Skip to main content

Pretreatment Strategies to Enhance Value Addition of Agro-industrial Wastes

  • Chapter
  • First Online:
Biotransformation of Waste Biomass into High Value Biochemicals

Abstract

Due to economic, technical, and environmental reasons, the demand for liquid fuels all around the world is constantly increasing; bioethanol and other biofuels from lignocellulosic biomass might be one of the most important solutions for this proposal. Although biomass may be cheap, its processing costs may be high. Many technologies for converting biomass into biofuel have been developed, which include the physical pretreatment of biomass, acid or enzymatic saccharification of the pretreated biomass, and fermentation of the hexose and pentose released by hydrolysis and saccharification. In this chapter, the most frequently used and new physicochemical and biological pretreatment methods of lignocellulosic biomass are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achargee TC, Coronella CJ, Vasquez VR (2011) Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass. Bioresour Technol 102(7):4849–4854

    Article  Google Scholar 

  • Al-Kassir A, Gañan J, Tinaut FV (2005) Theoretical and experimental study of a direct contact thermal screw dryer for biomass residues. Appl Therm Eng 25(17–18):2816–2826

    Article  CAS  Google Scholar 

  • Autore F, Del Vecchio C, Fraternali F, Giardina P, Sannia G, Faraco V (2009) Molecular determinants of peculiar properties of a Pleurotus ostreatus laccase: analysis by site-directed mutagenesis. Enzym Microb Tech 45:507–513

    Article  CAS  Google Scholar 

  • Arabhosseini A, Huisman W, MĂŒller J (2010) Modeling of the equilibrium moisture content (EMC) of Miscanthus (Miscanthus × giganteus). Biomass Bioenergy 34(4):411–416

    Article  Google Scholar 

  • Balat M, Balat H, Cahide OZ (2008) Progress in bioethanol processing. Progr Energ Combust Sci 34:551–573

    Article  CAS  Google Scholar 

  • Bals B, Rogers C, Jin M, Balan V, Dale B (2010) Evaluation of ammonia fiber expansion (AFEX) pretreatment for enzymatic hydrolysis of switchgrass harvested in different seasons and locations. Biotechnol Biofuels. doi:10.1186/1754-6834-3-1

    Google Scholar 

  • Binod P, Satyanagalakshmi K, Sindhu R, Janu KU, Sukumaran RK, Pandey A (2012) Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renew Energy 37:109–116

    Article  CAS  Google Scholar 

  • Bapiraju KVSN, Sujatha P, Ellaiah P, Ramana T (2004) Mutation induced enhanced biosynthesis of lipase. Afr J Biotechnol 3(11):618–621

    CAS  Google Scholar 

  • Carioca JOB, Arora HL (1984) Biomassa: fundamento e aplicaçÔes tecnolĂłgicas. UFC, Fortaleza

    Google Scholar 

  • Chen WH, Ye SC, Sheen HK (2012) Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment. Appl Energ 93:237–244. doi:10.1016/j.apenergy.2011.12.014

    Article  CAS  Google Scholar 

  • Cheung SW, Anderson BC (1997) Laboratory investigation of ethanol production from municipal primary wastewater. Bioresour Technol 59:81–96

    Article  CAS  Google Scholar 

  • Coulson JM, Richardson JF (1991) Chemical engineering, vol II. Oxford, Pergamon, Londres

    Google Scholar 

  • Couto SR, Herrera JLT (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24:500–513

    Article  Google Scholar 

  • Del Bianchi VL, Moraes IO, Capalbo DMF (2001) Fermentação em estado sĂłlido. In: Schmidell W, Lima UA, Aquarone E, Borzani W (eds) Biotecnologia industrial: engenharia bioquĂ­mica. Edgard BlĂŒcher Ltda, SĂŁo Paulo, pp 247–276

    Google Scholar 

  • Duff SJB, Murray WD (1996) Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour Technnol 55:1–33

    Article  CAS  Google Scholar 

  • Dwivedi P, Vivekanand V, Pareek N, Sharma A, Singh RP (2011) Co-cultivation of mutant Penicillium oxalicum SAUE-3.510 and Pleurotus ostreatus for simultaneous biosynthesis of xylanase and laccase under solid-state. N Biotechnol 28:616–626. doi:10.1016/j.nbt.2011.05.006

    Article  CAS  Google Scholar 

  • Fan LT, Gharpuray MM, Lee YH (1987) Cellulose hydrolysis, 1st edn. Springer, New York

    Book  Google Scholar 

  • Fioretin LD, Menon BT, Barros STD, Pereira NC, Lima OC, Modenes AO (2010) Isotermas de sorção do resĂ­duo agroindustrial do bagaço de laranja. Rev Brasileira de engenharia agrĂ­cola e ambiental 14(6):653–659

    Google Scholar 

  • Foust AS et al (1960) Principles of unit operations. Wiley, New York

    Google Scholar 

  • GĂĄmez S, GonzĂĄlez JJ, RamĂ­rez JA, Garrote G, VĂĄzquez M (2006) Study of the sugarcane bagasse hydrolysis by using phosphoric acid. J Food Eng 74:78–88

    Article  Google Scholar 

  • Gauto MA, Rosa GR (2011) Processos e operaçÔes unitĂĄrias da indĂșstria QuĂ­mica. CiĂȘncia Moderna Ltda, Rio de Janeiro

    Google Scholar 

  • Giardina P, Palmieri G, Fontanella B, Rivieccio V, Sannia G (2000) Manganese peroxidase isoenzymes produced by Pleurotusostreatus grown on wood sawdust. Arch Biochem Biophys 376(1):171–179

    Article  CAS  Google Scholar 

  • Glasser WG, Wright RS (1997) Steam-assisted biomass fractionation. II. Fractionation behavior of various biomass resources. Biomass Bioenergy 14:219–235

    Article  Google Scholar 

  • Gomide R (1983) OperaçÔes unitĂĄrias: operaçÔes com sistemas sĂłlidos granulares (1). Cempro, SĂŁo Paulo

    Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  CAS  Google Scholar 

  • HernĂĄndez-Salas JM, Villa-RamĂ­rez MS, Veloz-RendĂłn JS, Rivera-HernĂĄndez KN, GonzĂĄlez-CĂ©sar RA, Plascencia-Espinosa MA, Trejo-Estrada SR (2009) Comparative hydrolysis and fermentation of sugarcane and agave bagasse. Bioresour Technol 100:1238–1245

    Article  Google Scholar 

  • Higushi T (1989) Mechanisms of lignin degradation by lignin peroxidase and laccase of white-rot fungi. In: Lewis NG, Paice MG (eds) Plant cell wall polymers, biogenesis and biodegradation, vol 399. ACS Symposium Series, Washington, pp 482–502

    Chapter  Google Scholar 

  • Izumi K, Okishio Y, Nagao N, Niwa C, Yamamoto S, Toda T (2010) Effects of particle size on anaerobic digestion of food waste. Int Biodeter Biodegr 64(7):601–608

    Article  CAS  Google Scholar 

  • Kallemullah S, Kailappan R (2004) Moisture sorption isotherm of red chillies. Biosystems Eng 88(1):95–104

    Article  Google Scholar 

  • Kartikaa IA, Yulianib S, Kailakub SI, Rigalc L (2012) Moisture sorption behaviour of jatropha seed (Jatropha curcas) as a source of vegetable oil for biodiesel production. Biomass Bioenergy 36:226–233

    Article  Google Scholar 

  • Kootstra AMJ, Beeftink HH, Scott EL, Sanders JPM (2010) Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochem Eng J 46:126–131

    Article  Google Scholar 

  • Krishnan C, Sousa LC, Jin M, Chang L, Dale BE, Balan V (2010) Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. Biotechnol Bioeng 107(3):441–450

    Article  CAS  Google Scholar 

  • Kumar D, Jain VK, Shanker G, Srivastava A (2003) Citric acid production by solid state fermentation using sugarcane bagasse. Process Biochem 38(12):1731–1738

    Article  CAS  Google Scholar 

  • Laopoolkit P, Suwannaporn P (2011) Effect of pretreatments and vacuum drying on instant dried pork process optimization. Meat Sci 88:553–558

    Article  Google Scholar 

  • Lavarack BP, Griffin GJ (2002) The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass Bioenergy 23:367–380

    Article  CAS  Google Scholar 

  • Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24

    Article  CAS  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    Article  CAS  Google Scholar 

  • Marrison CI, Larson ED (1995) Cost versus scale for advanced plantation-based biomass energy systems in the US. EPA symposium on greenhouse emissions and mitigation research, Washington

    Google Scholar 

  • Mathew GM, Sukumaran RK, Singhania RR, Pandey A (2008) Progress in research on fungal cellulases for lignocellulose degradation. J Sci Ind Res 67:898–907

    CAS  Google Scholar 

  • Mc Cabe WL, Smith JC, Harriot P (1993) Unit operations in chemical engineering, 5th edn. Book Company, New York

    Google Scholar 

  • Mesa L, GonzĂĄlez E, Cara C, GonzĂĄlez M, Castro E, Mussatto SI (2011) The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chem Eng J 168:1157–1162

    Article  CAS  Google Scholar 

  • Montross M, Crofcheck C (2010) Energy crops for the production of biofuels. In: Thermochemical conversion of biomass to liquid fuels and chemicals. Crocker M (ed). RSC, London pp 26–45

    Google Scholar 

  • Mosier N, Wyman C, Dale BE, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  Google Scholar 

  • Novo LP, Gurgel LVA, Marabezi K, Aprigio A, Curvelo S (2011) Delignification of sugarcane bagasse using glycerol-water mixtures to produce pulps for saccharification. Bioresour Technol 102:10040–10046

    Article  CAS  Google Scholar 

  • Öhgren K, VehmaanperĂ€ J, Siika-Aho M, Galbe M, Viikari L, Zacchi G (2007) High temperature enzymatic prehydrolysis prior to simultaneous saccharification and fermentation of steam pretreated corn stover for ethanol production. Enzym Microb Tech 40(4):607–613

    Article  Google Scholar 

  • Pandey A (1991) Effect of particle size of substrate on enzyme production in solid-state fermentation. Bioresour Technol 37(2):169–172

    Google Scholar 

  • Perry RH, Green DV, Maloney JO (1997) Chemical engineers’ handbook, 7th edn. McGraw-Hill, Malasia

    Google Scholar 

  • Pessoa A Jr, Kilikian BV (2005) Purificação de Produtos BiotecnolĂłgicos. Manole, SĂŁo Paulo

    Google Scholar 

  • Ramos LP, Breuil C, Kushner DJ, Saddler JN (1992) Steam pretreatment conditions for effective enzymatic hydrolysis and recovery yields of Eucalyptus viminalis wood chips. Holzforschung 46:149–154

    Article  CAS  Google Scholar 

  • Ramos LP, Carpes ST, Silva FT, Ganter JLMS (2000) Comparison of the susceptibility of two hardwood species, Mimosa scabrellaBenth and Eucalyptus viminalisLabill, to steam explosion and enzymatic hydrolysis. Braz Arch Biol Tech 43:185–206

    Google Scholar 

  • Rocha GJM, Gonçalves AR, Oliveira BR, Olivares EG, Rossell CEV (2012) Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind Crop Prod 35:274–279

    Article  CAS  Google Scholar 

  • RodrĂ­guez-Chong A, RamĂ­rez JA, Garrote G, VĂĄzquez M (2004) Hydrolysis of sugarcane bagasse using nitric acid: a kinetic assessment. J Food Eng 61:143–152

    Article  Google Scholar 

  • Ruiz HA, RodrĂ­guez-Jasso RM, RodrĂ­guez R, Contreras-Esquivel JC, Aguilar CN (2012) Pectinase production from lemon peel pomace as support and carbon source in solid-state fermentation column-tray bioreactor. Biochem Eng J 65:90–95

    Article  CAS  Google Scholar 

  • Santos SFM, Wanderley LR, Souza RLA, Pinto GAS, Silva FLH, Macedo GR (2005) Caracterização fĂ­sico-quĂ­mica do pedĂșnculo de caju in natura e do resĂ­duo seco. In: 1th SimpĂłsio Brasileiro de PĂłs-colheita de Frutos Tropicais. SBF, JoĂŁo Pessoa-PB, 29 November – 02 December 2005 (CD Rom)

    Google Scholar 

  • Searcy E, Flynn P, Ghafoori E, Kumar A (2007) The relative cost of biomass energy transport. Appl Biochem Biotechnol 140:639–652

    Article  Google Scholar 

  • Silva I.S, Menezes CR, Franciscon E, Santos EC, Durrant LR (2010) Degradation of lignosulfonic and tannic acids by ligninolytic soil fungi cultivated under icroaerobic conditions. Brazilian Archives of Biology and Tech 53(3) http://dx.doi.org/10.1590/S1516-89132010000300026

  • Soccol CR, Faraco V, Karp S, Vandenberghe LPS, Thomaz-Soccol V, Woiciechowski AL, Pandey A (2011) Lignocellulosic bioethanol: current status and future perspectives. In: Pandey A, Larroche C, Ricke SC, Dussap CG, Gnansounou E (eds) Biofuels: alternative feedstocks and conversion processes. Academic, San Diego, pp 101–122

    Google Scholar 

  • Souza RA, Amorim BC, Silva FLH, Conrado L (2007) Caracterização do resĂ­duo seco do maracujĂĄ para utilização em fermentação semi-sĂłlida. In: 16th SimpĂłsio Nacional de Bioprocessos. Federal University of ParanĂĄ, Curitiba, 1–5 August 2007 (CD Rom)

    Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  Google Scholar 

  • Tuor U, Winterhalter K, Fiechter A (1995) Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. J Biotechnol 41:1–17

    Article  CAS  Google Scholar 

  • Wong DWS (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174–209

    Article  CAS  Google Scholar 

  • Yuan X, Shi X, Zhang P, Wei Y, Guo R, Wang L (2011) Anaerobic biohydrogen production from wheat stalk by mixed microflora: kinetic model and particle size influence. Bioresour Technol 102(19):9007–9012

    Article  CAS  Google Scholar 

  • Zhang YP, Ding S, Mielenz JR, Cui J (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97:214–223

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Ricardo Soccol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Woiciechowski, A.L. et al. (2014). Pretreatment Strategies to Enhance Value Addition of Agro-industrial Wastes. In: Brar, S., Dhillon, G., Soccol, C. (eds) Biotransformation of Waste Biomass into High Value Biochemicals. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8005-1_2

Download citation

Publish with us

Policies and ethics