Skip to main content

Two Models and Algorithms for Bi-Criterion Cell Formation

  • Chapter
  • First Online:
Cell Formation in Industrial Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 79))

Abstract

In this chapter we propose a bi-criterion branch-and-bound algorithm for the cell formation problem. We demonstrate the performance of the algorithm by solving problems from the literature and comparing the results with complete enumeration as well as with the results of metaheuristic algorithms from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arkat J, Hosseini L, Farahani MH (2011) Minimization of exceptional elements and voids in the cell formation problem using a multi-objective genetic algorithm. Expert Syst Appl 38(8):9597–9602

    Article  Google Scholar 

  2. Bajestani MA, Rabbani M, Rahimi-Vahed A, Khoshkhou GB (2009) A multi-objective scatter search for a dynamic cell formation problem. Comput Oper Res 36(3):777–794

    Article  MATH  Google Scholar 

  3. Boulif M, Atif K (2008) A new fuzzy genetic algorithm for the dynamic bi-objective cell formation problem considering passive and active strategies. Int J Approximate Reasoning 47(2):141–165

    Article  MathSciNet  MATH  Google Scholar 

  4. Dimopoulos C (2004) A review of evolutionary multiobjective optimization applications in the area of production research. In: Evolutionary Computation, 2004. CEC2004. Congress on, vol 2, pp 1487–1494

    Google Scholar 

  5. Dimopoulos C (2007) Explicit consideration of multiple objectives in cellular manufacturing. Eng Optim 39(5):551–565

    Article  Google Scholar 

  6. Fontes DBMM, Gaspar-Cunha A (2010) On multi-objective evolutionary algorithms. In: Zopounidis C, Pardalos PM (eds) Handbook of Multicriteria Analysis, Applied Optimization, vol 103, Springer, Berlin, pp 287–310

    Chapter  Google Scholar 

  7. Lee SD, Chen YL (1997) A weighted approach for cellular manufacturing design: minimizing intercell movement and balancing workload among duplicated machines. Int J Prod Res 35(4):1125–1146

    Article  MATH  Google Scholar 

  8. Lei D, Wu Z (2006) Tabu search for multiple-criteria manufacturing cell design. Int J Adv Manuf Tech 28:950–956

    Article  Google Scholar 

  9. Malakooti B, Yang Z (2002) Multiple criteria approach and generation of efficient alternatives for machine-part family formationin group technology. IIE Trans 34:837–846

    Google Scholar 

  10. Mansouri SA, Husseini SM, Newman S (2000) A review of the modern approaches to multi-criteria cell design. Int J Prod Res 38(5):1201–1218

    Article  MATH  Google Scholar 

  11. Neto ARP, Filho EVG (2010) A simulation-based evolutionary multiobjective approach to manufacturing cell formation. Comput Ind Eng 59(1):64–74

    Article  Google Scholar 

  12. Paulavičius R, Žilinskas J, Grothey A (2010) Investigation of selection strategies in branch and bound algorithm with simplicial partitions and combination of Lipschitz bounds. Optim Lett 4:173–183

    Article  MathSciNet  MATH  Google Scholar 

  13. Su CT, Hsu CM (1998) Multi-objective machine-part cell formation through parallel simulated annealing. Int J Prod Res 36(8):2185–2207

    Article  MATH  Google Scholar 

  14. Tavakkoli-Moghaddam R, Ranjbar-Bourani M, Amin G, Siadat A (2012) A cell formation problem considering machine utilization and alternative process routes by scatter search. J Intell Manuf 23:1127–1139

    Article  Google Scholar 

  15. Venugopal V, Narendran T (1992) A genetic algorithm approach to the machine-component grouping problem with multiple objectives. Comput Ind Eng 22(4):469–480

    Article  Google Scholar 

  16. Žilinskas A, Žilinskas J (2009) Branch and bound algorithm for multidimensional scaling with city-block metric. J Global Optim 43:357–372

    Article  MathSciNet  MATH  Google Scholar 

  17. Žilinskas J, Goldengorin B, Pardalos PM (2013) Branch and bound algorithm for bi-criterion cell formation problems. Comput Oper Res xx:Submitted

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goldengorin, B., Krushinsky, D., Pardalos, P.M. (2013). Two Models and Algorithms for Bi-Criterion Cell Formation. In: Cell Formation in Industrial Engineering. Springer Optimization and Its Applications, vol 79. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8002-0_7

Download citation

Publish with us

Policies and ethics