Skip to main content

Antenna Arrays: The Conventional Paradigm and an Emerging New Approach

  • Chapter
  • First Online:
Parasitic Antenna Arrays for Wireless MIMO Systems
  • 1702 Accesses

Abstract

In this introductory chapter we will review the conventional paradigm through which antenna arrays can be used for spatial multiplexing and other spatially enabled wireless communication techniques. We will focus on Multiple Input/Multiple Output (MIMO) systems and provide a brief overview of their basic attributes, as well as the most important limitations. Then we will refer to the phenomenon of mutual coupling, which is typically viewed as a foe of MIMO systems and hint to the fact that it can be actually used as an enabler of advanced spatial processing with the use of parasitic antenna arrays. The goal of the chapter is to pave the way for the detailed elaboration of how parasitic antennas can be used for such spatially enabled communication that will follow in the subsequent chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Paulraj, C.B. Papadias, Space-time processing for wireless communications. IEEE Signal Process. Mag. 14(6), 49–83 (1997)

    Article  Google Scholar 

  2. L. Godara, Applications of antenna arrays to mobile communications. I. Performance improvement, feasibility, and system considerations. Proc. IEEE 85(7), 1031–1060 (1997)

    Google Scholar 

  3. L. Godara, Application of antenna arrays to mobile communications. II. Beam-forming and direction-of-arrival considerations. Proc. IEEE 85(8), 1195–1245 (1997)

    Google Scholar 

  4. S. Uda, Wireless beam of short electric waves. J. Inst. Electr. Eng. Jpn. 273–282 (1926)

    Google Scholar 

  5. R.T. Compton Jr., An adaptive array in a spread-spectrum communication system. Proc. IEEE 66(3), 289–298 (1978)

    Article  Google Scholar 

  6. T. Rappaport, Smart Antennas: Adaptive Arrays, Algorithms, & Wireless Position Location (Institute of Electrical and Electronics Engineers, Inc., New York, 1998)

    Google Scholar 

  7. G.J. Foschini, Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Tech. J., 1(2), 41–59 (1996)

    Article  Google Scholar 

  8. E. Telatar, Capacity of multi-antenna Gaussian channels. Eur. Trans. Telecomm. 10(6), 585–596 (1996)

    Article  Google Scholar 

  9. G.J. Foschini, M.J. Gans, On limits of wireless communication in a fading environment when using multiple antennas. Wirel. Pers. Commun. 6(3), 311–335 (1998)

    Article  Google Scholar 

  10. A. Paulraj, R. Nabar, D. Gore, Introduction to Space-Time Wireless Communications (Cambridge University Press, New York, 2003)

    Google Scholar 

  11. H. Huang, C.B. Papadias, S. Venkatesan, MIMO Communication for Cellular Networks (Springer, Berlin, 2011)

    Google Scholar 

  12. H. Bolcskei, D. Gesbert, C.B. Papadias, A.-J. Van Der Veen, Space-Time Wireless Systems: From Array Processing to MIMO Communications (Cambridge University Press, New York, 2006)

    Google Scholar 

  13. R. Harrington, Reactively controlled directive arrays. IEEE Trans. Antennas Propag. 26(3), 390–395 (1978)

    Article  Google Scholar 

  14. R. Dinger, Reactively steered adaptive array using microstrip patch elements at 4 GHz. IEEE Tran. Antennas Propag. 32(8), 848–856 (1984)

    Article  Google Scholar 

  15. R. Dinger, A planar version of a 4.0 GHz reactively steered adaptive array. IEEE Trans. Antennas Propag. 34(3), 427–431 (1986)

    Google Scholar 

  16. S. Preston, D. Thiel, T. Smith, S. O’Keefe, J.W. Lu, Base-station tracking in mobile communications using a switched parasitic antenna array. IEEE Trans. Antennas Propag. 46(6), 841–844 (1998)

    Article  Google Scholar 

  17. R. Vaughan, Switched parasitic elements for antenna diversity. IEEE Trans. Antennas Propag. 47(2), 399–405 (1999)

    Article  MathSciNet  Google Scholar 

  18. K. Gyoda, T. Ohira, Design of electronically steerable passive array radiator (ESPAR) antennas, in IEEE Antennas and Propagation Society International Symposium, 2000, vol. 2 (2000), pp. 922–925

    Google Scholar 

  19. T. Ohira, K. Gyoda, Electronically steerable passive array radiator antennas for low-cost analog adaptive beamforming, in IEEE International Conference on Phased Array Systems and Technology, 2000 (2000), pp. 101–104

    Google Scholar 

  20. V. Barousis, A. Kanatas, A. Kalis, C.B. Papadias, A stochastic beamforming algorithm for ESPAR antennas. IEEE Antennas Wirel. Propag. Lett. 7, 745–748 (2008)

    Article  Google Scholar 

  21. G.J. Foschini, Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Lab. Tech. J. 41–59 (1996)

    Google Scholar 

  22. J. Winters, On the capacity of radio communication systems with diversity in a Rayleigh fading environment. IEEE J. Sel. Areas Commun. 5(5), 871–878 (1987)

    Article  Google Scholar 

  23. A. Lozano, Per-antenna rate and power control for MIMO layered architectures in the low- and high-power regimes. IEEE Trans. Commun. 58(2), 652–659 (2010)

    Article  Google Scholar 

  24. F. Farrokhi, G. Foschini, A. Lozano, R. Valenzuela, Link-optimal space-time processing with multiple transmit and receive antennas. IEEE Commun. Lett. 5(3), 85–87 (2001)

    Article  Google Scholar 

  25. G. Caire, S. Shamai, On the achievable throughput of a multiantenna Gaussian broadcast channel. IEEE Trans. Inf. Theory 49(7), 1691–1706 (2003)

    Article  MathSciNet  Google Scholar 

  26. S. Vishwanath, N. Jindal, A. Goldsmith, Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels. IEEE Trans. Inf. Theory 49(10), 2658–2668 (2003)

    Article  MathSciNet  Google Scholar 

  27. H. Weingarten, Y. Steinberg, S. Shamai, The capacity region of the Gaussian MIMO broadcast channel, in Proceedings of International Symposium on Information Theory. ISIT 2004 (2004), p. 174

    Google Scholar 

  28. P. Viswanath, D. Tse, Sum capacity of the vector Gaussian broadcast channel and uplink-downlink duality. IEEE Trans. Inf. Theory 49(8), 1912–1921 (2003)

    Article  MathSciNet  Google Scholar 

  29. M. Sharif, B. Hassibi, A comparison of time-sharing, DPC, and beamforming for MIMO broadcast channels with many users. IEEE Trans. Commun. 55(1), 11–15 (2007)

    Article  Google Scholar 

  30. G. Foschini, K. Karakayali, R. Valenzuela, Coordinating multiple antenna cellular networks to achieve enormous spectral efficiency. IEE Proc. Commun. 153(4), 548–555 (2006)

    Article  Google Scholar 

  31. M. Karakayali, G. Foschini, R. Valenzuela, Network coordination for spectrally efficient communications in cellular systems. IEEE Wirel. Commun. 13(4), 56–61 (2006)

    Article  Google Scholar 

  32. J. Andrews, W. Choi, R. Heath, Overcoming interference in spatial multiplexing MIMO cellular networks. IEEE Wirel. Commun. 14(6), 95–104 (2007)

    Article  Google Scholar 

  33. S. Venkatesan, A. Lozano, R. Valenzuela, Network MIMO: overcoming intercell interference in indoor wireless systems, in Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers. ACSSC 2007 (2007), pp. 83–87

    Google Scholar 

  34. D. Gesbert, S. Hanly, H. Huang, S. Shamai Shitz, O. Simeone, W. Yu, Multi-cell MIMO cooperative networks: a new look at interference. IEEE J. Sel. Areas Commun. 28(9), 1380–1408 (2010)

    Article  Google Scholar 

  35. 3GPP TR36.814 V2.0.1, Evolved universal terrestrial radio access (E-UTRA); further advancements for E-UTRA physical layer aspects (March 2010)

    Google Scholar 

  36. V. Cadambe, S. Jafar, Interference alignment and degrees of freedom of the K-user interference channel. IEEE Trans. Inf. Theory 54(8), 3425–3441 (2008)

    Article  MathSciNet  Google Scholar 

  37. B. Nosrat-Makouei, J. Andrews, R. Heath, User arrival in MIMO interference alignment networks. IEEE Trans. Wirel. Commun. 11(2), 842–851 (2012)

    Article  Google Scholar 

  38. M. Guillaud, D. Gesbert, Interference alignment in the partially connected K-user mimo interference channel, in European Signal Processing Conference (EUSIPCO’11) (2011)

    Google Scholar 

  39. H. Ghauch, C.B. Papadias, Interference alignment: a one-sided approach, in IEEE Global Telecommunications Conference (GLOBECOM 2011) (2011), pp. 1–5

    Google Scholar 

  40. T. Marzetta, Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 9(11), 3590–3600 (2010)

    Article  Google Scholar 

  41. A. Kalis, A. Kanatas, C.B. Papadias, A novel approach to MIMO transmission using a single RF front end. IEEE J. Sel. Areas Commun. 26(6), 972–980 (2008)

    Article  Google Scholar 

  42. O. Alrabadi, C.B. Papadias, A. Kalis, N. Marchetti, R. Prasad, MIMO transmission and reception techniques using three-element ESPAR antennas. IEEE Commun. Lett. 13(4), 236–238 (2009)

    Article  Google Scholar 

  43. O. Alrabadi, C.B. Papadias, A. Kalis, R. Prasad, A universal encoding scheme for MIMO transmission using a single active element for PSK modulation schemes. IEEE Trans. Wirel. Commun. 8(10), 5133–5142 (2009)

    Article  Google Scholar 

  44. V. Barousis, A. Kanatas, A. Kalis, C.B. Papadias, A stochastic beamforming algorithm for ESPAR antennas. IEEE Antennas Wirel. Propag. Lett. 7, 745–748 (2008)

    Article  Google Scholar 

  45. O. Alrabadi, C. Divarathne, P. Tragas, A. Kalis, N. Marchetti, C.B. Papadias, R. Prasad, Spatial multiplexing with a single radio: proof-of-concept experiments in an indoor environment with a 2.6-GHz prototype. IEEE Commun. Lett. 15(2), 178–180 (2011)

    Google Scholar 

  46. O. Alrabadi, J. Perruisseau-Carrier, A. Kalis, MIMO transmission using a single RF source: theory and antenna design. IEEE Trans. Antennas Propag. 60(2), 654–664 (2012)

    Article  MathSciNet  Google Scholar 

  47. E. Tsakalaki, O. Alrabadi, C.B. Papadias, R. Prasad, Spatial spectrum sensing for wireless handheld terminals: design challenges and novel solutions based on tunable parasitic antennas. IEEE Wirel. Commun. Mag.: Special Issue on Dynamic Spectrum Management in Wireless Networks 17(4), 33–40 (2010)

    Google Scholar 

  48. E. Tsakalaki, O. Alrabadi, C.B. Papadias, R. Prasad, Reduced complexity radio architecture for enhanced receive selection combining in multiuser diversity systems. Int. J. Antennas Propag.: Special Issue on MIMO Antenna Design and Channel Modeling 2012 (2012) Article ID 454210

    Google Scholar 

  49. E. Tsakalaki, O. Alrabadi, A. Kalis, C.B. Papadias, R. Prasad, Non cooperative space-time communication for energy efficiency in sensor networks. IEEE Trans. Commun. 60(1), 48–54 (2012)

    Article  Google Scholar 

  50. L. Dritsoula, C.B. Papadias, On the throughput potential of two-dimensional wireless multi-hop networks using directional antennas, in VTC Spring (2009)

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the funding offered by the European Commission’s 7th Framework Programme (FP7) via projects CROWN (FET # 233843), HIATUS (FET # 265578), and HARP (Future Networks # 318489), which all contain studies on parasitic antenna arrays for various wireless communication networking paradigms (ranging from cognitive radio to interference alignment to remote radio heads), thus greatly enhancing the community’s collective understanding of this emerging technology and its applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantinos B. Papadias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Papadias, C.B. (2014). Antenna Arrays: The Conventional Paradigm and an Emerging New Approach. In: Kalis, A., Kanatas, A., Papadias, C. (eds) Parasitic Antenna Arrays for Wireless MIMO Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7999-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7999-4_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7998-7

  • Online ISBN: 978-1-4614-7999-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics