Skip to main content

The p-Median Problem

  • Chapter
  • First Online:
Book cover Cell Formation in Industrial Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 79))

Abstract

This chapter focuses on the p-median problem (PMP) and its properties. We consider a pseudo-Boolean formulation of the PMP, demonstrate its advantages and derive the most compact MILP formulation for the PMP within the class of mixed-Boolean linear programming formulations. Further, we develop two applications of the pseudo-Boolean approach: a construction of PMP instances that are expected to be complex for any solution algorithm and a definition of an equivalence relation for PMP instances. By equivalence we mean that solving one instance gives a solution for all the instances from its equivalence class. The proposed equivalence relation can be extended to any other problem modelled via the PMP, for example, the cell formation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    MINLEAF is a polynomial-time algorithm and is essentially based on finding the maximum cardinality matching.

References

  1. Adil GK, Rajamani D (2000) The tradeoff between intracell and intercell moves in group technology cell formation. J Manuf Syst 19(5):305–317

    Google Scholar 

  2. Ahi A, Aryanezhad M, Ashtiani B, Makui A (2009) A novel approach to determine cell formation, intracellular machine layout and cell layout in the CMS problem based on TOPSIS method. Comput Oper Res 36(5):1478–1496

    MATH  Google Scholar 

  3. Albadawi Z, Bashir HA, Chen M (2005) A mathematical approach for the formation of manufacturing cells. Comput Ind Eng 48:3–21

    Google Scholar 

  4. AlBdaiwi B, Goldengorin B, Sierksma G (2009) Equivalent instances of the simple plant location problem. Comput Math Appl 57:812–820

    MathSciNet  MATH  Google Scholar 

  5. AlBdaiwi B, Ghosh D, Goldengorin B (2011) Data aggregation for p-median problems. J Comb Optim 21:348–363

    MathSciNet  Google Scholar 

  6. Arkat J, Hosseini L, Farahani MH (2011) Minimization of exceptional elements and voids in the cell formation problem using a multi-objective genetic algorithm. Expert Syst Appl 38(8):9597–9602

    Google Scholar 

  7. Ashayeri J, Heuts R, Tammel B (2005) A modified simple heuristic for the p-median problem, with facilities design applications. Robot Com-Int Manuf 21(4–5):451–464

    Google Scholar 

  8. Askin R, Standridge C (1993) Modeling and Analysis of Manufacturing Systems. Wiley, New York

    MATH  Google Scholar 

  9. Avella P, Sassano A (2001) On the p-median polytope. Math Program 89:395–411

    MathSciNet  MATH  Google Scholar 

  10. Avella P, Sforza A (1999) Logical reduction tests for the p-median problem. Ann Oper Res 86:105–115

    MathSciNet  MATH  Google Scholar 

  11. Avella P, Sassano A, Vasil’ev I (2007) Computational study of large-scale p-median problems. Math Program 109:89–114

    MathSciNet  MATH  Google Scholar 

  12. Bajestani MA, Rabbani M, Rahimi-Vahed A, Khoshkhou GB (2009) A multi-objective scatter search for a dynamic cell formation problem. Comput Oper Res 36(3):777–794

    MATH  Google Scholar 

  13. Balakrishnan J, Cheng CH (2007) Multi-period planning and uncertainty issues in cellular manufacturing: a review and future directions. Eur J Oper Res 177:281–309

    MATH  Google Scholar 

  14. Ballakur A, Steudel HJ (1987) A within cell utilization based heuristic for designing cellular manufacturing systems. Int J Prod Res 25:639–655

    Google Scholar 

  15. Batsyn M, Bychkov I, Goldengorin B, Pardalos PM, Sukhov P (2012) Pattern-Based Heuristic for the Cell Formation Problem in Group Technology, vol 32, Springer, New York, pp 11–50

    Google Scholar 

  16. Beasley J (1985) A note on solving large p-median problems. Eur J Oper Res 21:270–273

    MathSciNet  MATH  Google Scholar 

  17. Belenky A (2008) Mathematical modeling of voting systems and elections: theory and applications. Math Comput Model 48(9–10):1295–1676

    MathSciNet  MATH  Google Scholar 

  18. Beltran C, Tadonki C, Vial JP (2006) Solving the p-median problem with a semi-lagrangian relaxation. Comput Optim Appl 35:239–260

    MathSciNet  MATH  Google Scholar 

  19. Benjaafar S, Sheikhzadeh M (2000) Design of flexible plant layouts. IIE Trans 32:309–322

    Google Scholar 

  20. Beresnev VL (1973) On a problem of mathematical standardization theory. Upravliajemyje Sistemy 11:43–54, in Russian

    Google Scholar 

  21. Bhatnagar R, Saddikuti V (2010) Models for cellular manufacturing systems design: matching processing requirements and operator capabilities. J Opl Res Soc 61(5):827–839

    MATH  Google Scholar 

  22. Bokhorst JAC, Slomp J, Molleman E (2004) Development and evaluation of cross-training policies for manufacturing teams. IIE Trans 36(10):969–984

    Google Scholar 

  23. Boros E, Hammer PL (2002) Pseudo-boolean optimization. Discrete Appl Math 123:155–225

    MathSciNet  MATH  Google Scholar 

  24. Boulif M, Atif K (2006) An exact multiobjective epsilon-constraint approach for the manufacturing cell formation problem. In: Service Systems and Service Management, 2006 International Conference on, vol 2, pp 883–888

    Google Scholar 

  25. Boulif M, Atif K (2008) A new fuzzy genetic algorithm for the dynamic bi-objective cell formation problem considering passive and active strategies. Int J Approximate Reasoning 47(2):141–165

    MathSciNet  MATH  Google Scholar 

  26. Briant O, Naddef D (2004) The optimal diversity management problem. Oper Res 52:515–526

    MathSciNet  MATH  Google Scholar 

  27. Brusco MJ, Köhn HF (2008) Optimal partitioning of a data set based on the p-median problem. Psychometrika 73(1):89–105

    MathSciNet  MATH  Google Scholar 

  28. Burbidge JL (1961) The new approach to production. Prod Eng 40(12):769–784

    Google Scholar 

  29. Burbidge JL (1991) Production flow analysis for planning group technology. J Oper Manag 10(1):5–27

    Google Scholar 

  30. Burlet M, Goldschmidt O (1997) A new and improved algorithm for the 3-cut problem. Oper Res Lett 21:225–227

    MathSciNet  MATH  Google Scholar 

  31. Cao D, Chen M (2004) Using penalty function and tabu search to solve cell formation problems with fixed cell cost. Comput Oper Res 31(1):21–37++

    Google Scholar 

  32. Chan FTS, Lau KW, Chan LY, Lo VHY (2008) Cell formation problem with consideration of both intracellular and intercellular movements. Int J Prod Res 46(10):2589–2620

    MATH  Google Scholar 

  33. Chan HM, Milner DA (1982) Direct clustering algorithm for group formation in cellular manufacture. J Manuf Syst 1(1):65–75

    Google Scholar 

  34. Chandra C, Irani SA, Arora SR (1993) Clustering effectiveness of permutation generation heuristics for machine-part matrix clustering. J Manuf Syst 12(5):338–408

    Google Scholar 

  35. Chandrasekharan MP, Rajagopalan R (1986) An ideal seed non-hierarchical clustering algorithm for cellular manufacturing. Int J Prod Res 24(2):451–463

    MATH  Google Scholar 

  36. Chandrasekharan MP, Rajagopalan R (1986) MODROC: an extension of rank order clustering for group technology. Int J Prod Res 24(5):1221–1233

    Google Scholar 

  37. Chandrasekharan MP, Rajagopalan R (1987) ZODIAC–an algorithm for concurrent formation of part-families and machine-cells. Int J Prod Res 25(6):835–850

    MATH  Google Scholar 

  38. Chattopadhyay M, Dan PK, Mazumdar S (2012) Application of visual clustering properties of self organizing map in machine part cell formation. Appl Soft Comput 12(2):600–610

    Google Scholar 

  39. Chen JS, Heragu SS (1999) Stepwise decomposition approaches for large scale cell formation problems. Eur J Oper Res 113:64–79

    MATH  Google Scholar 

  40. Cheng CH, Gupta YP, Lee WH, Wong KF (1998) A TSP-based heuristic for forming machine groups and part families. Int J Prod Res 36(5):1325–1337

    MATH  Google Scholar 

  41. Christofides N (1975) Graph Theory: An Algorithmic Approach. Academic Press Inc. Ltd., London

    MATH  Google Scholar 

  42. Chu CH, Hayya JC (1991) Fuzzy clustering approach to manufacturing cell formation. Int J Prod Res 29(7):1475–1487

    Google Scholar 

  43. Church RL (2003) COBRA: a new formulation of the classic p-median location problem. Ann Oper Res 122:103–120

    MathSciNet  MATH  Google Scholar 

  44. Church RL (2008) BEAMR: an exact and approximate model for the p-median problem. Comput Oper Res 35:417–426

    MathSciNet  MATH  Google Scholar 

  45. Cornuejols G, Nemhauser G, Wolsey LA (1980) A canonical representation of simple plant location problems and its applications. SIAM J Matrix Anal Appl (SIMAX) 1(3):261–272

    MathSciNet  MATH  Google Scholar 

  46. Cornuejols G, Nemhauser G, Wolsey LA (1990) The uncapacitated facility location problem. In: Mirchandani P, Francis RL (eds) Discrete Location Theory, Wiley-Interscience, New York

    Google Scholar 

  47. Dearing P, Hammer PL, Simeone B (1992) Boolean and graph theoretic formulations of the simple plant location problem. Transport Sci 26(2):138–148

    MATH  Google Scholar 

  48. Deutsch SJ, Freeman SF, Helander M (1998) Manufacturing cell formation using an improved p-median model. Comput Ind Eng 34(1):135–146

    Google Scholar 

  49. DiMaggio PA, McAllister SR, Floudas CA, Feng XJ, Rabinowitz JD, Rabitz HA (2008) Biclustering via optimal re-ordering of data matrices in systems biology: rigorous methods and comparative studies. BMC Bioinformatics 9(1):458

    Google Scholar 

  50. Dimopoulos C (2004) A review of evolutionary multiobjective optimization applications in the area of production research. In: Evolutionary Computation, 2004. CEC2004. Congress on, vol 2, pp 1487–1494

    Google Scholar 

  51. Dimopoulos C (2007) Explicit consideration of multiple objectives in cellular manufacturing. Eng Optim 39(5):551–565

    Google Scholar 

  52. Dimopoulos C, Mort N (2001) A hierarchical clustering methodology based on genetic programming for the solution of simple cell-formation problems. Int J Prod Res 39(1):1–19

    MATH  Google Scholar 

  53. Doulabi SHH, Hojabri H, Seyed-Alagheband SA, Jaafari AA, Davoudpour H (2009) Two-phase approach for solving cell-formation problem in cell manufacturing. In: Engineering and Computer Science WCECS, 2009 World Congress on, San Francisco, USA, pp 1226–1231

    Google Scholar 

  54. Du DZ, Pardalos PM (eds) (1995) Minimax and Applications. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  55. Elloumi S (2010) A tighter formulation of the p-median problem. J Comb Optim 19:69–83

    MathSciNet  MATH  Google Scholar 

  56. Fallah-Alipour K, Shamsi R (2008) A mathematical model for cell formation in CMS using sequence data. J Ind Syst Eng 2(2):144–153

    Google Scholar 

  57. Filho EVG, Tiberti AJ (2006) A group genetic algorithm for the machine cell formation problem. Int J Prod Econ 102:1–21

    Google Scholar 

  58. Flanders RE (1925) Design, manufacture and production control of a standard machine. Trans ASME 46:691–738

    Google Scholar 

  59. Fontes DBMM, Gaspar-Cunha A (2010) On multi-objective evolutionary algorithms. In: Zopounidis C, Pardalos PM (eds) Handbook of Multicriteria Analysis, Applied Optimization, vol 103, Springer, Berlin, pp 287–310

    Google Scholar 

  60. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman, USA

    MATH  Google Scholar 

  61. Goldengorin B (1983) A correcting algorithm for solving some discrete optimization problems. Soviet Math. Dokl 27, 620–623.

    Google Scholar 

  62. Gindy NNZ, Ratchev TM, Case K (1995) Component grouping for gt applications-a fuzzy clustering approach with validity measure. Int J Prod Res 33(9):2493–2509

    MATH  Google Scholar 

  63. Goldengorin B (1995) Requirements of Standards: Optimization Models and Algorithms. Russian Operations Research Co., Hoogezand, The Netherlands

    Google Scholar 

  64. Goldengorin B (2013) Data correcting approach for routing and location in networks. In: Pardalos PM, Du DZ, Graham RL (eds) Handbook of Combinatorial Optimization, Springer, New York

    Google Scholar 

  65. Goldengorin B, Krushinsky D (2011) Complexity evaluation of benchmark instances for the p-median problem. Math Comput Model 53:1719–1736

    MathSciNet  MATH  Google Scholar 

  66. Goldengorin B, Krushinsky D (2011) A computational study of the pseudo-Boolean approach to the p-median problem applied to cell formation. Lect Notes Comput Sci 6701:503–516

    Google Scholar 

  67. Goldengorin B, Pardalos P (2012) Data Correcting Approaches in Combinatorial optimization. Springer, New York

    MATH  Google Scholar 

  68. Goldengorin B, Tijssen GA, Ghosh D, Sierksma G (2003) Solving the simple plant location problems using a data correcting approach. J Global Optim 25:377–406

    MathSciNet  MATH  Google Scholar 

  69. Goldengorin B, Krushinsky D, Slomp J (2012) Flexible PMP approach for large-size cell formation. Oper Res 60(5):1157–1166

    MathSciNet  MATH  Google Scholar 

  70. Goldschmidt O, Hochbaum DS (1994) A polynomial algorithm for the k-cut problem for fixed k. Math Oper Res 19(1):24–37

    MathSciNet  MATH  Google Scholar 

  71. Goncalves JF, Resende MCG (2004) An evolutionary algorithm for manufacturing cell formation. Comput Ind Eng 47:247–273

    Google Scholar 

  72. Gower JC, Ross GJS (1969) Minimum spanning trees and single linkage cluster analysis. Appl Stat 18(1):54–64

    MathSciNet  Google Scholar 

  73. Guerrero F, Lozano S, Smith KA, Canca D, Kwok T (2002) Manufacturing cell formation using a new self-organizing neural network. Comput Ind Eng 42(2–4):377–382

    Google Scholar 

  74. Gutin G, Razgon I, Kim EJ (2008) Minimum leaf out-branching and related problems. Lect Notes Comput Sci 5034:235–246

    Google Scholar 

  75. Hakimi SL (1964) Optimum locations of switching centers and the absolute centers and medians of a graph. Oper Res 12:450–459

    MATH  Google Scholar 

  76. Hakimi SL (1965) Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Oper Res 13:462–475

    MathSciNet  MATH  Google Scholar 

  77. Hammer PL (1968) Plant location–a pseudo-boolean approach. Isr J Technol 6:330–332

    MATH  Google Scholar 

  78. Hsu CP (1990) Similarity coefficient approaches to machine-component cell formation in cellular manufacturing. a comparative study. PhD thesis, Department of Industrial and Systems Engineering. University of Wisconsin, Milwaukee, USA

    Google Scholar 

  79. Hyde WF (1981) Improving Productivity by Classification, Coding and Data Base Standardization: The Key to Maximizing CAD/CAM and Group Technology. Marcel Dekker, New York

    Google Scholar 

  80. Kao Y, Moon YB (1991) A unified group technology implementation using the backpropagation learning rule of neural networks. Comput Ind Eng 20(4):425–437

    Google Scholar 

  81. Kaparthi S, Suresh NC (1992) Machine-component cell formation in group technology: a neural network approach. Int J Prod Res 30(6):1353–1367

    MATH  Google Scholar 

  82. Kariv O, Hakimi SL (1979) An algorithmic approach to network location problems. II: The p-medians. SIAM J Appl Math 37:539–560

    MathSciNet  MATH  Google Scholar 

  83. Keeling KB, Brown EC, James TL (2007) Grouping efficiency measures and their impact on factory measures for the machine-part cell formation problem: a simulation study. Eng Appl Artif Intel 20:63–78

    Google Scholar 

  84. King JR (1980) Machine-component grouping in production flow analysis: an approach using a rank order clustering algorithm. Int J Prod Res 18(2):213–232

    Google Scholar 

  85. Koskosidis Y, Powell W (1992) Clustering algorithms for consolidation of customer orders into vehicle shipments. Transport Res 26B:365–379

    Google Scholar 

  86. Krushinsky D, Goldengorin B (2012) An exact model for cell formation in group technology. Comput Manag Sci 9(3):323–338

    MathSciNet  Google Scholar 

  87. Kumar CS, Chandrasekharan MP (1990) Grouping efficacy: a quantitative criterion for goodness of block diagonal forms of binary matrices in group technology. Int J Prod Res 28(2):233–243

    Google Scholar 

  88. Kusiak A (2000) Computational Intelligence in Design and Manufacturing. Wiley-Interscience, New York, USA

    Google Scholar 

  89. Kusiak A, Chow WS (1987) Efficient solving of the group technology problem. J Manuf Syst 6(2):117–124

    Google Scholar 

  90. Kusiak A, Chow WS (1988) Decomposition of manufacturing systems. IEEE J Robot Autom 4(5):457–471

    Google Scholar 

  91. Lee SD, Chen YL (1997) A weighted approach for cellular manufacturing design: minimizing intercell movement and balancing workload among duplicated machines. Int J Prod Res 35(4):1125–1146

    MATH  Google Scholar 

  92. Lei D, Wu Z (2006) Tabu search for multiple-criteria manufacturing cell design. Int J Adv Manuf Tech 28:950–956

    Google Scholar 

  93. Liang M, Zolfaghari S (1999) Machine cell formation considering processing times and machine capacities: an ortho-synapse Hopfield neural network approach. J Intell Manuf 10:437–447

    Google Scholar 

  94. OR Library (1990) Available at the web address http://people.brunel.ac.uk/~mastjjb/jeb/orlib/pmedinfo.html

  95. TSP Library (1995) Available at the web address http://www.iwr.uniheidelberg.de/groups/comopt/software/TSPLIB95/

  96. Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data analysis: a survey. IEEE-ACM T Comput BI 1(1):24–45

    Google Scholar 

  97. Mak KL, Wong YS, Wang XX (2000) An adaptive genetic algorithm for manufacturing cell formation. Int J Adv Manuf Tech 16:491–497

    Google Scholar 

  98. Malakooti B, Yang Z (2002) Multiple criteria approach and generation of efficient alternatives for machine-part family formationin group technology. IIE Trans 34:837–846

    Google Scholar 

  99. Malave CO, Ramachandran S (1991) Neural network-based design of cellular manufacturing systems. J Intell Manuf 2(5):305–314

    Google Scholar 

  100. Mansouri SA, Husseini SM, Newman S (2000) A review of the modern approaches to multi-criteria cell design. Int J Prod Res 38(5):1201–1218

    MATH  Google Scholar 

  101. Mavridou TD, Pardalos PM (1997) Simulated annealing and genetic algorithms for the facility layout problem: a survey. Comput Optim Appl 7(1):111–126

    MathSciNet  MATH  Google Scholar 

  102. McAuley J (1972) Machine grouping for efficient production. Prod Eng 51(2):53–57

    Google Scholar 

  103. McCormick WT, Schweitzer PJ, White TW (1972) Problem decomposition and data reorganization by a clustering technique. Oper Res 20(5):993–1009

    MATH  Google Scholar 

  104. Miltenburg J, Zhang W (1991) A comparative evaluation of nine well-known algorithms for solving the cell formation problem in group technology. J Oper Manag 10(1):44–72

    Google Scholar 

  105. Mitrofanov SP (1946) Scientific Principles of Group Technology. Leningrad University, Leningrad, in Russian

    Google Scholar 

  106. Mitrofanov SP (1959) Nauchnie osnovi gruppovoy tehnologii. Lenizdat, USSR, in Russian

    Google Scholar 

  107. Mitrofanov SP (1966) Scientific Principles of Group Technology, Part I. National Lending Library of Science and Technology, Boston, MA

    Google Scholar 

  108. Mladenovic N, Brimberg J, Hansen P, Moreno-Perez JA (2007) The p-median problem: a survey of metaheuristic approaches. Eur J Oper Res 179(3):927–939

    MathSciNet  MATH  Google Scholar 

  109. Montreuil B, Venkatadri U, Rardin RL (1999) Fractal layout organization for job shop environments. Int J Prod Res 37(3):501–521

    MATH  Google Scholar 

  110. Mosier CT (1989) Experiment investigating the application of clustering procedures and similarity coefficients to the GT machine cell formation problem. Int J Prod Res 27(10):1811–1835

    Google Scholar 

  111. Mulvey J, Beck MP (1984) Solving capacitated clustering problems. Eur J Oper Res 18:339–348

    MATH  Google Scholar 

  112. Nair GJ, Narendran TT (1998) CASE: a clustering algorithm for cell formation with sequence data. Int J Prod Res 36(1):157–180

    MATH  Google Scholar 

  113. Narayanaswamy P, Bector CR, Rajamani D (1996) Fuzzy logic concepts applied to machine-component matrix formation in cellular manufacturing. Eur J Oper Res 93(1):88–97

    MATH  Google Scholar 

  114. Neto ARP, Filho EVG (2010) A simulation-based evolutionary multiobjective approach to manufacturing cell formation. Comput Ind Eng 59(1):64–74

    Google Scholar 

  115. Ng SM (1991) Bond energy, rectilinear distance and a worst-case bound for the group technology problem. J Opl Res Soc 42(7):571–578

    Google Scholar 

  116. Ng SM (1993) Worst-case analysis of an algorithm for cellular manufacturing. Eur J Oper Res 69:384–398

    MATH  Google Scholar 

  117. Ng SM (1996) On the characterization and measure of machine cells in group technology. Oper Res 44(5):735–744

    MATH  Google Scholar 

  118. Onwubolu GC, Mutingi M (2001) A genetic algorithm approach to cellular manufacturing systems. Comput Ind Eng 39(1–2):125–144

    Google Scholar 

  119. Owsinski J (2009) Machine-part grouping and cluster analysis: similarities, distances and grouping criteria. Bull Pol Ac: Tech 57(3):217–228

    Google Scholar 

  120. Papadimitrou C, Steiglitz K (1998) Combinatorial Optimization: Algorithms and Complexity. Dover, Mineola, New York, USA

    Google Scholar 

  121. Pardalos PM, Rendl F, Wolkowicz H (1994) The Quadratic Assignment Problem: A Survey and Recent Developments, Providence, RI: AMS, pp 1–42

    Google Scholar 

  122. Park S, Suresh NC (2003) Performance of fuzzy ART neural network and hierarchical clustering for part machine grouping based on operation sequences. Int J Prod Res 41(14):3185–3216

    MATH  Google Scholar 

  123. Paulavičius R, Žilinskas J, Grothey A (2010) Investigation of selection strategies in branch and bound algorithm with simplicial partitions and combination of Lipschitz bounds. Optim Lett 4:173–183

    MathSciNet  MATH  Google Scholar 

  124. Pentico DW (2008) The assortment problem: a survey. Eur J Oper Res 190:295–309

    MathSciNet  Google Scholar 

  125. Pirkul H (1987) Efficient algorithms for the capacitated concentrator location problem. Comput Oper Res 14(3):197–208

    MathSciNet  MATH  Google Scholar 

  126. Rajagopalan R, Batra L (1975) Design of cellular production systems: a graph theoretic approach. Int J Prod Res 13(6):567–579

    Google Scholar 

  127. Ravi R, Sinha A (2008) Approximating k-cuts using network strength as a lagrangean relaxation. Eur J Oper Res 186:77–90

    MathSciNet  MATH  Google Scholar 

  128. Reese J (2006) Solution methods for the p-median problem: an annotated bibliography. Networks 48(3):125–142

    MathSciNet  MATH  Google Scholar 

  129. Resende M, Werneck R (2003) On the implementation of a swap-based local search procedure for the p-median problem. In: Ladner R (ed) Algorithm Engineering and Experiments (ALENEX’03), 2003 Fifth Workshop on, SIAM, Baltimore, USA, pp 119–127

    Google Scholar 

  130. ReVelle CS, Swain R (1970) Central facilities location. Geogr Anal 2:30–42

    Google Scholar 

  131. ReVelle CS, Eiselt HA, Daskin MS (2008) A bibliography for some fundamental problem categories in discrete location science. Eur J Oper Res 184:817–848

    MathSciNet  MATH  Google Scholar 

  132. Robertson N, Seymour P (1995) Graph minors. XIII. The disjoint path problem. J Comb Theory B 63:65–110

    MathSciNet  MATH  Google Scholar 

  133. Rosing KE, ReVelle CS, Rosing-Vogelaar H (1979) The p-median and its linear programming relaxation: an approach to large problems. J Opl Res Soc 30:815–822

    MATH  Google Scholar 

  134. Saran H, Vazirani V (1995) Finding k-cuts within twice the optimal. SIAM J Comput 24(1):101–108

    MathSciNet  MATH  Google Scholar 

  135. Sarker BR (2001) Measures of grouping efficiency in cellular manufacturing systems. Eur J Oper Res 130:588–611

    MATH  Google Scholar 

  136. Schrijver A (2003) Combinatorial Optimization. Polyhedra and Efficiency. Springer, Berlin

    MATH  Google Scholar 

  137. Seifoddini H, Wolfe PM (1986) Application of the similarity coefficient method in group technology. IIE Trans 18(3):271–277

    Google Scholar 

  138. Selim HM, Askin RG, Vakharia AJ (1998) Cell formation in group technology: review, evaluation and directions for future research. Comput Ind Eng 34(1):3–20

    Google Scholar 

  139. Senne ELF, Lorena LAN, Pereira MA (2005) A branch-and-price approach to p-median location problems. Comput Oper Res 32:1655–1664

    MathSciNet  Google Scholar 

  140. Shafer SM, Rogers DF (1993) Similarity and distance measures for cellular manufacturing. part I. A survey. Int J Prod Res 31(5):1133–1142

    Google Scholar 

  141. Slomp J, Chowdary BV, Suresh NC (2005) Design of virtual manufacturing cells: a mathematical programming approach. Robot Com-Int Manuf 21:273–288

    Google Scholar 

  142. Spiliopoulos K, Sofianopoulou S (1998) An optimal tree search method for the manufacturing systems cell formation problem. Eur J Oper Res 105(3):537–551

    MATH  Google Scholar 

  143. Srinivasan G (1994) A clustering algorithm for machine cell formation in group technology using minimum spanning trees. Int J Prod Res 32(9):2149–2158

    MATH  Google Scholar 

  144. Srinivasan G, Narendran TT (1991) GRAFICS–a nonhierarchical clustering-algorithm for group technology. Int J Prod Res 29(3):463–478

    Google Scholar 

  145. Su CT, Hsu CM (1998) Multi-objective machine-part cell formation through parallel simulated annealing. Int J Prod Res 36(8):2185–2207

    MATH  Google Scholar 

  146. Suresh NC (1992) Partitioning work centers for group technology: analytical extension and shop-level simulation investigation. Decision Sci 23:267–290

    Google Scholar 

  147. Suresh NC, Slomp J (2001) A multi-objective procedure for labour assignments and grouping in capacitated cell formation problems. Int J Prod Res 39(18):4103–4131

    MATH  Google Scholar 

  148. Suresh NC, Slomp J, Kaparthi S (1999) Sequence-dependent clustering of parts and machines: a fuzzy ART neural network approach. Int J Prod Res 37(12):2793–2816

    MATH  Google Scholar 

  149. Tavakkoli-Moghaddam R, Ranjbar-Bourani M, Amin G, Siadat A (2012) A cell formation problem considering machine utilization and alternative process routes by scatter search. J Intell Manuf 23:1127–1139

    Google Scholar 

  150. Tharumarajah A, Wells AJ, Nemes L (1996) Comparison of the bionic, fractal and holonic manufacturing system concepts. Int J Comput Integ M 9(3):217–226

    Google Scholar 

  151. Venugopal V, Narendran T (1992) A genetic algorithm approach to the machine-component grouping problem with multiple objectives. Comput Ind Eng 22(4):469–480

    Google Scholar 

  152. Venugopal V, Narendran TT (1994) Machine-cell formation through neural network models. Int J Prod Res 32(9):2105–2116

    MATH  Google Scholar 

  153. Vin E (2010) Genetic algorithm applied to generalized cell formation problems. PhD thesis, Université Libre de Bruxelles, Faculté des Sciences Appliquées

    Google Scholar 

  154. Waghodekar PH, Sahu S (1984) Machine-component cell formation in group technology: MACE. Int J Prod Res 22(6):937–948

    Google Scholar 

  155. Wang J, Roze C (1997) Formation of machine cells and part families: a modified p-median model and a comparative study. Int J Prod Res 35(5):1259–1286

    MATH  Google Scholar 

  156. Wei JC, Kern GM (1989) Commonality analysis. A linear cell clustering algorithm for group technology. Int J Prod Res 27(12):2053–2062

    Google Scholar 

  157. Wemmerlov U, Hyer NL (1986) Procedures for the part family/machine group identification problem in cellular manufacturing. J Oper Manag 6(2):125–147

    Google Scholar 

  158. Wolsey LA (2008) Mixed integer programming. In: Wiley Encyclopedia of Computer Science and Engineering, Wiley, Inc., Chichester

    Google Scholar 

  159. Won Y, Currie KR (2006) An effective p-median model considering production factors in machine cell/part family formation. J Manuf Syst 25(1):58–64

    Google Scholar 

  160. Won Y, Lee KC (2004) Modified p-median approach for efficient GT cell formation. Comput Ind Eng 46(3):495–510

    MathSciNet  Google Scholar 

  161. Xambre AR, Vilarinho PM (2003) A simulated annealing approach for manufacturing cell formation with multiple identical machines. Eur J Oper Res 151(2):434–446

    MathSciNet  MATH  Google Scholar 

  162. Xu H, Wang HPB (1989) Part family formation for GT applications based on fuzzy mathematics. Int J Prod Res 27(9):1637–1651

    Google Scholar 

  163. Yang MS, Yang JH (2008) Machine-part cell formation in group technology using a modified ART1 method. Eur J Oper Res 188(1):140–152

    MATH  Google Scholar 

  164. Yin Y, Yasuda K (2006) Similarity coefficient methods applied to the cell formation problem: a taxonomy and review. Int J Prod Econ 101(2):329–352

    Google Scholar 

  165. Žilinskas A, Žilinskas J (2009) Branch and bound algorithm for multidimensional scaling with city-block metric. J Global Optim 43:357–372

    MathSciNet  MATH  Google Scholar 

  166. Žilinskas J, Goldengorin B, Pardalos PM(2013) Branch and bound algorithm for bi-criterion cell formation problems. Unpublished manuscript.

    Google Scholar 

  167. Zopounidis C, Pardalos PM (eds) (2010) Handbook of Multicriteria Analysis. Springer, Berlin

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goldengorin, B., Krushinsky, D., Pardalos, P.M. (2013). The p-Median Problem. In: Cell Formation in Industrial Engineering. Springer Optimization and Its Applications, vol 79. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8002-0_2

Download citation

Publish with us

Policies and ethics