biotechnol 26:2151–2156

    Article  CAS  Google Scholar 

  • Vignolini S, Rudall PJ, Rowland AR, Moyroud E, Faden RB, Baumberg JJ, Glover BJ, Steiner Y (2012) Pointillist structural color in Pollia fruit. Proc Natl Acad Sci 109:15712–15715

    Article  CAS  Google Scholar 

  • Vílchez C, Forján E, Cuaresma M, Bédmar F, Garbayo I, Veja JM (2011) Marine carotenoids: biological functions and commercial applications. Mar Drugs 9:319–333

    Article  Google Scholar 

  • Walter A, de Carvalho JC, Thomaz-Soccol V, Faria ABB, Ghiggi V, Soccol CR (2011) Study of phycocyanin production from Spirulina platensis under different light spectra. Braz Arch Biol Technol 54:675–682

    Article  CAS  Google Scholar 

  • Wang F, Jiang JG, Chen Q (2007) Progress on molecular breeding and metabolic engineering of biosynthesis pathways of C30, C35, C40, C45, C50 carotenoids. Biotechnol Adv 25:211–222

    Article  Google Scholar 

  • Williamson NR, Fineran PC, Leeper FJ, Salmond GP (2006) The biosynthesis and regulation of bacterial prodiginines. Nat Rev Microbiol 4:887–899

    Article  CAS  Google Scholar 

  • Yan SG, Zhu LP, Su HN, Zhang XY, Chen XL, Zhou BC, Zhang YZ (2011) Single-step chromatography for simultaneous purification f C-phycocyanin and allophycocyanin with high purity and recovery from Spirulina (Arthrospira) platensis. J Appl Phycol 23:1–6

    Article  CAS  Google Scholar 

  • Yang XF, Xie ML, Liu Y (2003) Metabolic uncouplers reduce excess sludge production in an activated sludge process. Process Biochem 38:1373–1377

    Article  CAS  Google Scholar 

  • Yang J, Tan H, Yang R, Sun X, Zhai H, Li K (2011) Astaxanthin production by Phaffia rhodozyma fermentation of cassava residues substrate. Agricult Eng Int 13:1–6

    Google Scholar 

  • Yarnell A (2012) Bringing blue to a plate near you. Chem Eng News 37:30–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Júlio C. De Carvalho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

De Carvalho, J.C., Cardoso, L.C., Ghiggi, V., Woiciechowski, A.L., de Souza Vandenberghe, L.P., Soccol, C.R. (2014). Microbial Pigments. In: Brar, S., Dhillon, G., Soccol, C. (eds) Biotransformation of Waste Biomass into High Value Biochemicals. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8005-1_4

Download citation

Publish with us

Policies and ethics