Skip to main content

Waste Biomass: A Prospective Renewable Resource for Development of Bio-Based Economy/Processes

  • Chapter
  • First Online:
Book cover Biotransformation of Waste Biomass into High Value Biochemicals

Abstract

Although industrial revolution is an important factor governing the development of a country’s economy, but at the same time, the industrial activities have been also accompanied by problem of waste biomass. This commensurate with the increase in industrialization, urbanization, and population growth is leading to production of enormous quantities of industrial waste biomass that may cause environmental and health hazards. However, the increased awareness and desire for a healthy environment among people leads to the need for better ways of waste minimization and pollution prevention and better use of resources in achieving the required industrial and environmental standards. The present book deals specifically with the valorization of waste biomass to small-volume high-value biochemicals only. The products which are produced in bulk quantities, such as biofuels, some organic acids, hydrolytic enzymes, biogas, and other traditional products from waste biomass, are not discussed. In this context, the current chapter discusses the different sources, types, and nature of waste biomass. The chapter also provides overview of the different management strategies applied for the value addition of different types of waste biomass. The chapter will provide insights into the role of waste biomass resources for developing bio-based economy/processes for industrial biotechnology and renewable energy in supporting sustainable development and economic competitiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajila CM, Brar SK, Verma M, Tyagi RD, Valéro JR (2011) Solid-state fermentation of apple pomace using Phanerochaete chrysosporium: Liberation and extraction of phenolic antioxidants. Food Chem 126:1071–1080. doi:10.1016/j.foodchem.2010.11.129

    Article  CAS  Google Scholar 

  • Anastas PT, Kirchhoff MM (2002) Origins, current status, and future challenges of green chemistry. Acc Chem Res 35:686–694

    Article  CAS  Google Scholar 

  • Arogba SS (2000) Mango (Mangifera indica) kernel: chromatographic analysis of the tannin, and stability study of the associated polyphenol oxidase activity. J Food Comp Anal 13:149–156

    Article  CAS  Google Scholar 

  • Asagbra AE, Sanni AI, Oyewole OB (2005a) Solid-state fermentation production of tetracycline by Streptomyces strains using some agricultural wastes as substrate. World J Microbiol Biotechnol 21:107–114

    Article  CAS  Google Scholar 

  • Asagbra AE, Oyewole OB, Odunfa SA (2005b) Production of oxytetracycline from agricultural wastes using Streptomyces species. Niger Food J 23:174–182

    Google Scholar 

  • Ashok K, Narayani M, Subanthini A, Jayakumar M (2011) Antimicrobial activity and phytochemical analysis of citrus fruit peels—utilization of fruit waste. Int J Eng Sci Technol 3(6):5414–5421

    Google Scholar 

  • Athalye SK, Garcia RA, Wen Z (2009) Use of biodiesel-derived crude glycerol for producing eicosapentaenoic acid (EPA) by the fungus Pythium irregulare. J Agric Food Chem 57:2739

    Article  CAS  Google Scholar 

  • Atsushi S, Somsak S, Kohtaro K, Shoji U (1996) Direct production of citric acid from Starch by a 2-deoxygluxose-resistant mutant strain of Aspergillus niger. J Ferment Bioeng 81:320–323

    Article  Google Scholar 

  • Azadbakht M, Ebrahimzadeh MA, Koolayan S (2004) Preparation of lignin from wood dust as vanillin source and comparison of different extraction methods. Int J Biol Biotechnol 1:535–537

    CAS  Google Scholar 

  • Bartolomè B, Faulds CB, Williamson G (1997) Enzymic release of ferulic acid from barley spent grain. J Cereal Sci 25:285–288

    Article  Google Scholar 

  • Bartolomè B, Faulds CB, Sancho AI (2002) Mono- and dimeric ferulic acid release from brewer’s spent grain by fungal feruloyl esterases. Appl Microbiol Biotechnol 60:489–493

    Article  Google Scholar 

  • Bartolomè B, Gómez-Cordovés C, Sancho AI, Díez N, Ferreira P, Soliveri J, Copa-Patiño JL (2003) Growth and release of hydroxycinnamic acids from Brewer’s spent grain by Streptomyces avermitilis CECT 3339. Enzyme Microb Technol 32:140–144

    Article  Google Scholar 

  • Ben Salah R, Chaari K, Besbes S et al (2010) Optimisation of xanthan gum production by palm date (Phoenix dactylifera L.) juice by-products using response surface methodology. Food Chem 121:627–633

    Article  CAS  Google Scholar 

  • Bowman SM, Free SJ (2006) The structure and synthesis of the fungal cell wall. Bioessays 28:799–808

    Article  Google Scholar 

  • Bruggink A, Straathof AJJ, van der Wielen LAM (2003) A fine chemical industry for life science products: green solutions to chemical challenges. In: von Stockar U, van der Wielen LAM (eds) Process Integration in biochemical engineering. Springer, Berlin, Heidelberg/NY, USA, pp 70–113

    Google Scholar 

  • Canadanovic BJM, Savatovic SS, Cetkovic GS, Vulic JJ, Djilas SM, Markov SL, Cvetkovic DD (2011) Antioxidant and antimicrobial activities of beet root pomace extracts. Czech J Food Sci 29:575–585

    Google Scholar 

  • Carvalho JC, Oishi BO, Woiciechowski AL, Pandey A, Soccol CR (2007) Effect of substrates on the production of Monascus biopigments by solid-substrate fermentation and pigment extraction using different solvents. Indian J Biotechnol 6:194–199

    CAS  Google Scholar 

  • Cetkovic G, Canadanovic-Brunet J, Djilas S, Savatovic S, Mandic A, Tumbas V (2008) Assessment of polyphenolic content and in vitro antiradical characteristics of apple pomace. Food Chem 109:340–347

    Article  CAS  Google Scholar 

  • Chantaro P, Devahastin S, Chiewchan N (2008) Production of antioxidant high dietary fiber from carrot peel. LWT- Food Sci Technol 41:1987–1994

    Article  CAS  Google Scholar 

  • Choudhury GS, Gogoi BK (1995) Extrusion processing of fish muscle. J Aquat Food Prod Tech 4:37–67

    Article  Google Scholar 

  • Cuadra T, Fernandez FJ, Tomasini A, Barrios-Gonzalez J (2008) Influence of pH regulation and nutrient content on cephalosporin C production in solid-state fermentation by Acremonium chrysogenum C10. Lett Appl Microbiol 46:216–220

    Article  CAS  Google Scholar 

  • Dale BE (2003) “Greening” the chemical industry: research and development priorities for biobased industrial products. J Chem Technol Biotechnol 78:1093–1103

    Article  CAS  Google Scholar 

  • Danner H, Braun R (1999) Biotechnology for the production of commodity chemicals from biomass. Chem Soc Rev 28:395–405

    Article  CAS  Google Scholar 

  • Dhillon GS, Brar SK, Verma M, Tyagi RD (2011a) Utilization of different agro-industrial wastes for sustainable bioproduction of citric acid by Aspergillus niger. Biochem Eng J 54:83–92. http://www.sciencedirect.com/science/journal/1369703X

    Google Scholar 

  • Dhillon GS, Brar SK, Verma M, Tyagi RD (2011b) Recent trends in citric acid bioproduction and recovery. Food Bioproc Technol 4:505–529

    Article  CAS  Google Scholar 

  • Dhillon GS, Brar SK, Verma M, Tyagi RD (2011c) Enhanced solid-state citric acid bioproduction using apple pomace waste through response surface methodology. J Appl Microbiol 110:1045–1055

    Article  CAS  Google Scholar 

  • Dhillon GS, Brar SK, Kaur S (2012a) Green synthesis approach: extraction of chitosan from fungus Mycelia. Crit Rev Biotechnol. doi:10.3109/07388551.2012.717217

    Google Scholar 

  • Dhillon GS, Brar SK, Kaur S, Verma M (2012b) Rheological studies during submerged citric acid fermentation by Aspergillus niger in stirred fermenter using apple pomace ultrafiltration sludge. Food Bioproc Technol. doi:10.1007/s11947-011-0771-8

    Google Scholar 

  • Dhillon GS, Brar SK, Verma M (2012c) Biotechnological potential of industrial wastes for economical citric acid bioproduction by Aspergillus niger through submerged fermentation. Int J Food Sci Technol 47:542–548

    Article  CAS  Google Scholar 

  • Dhillon GS, Kaur S, Brar SK (2012d) Flocculation and haze removal from crude fermented beer using in-house produced laccase via koji fermentation with Trametes versicolor using brewery spent grain. J Agric Food Chem 60(32):7895–904

    Google Scholar 

  • Dhillon GS, Kaur S, Sarma SJ, Brar SK, Surampalli RY (2013) Recent development in applications of important biopolymer chitosan in biomedicine, pharmaceuticals and personal care products. Curr Tissue Eng 2(3):20–40

    Google Scholar 

  • Dodds DR, Gross RA (2007) Chemicals from biomass. Science 318:250–1

    Article  Google Scholar 

  • Duan X, Jiang Y, Su X, Zhang Z, Shi J (2007) Antioxidant properties of anthocyanins extracted from litchi (Litchi chinensis Sonn.) fruit pericarp tissues in relation to their role in the pericarp browning. Food Chem 101:1365–1371

    Article  CAS  Google Scholar 

  • Ecket C, Liotta C, Ragauskas A et al (2007) Tunable solvents for fine chemicals from the biorefinery. Green Chem 9:545–548

    Article  Google Scholar 

  • Ellaiah P, Shrinivasulu B, Adinarayana K (2004) Optimization studies on neomycin production by a mutant strain of Streptomyces marinensis in solid-state fermentation. Process Biochem 39:529–534

    Article  CAS  Google Scholar 

  • Esteban MB, Garcia AJ, Ramos P, Marquez MC (2006) Evaluation of fruit–vegetable and fish wastes as alternative feedstuffs in pig diets. Waste Manag 27:193–200

    Article  Google Scholar 

  • Etschmann MMW, Sell D, Schrader J (2003) Screening of yeasts for the production of the aroma compound 2-phenylethanol in a molasses-based medium. Biotechnol Lett 25:531–536

    Article  CAS  Google Scholar 

  • Ezeji T, Qureshi N, Blaschek H (2007) Production of acetone butanol from liquefied corn starch, a commercial substrate, using Clostridium beijerinckii coupled with product recovery by gas stripping. J Ind Microbiol Biotechnol 34:771–777

    Article  CAS  Google Scholar 

  • Ferreira TF, Ribeiroa RR, Ribeirob CMS, Freirec DMG, Coelhoa MAZ (2012) Evaluation of 1, 3-propanediol production from crude glycerol by Citrobacter freundii ATCC 8090. Chem Eng Trans 27:157–162

    Google Scholar 

  • Gassara F, Ajila CM, Brar SK, Verma M, Tyagi RD, Valéro JR (2012) Liquid state fermentation of apple pomace sludge for the production of ligninolytic enzymes and liberation of polyphenolic compounds. Process Biochem 47:999–1004. doi:10.1016/j.procbio.2012.03.001

    Article  CAS  Google Scholar 

  • Guendez R, Kallithraka S, Makris DP, Kefalas P (2005) An analytical survey of the polyphenols of seeds of varieties of grape (Vitis vinifera sp.) cultivated in Greece: implications for exploitation as a source of value-added phytochemicals. Phytochem Anal 16:17–23

    Article  CAS  Google Scholar 

  • Guyot S, Serrand S, Querre JML, Sanoner P, Renard CMGC (2007) Enzymatic synthesis and physicochemical characterization of phloridzin oxidation products, a new water soluble yellow dye deriving from apple. Innov Food Sci Emerg Technol 8:443–450

    Article  CAS  Google Scholar 

  • Huang LP, Jin B, Lant P, Zhou J (2005) Simultaneous saccharification and fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus. Biochem Eng J 23:265–276

    Article  CAS  Google Scholar 

  • Je JY, Park PJ, Kwon JY, Kim SK (2005) A novel angiotensin I converting enzyme inhibitory peptide from Allaska Pollack (Theragra chalcogramma) frame protein hydrolysate. J Agric Food Chem 52:7842–7845

    Article  Google Scholar 

  • Kaur S, Dhillon GS (2013a) The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications. Critical reviews in Microbiology. DOI:10.3109/1040841X.2013.770385

  • Kaur S, Dhillon GS (2013b) Recent trends in biological extraction of chitin from marine shell wastes: A review. Critical Reviews in Biotechnology. DOI:10.3109/07388551.2013.798256

  • Khanal SK, Lamsal BP (2010) Bioenergy and biofuels production: some perspectives. In: Khanal SK, Surampalli RY, Zhang TC, Lamsal BP, Tyagi RD, Kao CM (eds) Bioenergy and biofuel from biowastes and biomass. ASCE, New York, pp 1–22

    Chapter  Google Scholar 

  • Khodaiyan F, Razavi SH, Mousavi SM (2008) Optimization of canthaxanthin production by Dietzia natronolimnaea HS-1 from cheese whey using statistical experimental methods. Biochemical Engineering J 40:415–422

    Article  CAS  Google Scholar 

  • Kim SK, Kim YT, Byun HG, Nam KS, Joo DS, Shahidi F (2001) Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Allaska Pollack skin. J Agric Food Chem 49:1984–1989

    Article  CAS  Google Scholar 

  • Knoblich M, Anderson B, Latshaw D (2005) Analyses of tomato peel and seed byproducts, and their use as a source of carotenoids. J Sci Food Agr 85:1166–1170

    Article  CAS  Google Scholar 

  • Krisch J, Galgoczy L, Papp T, Csaba Vagvolgyi C (2009) Antimicrobial and antioxidant potential of waste products remaining after juice pressing. J Eng Ann Fac Eng tome vii(year. Fascicule 4):131–134

    Google Scholar 

  • Kuznetsova SA, Danilov VG, Kuznetsov BN, Taraban’Ko VE, Pervyshina EP, Alexaandrova NB (2008) Fine chemicals from larch wood biomass. http://www.brdisolutions.com/pdfs/bcota/abstracts/26/z120.pdf

  • Liu Y, Koh CMJ, Ji L (2011) Bioconversion of crude glycerol to glycolipids in Ustilago maydis. Bioresour Technol 102:3927

    Article  CAS  Google Scholar 

  • Lucia LA, Argyropoulos DS, Adamopoulos L, Gaspar AR (2006) Chemicals and energy from biomass. Can J Chem 84:960–970

    Article  CAS  Google Scholar 

  • Mahalaxmi Y, Sathish T, Subba Rao C, Prakasham RS (2010) Corn husk as a novel substrate for the production of rifamycin B by isolated Amycolatopsis sp. RSP3 under SSF. Process Biochem 45(1):47–53

    Article  CAS  Google Scholar 

  • Makrisa DP, Boskoub G, Andrikopoulos NK (2007) Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J Food Compos Anal 20(2007):125–132

    Article  Google Scholar 

  • Marova I, Carnecka M, Halienova A, Certik M, Dvorakova T, Haronikova A (2012) Use of several waste substrates for carotenoid-rich yeast biomass production. Environ Manag 95:338–342

    Article  Google Scholar 

  • Martin JGP, Porto E, Correa GB, Matias de Alencar S, Micotti da Gloria E, Cabral ISR, Maria L, de Aquino L (2012) Antimicrobial potential and chemical composition of agro-industrial wastes. J Nat Prod 5:27–36

    CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Mussatto SI, Roberto IC (2005) Acid hydrolysis and fermentation of brewer’s spent grain to produce xylitol. J Sci Food Agric 85:2453–2460

    Article  CAS  Google Scholar 

  • Mussatto SI, Roberto IC (2008) Establishment of the optimum initial xylose concentration and nutritional supplementation of brewer’s spent grain hydrolysate for xylitol production by Candida guilliermondii. Process Biochem 43:540–546

    Article  CAS  Google Scholar 

  • Mussatto SI, Dragone G, Roberto IC (2007) Ferulic and p-coumaric acids extraction by alkaline hydrolysis of brewer’s spent grain. Ind Crop Prod 25:231–237

    Article  CAS  Google Scholar 

  • Nigam PS, Gupta N, Anthwal A (2009) Pre-treatment of agro-industrial residues. In: Nigam PS, Pandey A (eds) Biotechnology for agro-industrial residues utilization, 1st edn. Springer, Netherlands, pp 13–33

    Chapter  Google Scholar 

  • No HK, Lee KS, Meyers SP (2000) Correlation between physicochemical characteristics and binding capacities of chitosan products. J Food Sci 65:1134–1137

    Article  CAS  Google Scholar 

  • Obied HK, Allen MS, Bedgood DR, Prenzler PD, Robards K, Stockmann R (2005) Bioactivity and analysis of biophenols recovered from olive mill waste. J Agric Food Chem 53:823–837

    Article  CAS  Google Scholar 

  • Pinelo M, Rubilar M, Jerez M, Sineiro J, Núñez MJ (2005) Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J Agric Food Chem 53:2111–2117

    Article  CAS  Google Scholar 

  • Pokorny J, Yanishlieva N, Gordon MH (2001) Antioxidants in food: practical applications. CRC Press, Boca Raton, Boston, New York Washington, DC

    Book  Google Scholar 

  • Pomeroy S, Tupper R, Cehun-Aders M, Nestel P (2001) Oat betaglucan lowers total and LDL-cholesterol. Aust J Nutr Diet 58:51–55

    Google Scholar 

  • Puravankara D, Boghra V, Sharma RS (2000) Effect of antioxidant principles isolated from mango (Mangifera indica L.) seed kernels on oxidative stability of buffalo ghee (butter-fat). J Sci Food Agric 80:522–526

    Article  CAS  Google Scholar 

  • Pyle DJ, Garcia RA, Wen Z (2008) Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. J Agric Food Chem 56:3933

    Article  CAS  Google Scholar 

  • Rosillo-Calle F, de Groot P, Hemstock SL, Woods J (2007) Non-woody biomass and secondary fuels. In: Rosillo-Calle F, de Groot P, Hemstock SL, Woods J (eds) The biomass assessment handbook. Earthscan, London, UK

    Google Scholar 

  • Roukas T (1999) Pullulan production from brewery wastes by Aureobasidium pullulans. World J Microbiol Biotechnol 15:447–450

    Article  CAS  Google Scholar 

  • Sachindra NM et al (2005) Carotenoids in different body components of Indian shrimps. J Sci Food Agric 85:167–172

    Article  CAS  Google Scholar 

  • Sanchez-Rabaneda F, Jauregui O, Lamuela-Raveentos RM, Viladomat F, Bastida J, Codina C (2004) Qualitative analysis of phenolic compounds in apple pomace using liquid chromatography coupled to mass spectrometry in tandem mode. Rapid Commun Mass Spectrom 18:553–563

    Article  CAS  Google Scholar 

  • Schieber A, Hilt P, Streker P, Endress HU, Rentschler C, Carle R (2003) A new process for the combined recovery of pectin and phenolic compounds from apple pomace. Innovat Food Sci Emerg Tech 4(1):99–107

    Article  CAS  Google Scholar 

  • Shin HD, McClendon S, Taylor F, Chen RR (1978) Enzymatic extraction of ferulic acid from agriculture waste for high-valued products. Paper presented at AIChE annual meeting, Cincinnati, OH. Oct 30–Nov 4 2005

    Google Scholar 

  • Shin HY, Lee JY, Choi HS, Lee JH, Kim SW (2011) Production of cephalosporin C using crude glycerol in fed-batch culture of Acremonium chrysogenum M35. J Microbiol 49:753

    Article  CAS  Google Scholar 

  • Someya SYY, Okubo K (2002) Antioxidant compounds from bananas (Musa cavendish). Food Chem 99:351–354

    Article  Google Scholar 

  • Song C (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115:2–32

    Article  CAS  Google Scholar 

  • Spatafora C, Tringali C (2012) Valorization of vegetable waste: identification of bioactive compounds and their chemo-enzymatic optimization. Open Agr J 6:9–16

    Article  CAS  Google Scholar 

  • Stojceska V, Ainsworth P, Plunkett A, Ibanoglu S (2008) The recycling of brewer’s processing by-product into ready-to-eat snacks using extrusion technology. J Cereal Sci 47:469–479

    Article  CAS  Google Scholar 

  • Strati IF, Oreopoulou V (2011) Effect of extraction parameters on the carotenoid recovery from tomato waste. Int J Food Sci Technol 46:23–29

    Article  CAS  Google Scholar 

  • Survase SA, Shaligram NS, Pansuriya RC, Annapure US, Singhal RS (2009) A novel medium for the enhanced production of cyclosporin A by Tolypocladium inflatum MTCC 557 using solid state fermentation. J Microbiol Biotechnol 19(5):462–467

    Article  CAS  Google Scholar 

  • Tang D, Yin G, He Y, Hu S, Li B, Li L, Liang H, Borthakur D (2009) Recovery of protein from brewer’s spent grain by ultrafiltration. Biochem Eng J 48:1–5

    Article  CAS  Google Scholar 

  • Tehranifara A, Selahvarzia Y, Kharrazia M, Bakhshb VJ (2011) High potential of agro-industrial by-products of pomegranate (Punica granatum L.) as the powerful antifungal and antioxidant substances. Ind Crop Prod 34(3):1523–1527

    Article  Google Scholar 

  • United Nations Industrial development organization (2007) Industrial biotechnology and biomass utilisation: Prospects and challenges for the developing world. vienna, pp 1–186

    Google Scholar 

  • Van Dam JEG (2002) “Wet processing of coir—drying, bleaching, dyeing, softening and printing,” CFC/FAO Techno-economic manual No 6

    Google Scholar 

  • Van Dam JEG, de Klerk-Engels B, Struik PC, Rabbinge R (2005) “Securing renewable resources supplies for changing market demands in a biobased economy”- Industrial Crops and Products 21:129–144

    Google Scholar 

  • Varzakakou M, Roukas T, Kotzekidou P (2010) Effect of the ratio of (+) and (−) mating type of Blakeslea trispora on carotene production from cheese whey in submerged fermentation. World J Microbiol Biotechnol 26:2151–2156

    Article  CAS  Google Scholar 

  • Vastrad BM, Neelagund SE (2011) Optimization and Production of Neomycin from Different Agro Industrial Wastes in Solid State Fermentation. Int J Pharm Sci Drug Res 3(2):104–111

    CAS  Google Scholar 

  • Vastrad BM, Neelagund SE (2012) Optimization of process parameters for rifamycin b production under solid state fermentation from Amycolatopsis mediterranean MTCC14. Int J Curr Pharmaceut Res 4(2):101–108

    CAS  Google Scholar 

  • Wu T, Zivanovic S, Draughon FA, Conway WS, Sams CE (2005) Physicochemical properties and bioactivity of fungal chitin and chitosan. J Agric Food Chem 53:3888–3894

    Article  CAS  Google Scholar 

  • Xiao Z, Liu P, Qin JY, Xu P (2007) Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolysate. Appl Microbiol Biotechnol 74(1):61–68

    Article  CAS  Google Scholar 

  • Xu Y, Hanna MA, Isom L (2008) “Green” chemicals from renewable agricultural biomass—a mini review. Open Agr J 2008(2):54–61

    Article  Google Scholar 

  • Yang J, Tan H, Yang R, Sun X, Zhai H, Li K (2011) Astaxanthin production by Phaffia rhodozyma fermentation of cassava residues substrate. Agri Eng Int 13:1–6

    Google Scholar 

  • Yu J (2001) Production of PHA from starchy wastewater via organic acids. J Biotechnol 86:105–112

    Article  CAS  Google Scholar 

  • Zeyada NN, Zeitoum MAM, Barbary OM (2008) Utilization of some vegetables and fruit waste as natural antioxidants alex. J Food Sci Tech 5:1–11

    Google Scholar 

  • Zha W, Shao Z, Frost JW (2004) Rational pathway engineering of type I fatty acid synthase allows the biosynthesis of triacetic acid lactone from d-glucose in vivo. J Am Chem Soc 126:4534–4535

    Article  CAS  Google Scholar 

  • Zheng L, Zheng P, Sun Z, Bai Y, Wang J, Guo X (2007) Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus. Bioresour Technol 98(5):1115–1119

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurpreet Singh Dhillon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kaur, S., Dhillon, G.S., Sarma, S.J., Brar, S.K., Misra, K., Oberoi, H.S. (2014). Waste Biomass: A Prospective Renewable Resource for Development of Bio-Based Economy/Processes. In: Brar, S., Dhillon, G., Soccol, C. (eds) Biotransformation of Waste Biomass into High Value Biochemicals. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8005-1_1

Download citation

Publish with us

Policies and ethics