Skip to main content

Exploring Plant and Agro-industrial Wastes for Antimicrobial Biochemicals

  • Chapter
  • First Online:
Biotransformation of Waste Biomass into High Value Biochemicals

Abstract

Antimicrobial agents are substances of chemical or biological origin, which help in either inhibiting the growth or killing of the microorganisms, such as bacteria, viruses, fungi, algae, or other parasites. The demand for antimicrobial compounds (products) throughout the world has been continuously increasing as the population is more and more concerned about the health and hygiene. Global change in the lifestyle pattern and livelihood has resulted in generation of increasing quantities of solid wastes, which include agro-industrial residues. These residues are usually organic in nature which makes them potential candidates as feedstock for developing the bioprocesses through biotechnological interventions. The usage of these residues as substrates not only opens a new avenue in their utilization but also reduces the pollution concerns, which their disposal in the environment would have caused otherwise.

Numerous scientific investigations have reported the production of antimicrobial products from a variety of agro-industrial residues, such as vegetable peels, seeds, cereal, and fruits waste, and essential oils from the peel of various fruits, which have shown effective properties to be used as preservatives or food additives and in pharmaceuticals because of their antimicrobial, anti-inflammatory, and antioxidant characteristics. Antimicrobial products are also isolated from the plants as these are present in all parts of the plant, viz., bark, stalks, leaves, fruits, roots, flowers, pods, seeds, stems, latex, hull, and fruit rind, and are usually derivatives of phenolic acids and flavonoids. The hydroxyl groups of polyphenols are very reactive in neutralizing the free radicals by donating a hydrogen atom or an electron, chelating metal ions, inactivating lipid-free radical chains, and preventing hydroperoxide conversions into reactive oxyradicals. These are thus effective against various deadly diseases and for processed food preservation, pharmaceuticals, alternative medicine, and natural therapies.

A newer application on the usage of the antimicrobial has emerged in recent times with the aid of nanotechnology to fight against the disease-causing organisms, replacing heavy metals and toxins and may attain effective application in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad MM, Salim-ur-Rehman Z, Iqbal-Anjum FM, Sultan JI (2006) Genetic variability to essential oil composition in four citrus fruit species. Pak J Bot 38(2):319–324

    Google Scholar 

  • Alberto MR, Canavosio MAR, Manca de Nadra MC (2006) Effect of polyphenols from apple skins on human bacterial pathogens. Electron J Biotechnol 9(3)

    Google Scholar 

  • Amelia P, Guevara AA, Hiromu S, Mutsou K, Harukuni T (1996) Anti-inflammatory, anti-mutagenicity and antitumor-promoting activities of mahogany seeds, Swietenia macrophylla (Meliaceae). Philip J Sci 125(4):271–278

    Google Scholar 

  • Anastasiadi M, Chorianopoulos NG, Nychas GJE, Haroutounian SA (2008) Antilisterial activities of polyphenol-rich extracts of grapes and vinification byproducts. J Agric Food Chem 57:457–463

    Google Scholar 

  • Andary C, Wylde R, Laffite C, Privat G, Winternitz F (1982) Structure of verbascoside and orobancoside, caffeic acid, sugar esters from Orobanche rapum-genistae. Phytochemistry 21:1123–1127

    CAS  Google Scholar 

  • Artizzu N, Bonsignore L, Cottiglia F, Loy G (1995) Studies of the diuretic and antimicrobial activity of Cynodon dactylon essential oil. Fitoterapia 66:174–175

    Google Scholar 

  • Asagbra AE, Oyewole OB, Odunfa SA (2005) Production of oxytetracycline from agricultural wastes using streptomyces spp. Niger Food J 2:174–181

    Google Scholar 

  • Ashok K, Narayani M, Subanthini A, Jayakumar M (2011) Antimicrobial activity and phytochemical analysis of citrus fruit peels—utilization of fruit waste. Int J Eng Sci Technol 3(6):5414–5421

    Google Scholar 

  • Aziz NH, Farag SE, Mousa LAA, Abo-Zaidt MA (1998) Comparative antibacterial and antifungal effects of some phenolic compounds. Microbios 93:43–54

    CAS  Google Scholar 

  • Baydar NG, Ozkan G, Sagdic O (2004) Total phenolic contents and antibacterial activities of grapes (Vitis vinifera L.) extracts. Food Control 15(5):335–339

    Google Scholar 

  • Beheshti A, Norouzi P, Ganjali MR (2012) A simple and robust model for predicting the reduction potential of quinones family electrophilicity index effect. Int J Electrochem Sci 7:4811–4821

    CAS  Google Scholar 

  • Beretz A, Cazenave J (1988) The effect of flavonoids on blood vessel wall interactions. In: Cody V, Middleton E, Harborne JB, Beretz A (eds) Plant flavonoids in biology and medicine II: biochemical, cellular and medicinal properties. Alan R Liss, New York, pp 187–200

    Google Scholar 

  • Bisignano G, Sanogo R, Marino A, Aquino R, D’angelo V, Germanò MP, De Pasquale R, Pizza C (2000) Antimicrobial activity of Mitracarpus scaber extract and isolated constituents. Lett Appl Microbiol 30:105–108

    CAS  Google Scholar 

  • Borris RP (1996) Natural products research: perspectives from a major pharmaceutical company. J Ethnopharmacol 51:29–38

    CAS  Google Scholar 

  • Caccioni DR, Guizzardi M, Biondi DM, Renda A, Ruberto G (1998) Relationship between volatile components of citrus fruit essential oils and antimicrobial action on Penicillium digitatum and Penicillium italicum. Int J Food Microbiol 43:73–79

    CAS  Google Scholar 

  • Calvo J, Martinez ML (2009) Antimicrobial mechanisms of action. Enferm Infecc Microbiol Clin 27(1):44–52

    Google Scholar 

  • Canadanovic BJM, Savatovic SS, Cetkovic GS, Vulic JJ, Djilas SM, Markov SL, Cvetkovic DD (2011) Antioxidant and antimicrobial activities of beet root pomace extracts. Czech J Food Sci 29(6):575–585

    Google Scholar 

  • Capasso R, Evidente A, Schivo L, Orru G, Marcialis MA, Cristinzio G (1995) Antibacterial polyphenols from olive oil mill waste waters. J Appl Bacteriol 79:393–398

    CAS  Google Scholar 

  • Carpenter CF, Chambers HF (2004) Daptomycin: another novel agent for treating infections due to drug-resistant gram-positive pathogens. Clin Infect Dis 38:994–1000

    CAS  Google Scholar 

  • Chanda S, Baravalia Y, Kaneria M, Rakholiya K (2010) Fruit and vegetable peels — strong natural source of antimicrobics. In: Mendes-Vilas A (ed) Current research, technology and education topics in applied microbiology and applied biotechnology. Publisher: Formatex Research Center. Vol. 1, pp 444–450

    Google Scholar 

  • Chanthaphon S, Chanthachum S, Hongpattarakere T (2008) Antimicrobial activities of essential oils and crude extracts from tropical Citrus spp. against food-related microorganisms. Songklanakarin J Sci Technol 30(1):125–131

    Google Scholar 

  • Ciafardini G, Zullo BA (2003) Antimicrobial activity of oil-mill waste water polyphenols on the phytopathogen Xanthomonas campestris spp. Ann Microbiol 53(3):283–290

    CAS  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    CAS  Google Scholar 

  • Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicro Ag 26:343–356

    CAS  Google Scholar 

  • Davidson PM, Branen AL (2005) Food antimicrobials—an introduction. In: Davidson PM, Sofos JN, Branen AL (eds) Antimicrobials in food. CRC Press, Boca Raton, FL, pp 1–10

    Google Scholar 

  • Doughari JH, El-mahmood AM, Tyoyina I (2008) Antimicrobial activity of leaf extracts of Senna obtusifolia (L). Afr J Pharm Pharmacol 2:7–13

    Google Scholar 

  • Dzidic S, Suskovic J, Kos B (2008) Antibiotic resistance mechanisms in bacteria: biochemical and genetic aspects. Antibiotic resistance in bacteria. Food Technol Biotechnol 46(1):11–21

    CAS  Google Scholar 

  • Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M (2009) Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol 75(9):2973–2976

    CAS  Google Scholar 

  • Ekwenye UN, Edeha OV (2010) The antibacterial activity of crude leaf extract of Citrus sinensis (sweet orange). Int J Pharm Bio Sci 1(4):742–750

    Google Scholar 

  • El-Massry KF, El-Ghorab AH, Shaaban HA, Shibamoto T (2009) Chemical compositions and antioxidant/antimicrobial activities of various samples prepared from Schinus terebinthifolius leaves cultivated in Egypt. J Agric Food Chem 57:5265–5270

    CAS  Google Scholar 

  • Escarpa A, Gonzalez MC (1998) High-performance liquid chromatography with diode-array detection for the determination of phenolic compounds in peel and pulp from different apple varieties. J Chromatogr 823(1–2):331–337

    CAS  Google Scholar 

  • Fathiazada F, Delazara A, Amiria R, Sarker SD (2006) Extraction of flavonoids and quantification of rutin from waste tobacco leaves. Iran J Pharm Res 3:222–227

    Google Scholar 

  • Fernandez BJ, Rodríguez G, Rodríguez R, Guillen R, Jimenez A (2006) Potential use of olive by products; extraction of interesting organic compounds from olive oil waste. Grasas Y Aceites 57(1):95–106, Enero-Marzo

    Google Scholar 

  • Gedir JV, Sporns P, Hudson RJ (2005) Extraction of condensed tannins from cervid feed and feces and quantification using a radial diffusion assay. J Chem Ecol 31:2761–2773

    CAS  Google Scholar 

  • Gollnick H, Schramm M (1998) Topical therapy in acne. J Eur Acad Dermatol Venereol 11:8–12

    Google Scholar 

  • Grinberg LN, Rachmilewitz EA, Newmark H (1994) Protective effects of rutin against hemoglobin oxidation. Biochem Pharmacol 48:643–649

    CAS  Google Scholar 

  • Hamendra SP, Anand K (2007) Antidiabetic potential of Citrus sinensis and Punica granatum peel extracts in alloxan treated male mice. Bio Factors 31:17–24

    Google Scholar 

  • Harborne JB, Baxter H (1999) The handbook of natural flavonoids, Vol:1 and 2. John Wiley and Sons, Chichester

    Google Scholar 

  • Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    CAS  Google Scholar 

  • Hartmann R, Meisel H (2007) Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotechnol 18:163–169

    CAS  Google Scholar 

  • Hassan A, Amjid I (2009) Gas chromatography–mass spectrometric studies of essential oil of Pinus roxburghii stems and their antibacterial and antifungal activities. J Med Plants Res 3(9):670–673

    CAS  Google Scholar 

  • Havsteen B (1983) Flavonoids, a class of natural products of high pharmacological potency. Biochem Pharmacol 32:1141–1148

    CAS  Google Scholar 

  • Izzo AA, Di Carlo G, Biscardi D, Fusco R, Mascolo N, Borreli F, Capasso F, Fasulo MP, Autore G (1995) Biological screening of Italian medicinal plants for antibacterial activity. Phytother Res 9:281–286

    Google Scholar 

  • Jayaprakasha GK, Selvi T, Sakaria KK (2003) Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Food Res Int 36:117–122

    CAS  Google Scholar 

  • Kahkonen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agr Food Chem 47:3954–3962

    CAS  Google Scholar 

  • Kanatt SR, Chander R, Sharma A (2010) Antioxidant and antimicrobial activity of pomegranate peel extract improves the shelf life of chicken products. Int J Food Sci Technol 45(2):216–222

    CAS  Google Scholar 

  • Kanaze FI, Termentzi A, Gabrieli C, Niopas I, Georgarakis M, Kokkalou E (2008) The phytochemical analysis and antioxidant activity assessment of orange peel (Citrus sinensis) cultivated in Greece-Crete indicates a new commercial source of hesperidin. Biomed Chromatogr 23:239–249

    Google Scholar 

  • Kayser O, Kolodziej H (1997) Antibacterial activity of extracts and constituents of Pelargonium sidoides and Pelargonium reniforme. Planta Med 63:508–510

    CAS  Google Scholar 

  • Krisch J, Galgoczy L, Papp T, Csaba Vagvolgyi C (2009) Antimicrobial and antioxidant potential of waste products remaining after juice pressing. J Eng tome vii (year. Fascicule 4):131–134

    Google Scholar 

  • Kubo L, Muroi H, Himejima M (1993) Structure–antibacterial activity relationships of anacardic acids. J Agri Food Chem 41:1016–1019

    CAS  Google Scholar 

  • Kujala T, Loponen J, Pihlaja K (2001) Betalains and phenolics in red beetroot (Beta vulgaris) peel extracts: extraction and characterisation. Zeitschrift fur Naturforschung- C 56:343–348

    CAS  Google Scholar 

  • Kumamoto H, Matsubara Y, Iizuka Y, Okamoto K, Yokoi K (1986) Structure and hypotensive effect of flavonoid glycosides in orange (Citrus sinensis OSBECK) peelings. Agricult Biol Chem 50:781–783

    CAS  Google Scholar 

  • Kwon YS, Kobayashi A, Kajiyama SI, Kawazu K, Kanzaki H, Kim CM (1997) Antimicrobial constituents of Angelica dahurica roots. Phytochemistry 44(5):887–889

    CAS  Google Scholar 

  • Lanciotti R, Gianotti A, Patrignani F, Belletti N, Guerzoni EM, Gardini F (2004) Use of natural aroma compounds to improve shelf-life and safety of minimally processed fruits. Trends Food Sci Tech 15:201–208

    CAS  Google Scholar 

  • Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C (2010) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26:615–621

    CAS  Google Scholar 

  • Leung AY, Foster S (1996) Encyclopaedia of common natural ingredients, 2nd edn. Wiley, New York

    Google Scholar 

  • Maisuthisakul P (2008) Antiradical scavenging activity and polyphenolic compounds extracted from Thai mango seed kernels. As J Food Food Ag-Ind 1(02):87–96

    Google Scholar 

  • Mangas JJ, Rodriguez R, Suarez B, Picinelli A, Dapena E (1999) Study of the phenolic profile of cider apple cultivars at maturity by multivariate techniques. J Agr Food Chem 47(10):4046–4052

    CAS  Google Scholar 

  • Manthey A, Grohmann K (2001) Phenols in citrus peel byproducts: concentrations of hydroxycinnamates and polymethoxylated flavones in citrus peel molasses. J Agr Food Chem 49:3268–3273

    CAS  Google Scholar 

  • Martin JGP, Porto E, Correa GB, Matias de Alencar S, Micotti da Gloria E, Cabral ISR, Maria L, de Aquino L (2012) Antimicrobial potential and chemical composition of agro-industrial wastes. J Nat Prod 5:27–36

    CAS  Google Scholar 

  • Matthews L, Kanwar RK, Zhou S, Punj V, Kanwar JR (2010) Applications of nanomedicine in antibacterial medical therapeutics and diagnostics. Open Trop Med J 3:1–9

    CAS  Google Scholar 

  • McManus MC (1997) Mechanisms of bacterial resistance to antimicrobial agents. Am J Health Syst Pharm 54:1420–1433

    CAS  Google Scholar 

  • Melendez PA, Capriles VA (2006) Antibacterial properties of tropical plants from Puerto Rico. Phytomedicine 13:272–276

    CAS  Google Scholar 

  • Mendoza L, Wilkens M, Urzua A (1997) Antimicrobial study of the resinous exudates and of diterpenoids and flavonoids isolated from some Chilean Pseudognaphalium (Asteraceae). J Ethnopharmacol 58:85–88

    CAS  Google Scholar 

  • Mirunalini S, Krishnaveni M (2011) Coumarin: a plant derived polyphenol with wide biomedical applications. Int J PharmTech Res 3(3):1693–1696

    CAS  Google Scholar 

  • Moerman DE (1996) An analysis of the food plants and drug plants of native North America. J Ethnopharmacol 52:1–22

    CAS  Google Scholar 

  • Monga PK, Sharma D, Dubey A (2012) Comparative study of microwave and conventional synthesis and pharmacological activity of coumarins: a review. J Chem Pharm Res 4(1):822–850

    Google Scholar 

  • Nakasone N, Takara K, Wada K, Tanaka J, Yogi J, Nakatani N (1996) Antioxidative compounds isolated from kokuto, non centrifugal cane sugar. Biosci Biotechnol Biochem 60:1714–1716

    CAS  Google Scholar 

  • Nascimento GGF, Locatelli J, Freitas PC, Silva GL (2000) Antibacterial activity of plant extracts and phytochemicals on antibiotic resistant bacteria. Braz J Microbiol 31:247–256

    Google Scholar 

  • Ndubuisi Ezejiofor TI, Duru CI, Asagbra AE, Ezejiofor AN, Oisakwe OE, Afonne JO, Obi E (2012) Waste to wealth production of oxytetracycline using streptomyces species from household kitchen wastes of agricultural produce. Afr J Biotechnol 11(43):10115–10124

    Google Scholar 

  • Negi S, Banerjee R (2009) Optimization of extraction and purification of glucoamylase produced by Aspergillus awamori in solid-state fermentation. Biotechnol Bioproc Eng 14:60–66

    CAS  Google Scholar 

  • Nikaido H, Zgurskaya HI (1999) Antibiotic efflux mechanisms. Curr Opin Infect Dis 12:529–536

    CAS  Google Scholar 

  • Nychas GJE, Tassou CC, Board RG (1990) Phenolic extract from olives inhibition of Staphylococcus aureus. Lett Appl Microbiol 10:217–220

    Google Scholar 

  • Ou SY, Luo YL, Huang CH, Jackson M (2009) Production of coumaric acid from sugarcane bagasse. Innov Food Sci Emerg 10:253–259

    CAS  Google Scholar 

  • Parmar SS, Sharmar RS (1990) Effect of mango (Mangifera indica L.) seed kernel pre-extract on the oxidative stability of buffalo ghee. Food Chem 35:99–107

    CAS  Google Scholar 

  • Payne K, Rico-Munoz E, Davidson PM (1989) The antimicrobial activity of phenolic compounds against Listeria monocytogenes and their effectiveness in a model milk system. J Food Protect 52:151–153

    CAS  Google Scholar 

  • Pedraza CJ, Cardenas-Rodriguez N, Orozco-Ibarra M, Perez-Rojas JM (2008) Medicinal properties of mangosteen (Garcinia mangostana). Food Chem Toxicol 46:3227–3239

    Google Scholar 

  • Pereira JA, Oliveira I, Sousa A, Valentão P, Andrade PB, Ferreira IC, Ferreres F, Bento A, Seabra R, Estevinho L (2007) Walnut (Juglans regia L.) leaves: phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food Chem Toxicol 45(11):2287–2295

    CAS  Google Scholar 

  • Piccirillo C, Demiray S, Franco AR, Castro PML, Pintado ME (2010) High added-value compounds with antibacterial properties from ginja cherries by-products. Waste Biomass Valorization 1(2):209–217

    CAS  Google Scholar 

  • Podsedek A, Wilska Jeska J, Anders B, Markowski J (2000) Compositional characterization of some apple varieties. Eur Food Res Technol 210(4):268–272

    CAS  Google Scholar 

  • Pretorius JC, Magama S, Zietsman PC (2003) Growth inhibition of plant pathogenic bacteria and fungi by extracts from selected South African plant species. S Afr J Bot 20:188–192

    Google Scholar 

  • Ragazzi E, Veronese G, Guitto A (1973) Demethyloleuropein, a new glucoside extracted from ripe olives. Ann Chim 63:13–20

    CAS  Google Scholar 

  • Ravichandran M, Hettiarachchy NS, Ganesh V, Ricke SC, Singh S (2011) Enhancement of antimicrobial activities of naturally occurring phenolic compounds by nanoscale delivery against listeria monocytogenes, escherichia coli O157:H7 and salmonella typhimurium in broth and chicken meat system. J Food Safety 31(4):462–471

    CAS  Google Scholar 

  • Roberts MC (2003) Acquired tetracycline and/or macrolide–lincosamides–streptogramin resistance in anaerobes. Anaerobe 9(2):63–69

    CAS  Google Scholar 

  • Romero C, Garcia P, Brenes M, Garcia A, Garrido A (2002) Phenolic compounds in natural black Spanish olive varieties. Eur Food Res Technol 215:482–496

    Google Scholar 

  • Saleem M, Nazir M, Ali MS, Hussain H, Lee YS, Riaza N, Jabbara A (2010) Antimicrobial natural products: an update on future antibiotic drug candidates. Nat Prod Rep 27:238–254

    CAS  Google Scholar 

  • Santos JDG, Branco A, Silva AF, Pinheiro CSR, Neto AG, Uetanabaro APT, Queiroz SROD, Osuna JTA (2009) Antimicrobial activity of Agave sisalana. Afr J Biotechnol 8(22):6181–6184

    Google Scholar 

  • Schiber A, Berardini N, Carle R (2003) Identification of flavonol and xanthol glycosides from mango peels by HPLC. J Agr Food Chem 51:5006–5011

    Google Scholar 

  • Shoji T, Akazome Y, Kanda T, Ikeda M (2004) The toxicology and safety of apple polyphenol extract. Food Chem Toxicol 42:959–967

    CAS  Google Scholar 

  • Shoji T, Mutsuga M, Nakamura T, Kanda T, Akiyama H, Goda Y (2003) Isolation and structural elucidation of some procyanidins from apple by low-temperature NMR. J Agr Food Chem 51(13):3806–3813

    CAS  Google Scholar 

  • Singh SP, Negi S (1992a) Antibacterial and antifungal activities of Mentha arvensis essential oil. Fitoterapia 63(1):76–78

    CAS  Google Scholar 

  • Singh SP, Negi S (1992b) Antibacterial properties of essential oils from Zingiber chrysanthum leaves and rhizomes. Fitoterapia 63(1):73–75

    Google Scholar 

  • Singleton VL, Rossi JA Jr (1965) Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am J Enol Viticult 16(1):144–158

    CAS  Google Scholar 

  • Soediro I, Padmawinata K, Wattimena JR, Rekita S (1990) Study of the active antimalarial methanolic extract of Swietenia macrophylla King (Meliaceae). Acta Pharm Indones 15(1):1–13

    CAS  Google Scholar 

  • Soong Y, Barlow P (2004) Antioxidant activity and phenolic content of selected fruit seeds. Food Chem 88:411–417

    CAS  Google Scholar 

  • Spratt BG (1994) Resistance to antibiotics mediated by target alterations. Science 264:388–393

    CAS  Google Scholar 

  • Suksamrarn S, Komutiban O, Ratananukul P, Chimnoi N, Lartpornmatulee N, Suksamrarn A (2006) Cytotoxic prenylated xanthones from the young fruit of Garcinia mangostana. Chem Pharm Bull 54:301–305

    CAS  Google Scholar 

  • Sung SH, Kim KH, Jeon BT, Cheong SH, Park JH, Kim DH, Kweon HJ, Moon SH (2012) Antibacterial and antioxidant activities of tannins extracted from agricultural by-products. J Med Plants Res 6(15):3072–3079

    CAS  Google Scholar 

  • Takara K, Matsui D, Wada k, Ichiba T, Chinen L, Nakasone Y (2003) New phenolic compounds from kokuto non centrifuged cane sugar. Biosci Biotechnol Biochem 67:376–379

    CAS  Google Scholar 

  • Takara K, Matsui D, Wada K, Ichiba T, Nakasone Y (2002) New anti-oxidative phenolic glycosides isolated from kokuto non centrifuged cane sugar. Biosci Biotechnol Biochem 60:1714–1716

    Google Scholar 

  • Takara K, Ushijima K, Wada K, Iwasaki H, Yamashita M (2007) Phenolic compounds from sugarcane molasses possessing antibacterial activity against cariogenic bacteria. J Oleo Sci 56(11):611–614

    CAS  Google Scholar 

  • Tan SK, Osman H, Wong KC, Boey PL, Ibrahim P (2009) Antimicrobial and antioxidant activities of Swietenia macrophylla leaf extracts. As J Food Ag-Ind 2(02):181–188

    Google Scholar 

  • Tanner GJ, Moate PJ, Davis LH, Laby RH, Yuguang L, Larkin PJ (1995) Proanthocyanidins (condensed tannins) destabilise plant protein foams in a dose-dependent manner. Aust J Agric Res 46:1101–1109

    CAS  Google Scholar 

  • Tassou CC, Nychas GJE (1995) Inhibition of Salmonella enteritidis by oleuropein in broth and in a model food system. Lett Appl Microbiol 20:120–124

    CAS  Google Scholar 

  • Tehranifara A, Selahvarzia Y, Kharrazia M, Bakhshb VJ (2011) High potential of agro-industrial by-products of pomegranate (Punica granatum L.) as the powerful antifungal and antioxidant substances. Ind Crop Prod 34(3):1523–1527

    Google Scholar 

  • Tenover FC (2006) Mechanisms of antimicrobial resistance in bacteria. Am J Med 119(6A):S3–S10

    CAS  Google Scholar 

  • Vander SAA, Dekker M, De Jager A, Jongen WMF (2001) Activity and concentration of polyphenolic antioxidants in apple: effect of cultivar, harvest year, and storage conditions. J Agr Food Chem 49(8):3606–3613

    Google Scholar 

  • Vinson JA, Hao Y, Su X, Zubik L (1998) Phenol antioxidant quantity and quality in foods: vegetables. J Agr Food Chem 46:3630–3634

    CAS  Google Scholar 

  • VishnuPriya V, Mallika J, Surapaneni KM, Saraswathi P, Chandra SGSV (2010) Antimicrobial activity of pericarp extract of garcinia mangostana linn. Int J Pharm Sci Res 1(8):278–281

    Google Scholar 

  • Visioli F, Galli C (2002) Biological properties of olive oil phytochemicals. Crit Rev Food Sci Nut 42:209–221

    CAS  Google Scholar 

  • Visioli F, Grande S, Bogani P, Galli C (2004) The role of antioxidants in the Mediterranean diets: focus on cancer. Eur J Cancer Prev 13:337–343

    CAS  Google Scholar 

  • Wagdy SM, Taha FS (2012) primary assessment of the biological activity of jojoba hull extracts. Life Sci J 9(2):244–253

    Google Scholar 

  • Walve MG, Trekoo R, Log MM, Bhole BD (2001) How many antibiotics are produced by the genus streptomyces. Arch Microbiol 177(5):86–90

    Google Scholar 

  • Wannissorna B, Jarikasemb S, Siriwangchaib T, Thubthimthed S (2005) Antibacterial properties of essential oils from Thai medicinal plants. Fitoterapia 76:233–236

    Google Scholar 

  • Webber MA, Piddock LJ (2003) The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 51:9–11

    CAS  Google Scholar 

  • WHO (2012) Antimicrobial resistance. http://www.who.int/mediacentre/factsheets/fs194/en/index.html. Accessed 10 Aug 2012

  • Will F, Bauckhage K, Dietrich H (2000) Apple pomace liquefaction with pectinases and cellulases: analytical data of the corresponding juices. Eur Food Res Technol 211:291–297

    CAS  Google Scholar 

  • Woodford N, Ellington MJ (2007) The emergence of antibiotic resistance by mutation. Eur J Clin Microbiol Infect Dis 13:5–18

    CAS  Google Scholar 

  • Wright GD (2005) Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliver Rev 57:451–1470

    Google Scholar 

  • Yao XJ, Wainberg MA, Parniak MA (1992) Mechanism of inhibition of HIV-1 infection in vitro by purified extract of Prunella vulgaris. Virology 178:56–62

    Google Scholar 

  • Zargham H, Zargham R (2008) Tannin extracted from Sumac inhibits vascular smooth muscle cell migration. Mcgill J Med 11:119–123

    Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeeta Negi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Negi, S. (2014). Exploring Plant and Agro-industrial Wastes for Antimicrobial Biochemicals. In: Brar, S., Dhillon, G., Soccol, C. (eds) Biotransformation of Waste Biomass into High Value Biochemicals. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8005-1_14

Download citation

Publish with us

Policies and ethics